
EXPRESS: CNN EXecution Time PREdiction for
DPU DeSign Space Exploration

Abstract—Many accelerators, such as the Deep learning Pro-
cessor Unit (DPU) from Xilinx, have been proposed to improve
the execution speed and/or reduce energy consumption of Con-
volutional Neural Networks (CNNs) on embedded systems. DPUs
can execute a variety of CNNs and are highly configurable
at design-time in terms of total parallel compute units, bus
configuration for data access, and the number of DPU instances.
These configuration parameters determine the execution time
of the CNNs implemented on DPUs. Our work is motivated
by applications that need to deploy a variety of CNNs for
different tasks, and their individual performance requirements
could change dynamically. In such a setting, an execution time
predictor can help “optimize” the DPU configurations to meet
the performance requirements of different tasks. We propose
EXPRESS, which uses a careful combination of parameters
associated with CNNs, DPUs, and their bus configurations, and
predicts the execution time of any given CNN on a DPU. As
DPU is invoked by a host CPU to process a CNN layer by layer,
EXPRESS considers the CPU and the DPU execution time for
predicting the end-to-end processing time. It has been developed
through executing a variety of CNN workloads on a real FPGA
device. Our experiments across different CNNs, DPUs, and bus
configurations indicate that EXPRESS has an average prediction
error of 2.2% and significantly outperforms state-of-the-art. We
also show its usefulness for the design space exploration of an
application involving concurrent CNN execution.

I. INTRODUCTION

Convolutional Neural Networks (CNNs) are gaining pop-
ularity in embedded systems due to their high accuracy in
various classification and detection tasks [1], [2]. Continuous
improvements in CNNs has resulted in a large variety of
them being available for any given inference task [3]. Mul-
tiple CNNs might be required to be executed concurrently
to achieve different kinds of tasks in many embedded sys-
tems [4]–[6]. As an example, in a traffic monitoring system [2],
many cameras are present at every intersection and each
of them have to detect and read license plates of vehicles.
Therefore, multiple instances of an object detection and digit
classification CNN has to execute and process various camera
feeds. At peak hours, there will be more number of cars,
but traveling at less speed. So, a CNN with high accuracy
and low frames-per-second (FPS) is a suitable choice. At
non-peak hours, vehicles will move at a very high speed,
but the road will be mostly empty. Thus, a CNN with high
FPS is a suitable choice. Such requirements exist for many
other systems such as advanced driver assistance systems
(ADAS) [1], [5], [7] where CNN processing speed as well
as accuracy is determined based on whether the vehicle is
on a highway or within the city; assistive gadgets [8] where
the user’s walking speed and location affect the processing

E
X
P
R
E
S
S

CNN Type
VGG16, Mobilenet, … Refinedet 1

DPU Size
B4096, B3136, … B512

Number of DPU Instances
upto 8 DPUs

Bus Configuration
HP1, HP2, HP3, HP4

Execution 
Time

Fig. 1. Different configurable options for DPUs

rate. Therefore, CNN accelerators are required to support
concurrent CNN execution and switching between CNNs at
the run-time [5].

Among various computation platforms, Field Programmable
Gate Arrays (FPGAs) are able to support high performance-
per-watt and hence are popularly used in the embedded
systems [9], [10]. Xilinx’s Deep learning Processor Unit
(DPU) [11] is a generic CNN processor (or accelerator) having
the following configurable and programmable options (Fig. 1).

i) During the design-time, a DPU can be parameterized for
many different sizes that differ in their processing speed and
the amount of FPGA resources required to implement them.

ii) The number of DPU instances is also configurable
(limited by resources available in the chosen FPGA chip), and
multiple DPUs can be active together.

iii) The connection between DPU buses and system-level
ports connecting to external memory is also configurable, and
different connections lead to different CNN execution times.

iv) At the run-time, a DPU can be programmed to execute
any CNN through an instruction file. Note, different CNNs
differ in their execution time and energy consumption, and
support different inference accuracy.

Given the number of choices for the DPU sizes (n), number
of DPU instances (m), count of buses (p), and types of CNNs
(k), the total number of design choices becomes very large
(k ∗ pm ∗ nm). Choosing a suitable design point from this
vast space requires a quick prediction of execution time for
various choices. We propose EXPRESS (CNN EXecution time
PREdiction for DPU deSign Space exploration) to facilitate
exploration of such a large design space. EXPRESS uses
machine learning techniques with easy-to-obtain features of
CNNs, DPUs, and buses to predict the execution time of
various instances of a CNN executing on various DPU design-
time configurations (size, count, and bus connections). Addi-
tionally, since a DPU is invoked by a host (on-chip) CPU



TABLE I
VARIOUS CNNS AND THEIR SHORT NAMES USED

S.No. CNN
name

Short
name S.No. CNN

name
Short
name

1 squeezenet sqz 9 inception v1 inc1
2 resnet18 res18 10 inception v2 inc2
3 ssd traffic traf 11 refinedet 3 rdet3
4 ssd adas adas 12 ssd pedestrian ped
5 resnet50 res50 13 ssd mobilenetv2 mossd
6 refinedet 1 rdet1 14 mobilenet v2 mob2
7 vgg16 vgg 15 refinedet 2 rdet2
8 yolo v3 yolo 16 inception v3 inc3

for processing each CNN layer, EXPRESS also considers
the CPU time for predicting the end-to-end CNN processing
time. While such models for predicting CNN execution time
have been proposed earlier, many of them do not consider
concurrent CNN execution [12], [13]. A closely related work,
INFER [14], considers a significantly restricted set of DPU
configurations. It supports upto only 3 DPU instances and
does not consider the performance variation associated with
different bus configurations as well as the effect of CPU time
in the prediction of total time.

We perform a detailed experimental evaluation using 16
standard CNNs (Table I), 8 DPU configurations (Table II), upto
8 DPU instances, and various bus configurations, for which
EXPRESS predicts the execution time with an average error of
only 2.2%. Our experiments also indicate that for the expanded
design space considered in our work, our prediction error
is significantly lower than state-of-the-art [14]. In summary,
following are the key contributions of this paper:

1) For the first time, we extend Xilinx tools to implement
more than four DPU instances as well as customize the
bus interconnections. This has vastly expanded the design
space in terms of DPU instances, bus configurations, DPU
sizes, and CNNs which in turn has enabled us to identify
different factors that affect the execution time on DPUs.

2) We propose EXPRESS, a framework to predict the infer-
ence latency of CNNs executing concurrently on multiple
DPUs. EXPRESS is the first work to predict DPU execu-
tion time considering various bus configurations, a larger
number of DPU instances, and the CPU time needed for
invoking a DPU.

3) We validate EXPRESS using real data from ZCU102
board and obtain a low error rate (2.2%), with the model
being robust to changes in FPGA frequency and the
training data set. We illustrate a design space exploration
use-case where the feasible points identified using actual
measurements are very close to that using prediction.

II. RELATED WORK

Many FPGA-based accelerators for CNNs have been pro-
posed [10], [15], [16]. Unlike these works which focus
on specific types of CNNs, Xilinx DPU [11] and Google
TPU [13] are generic CNN accelerators that can execute any
given CNN through a simple software compilation. Many
research works have proposed prediction of execution time or
energy consumption of CNNs on various embedded platforms

like CPUs, GPUs, TPUs, and FPGAs [12]–[14], [17]–[20].
PETET framework [13] predicts the execution time of a CNN
executing on a Google Edge TPU. They validate their model
using only two different types of CNNs namely vgg and
mobilenet. nn-Meter framework [12] predicts CNN execution
time for various edge devices like mobile CPU, mobile GPU,
and Intel VPU. Qiu et al. [18] use analytical modeling and
internal architecture details of a DPU to predict the CNN
execution time. A key limitation of these works compared to
EXPRESS is that they primarily consider either only a single
CNN or use internal design details for prediction. None of
them consider the effect of bus/interconnects between the ac-
celerator and external memory which becomes a critical factor
when multiple instances execute concurrently. Furthermore,
they ignore the time to invoke an accelerator by the host CPU.

f-CNNx [21] is one of the first works to consider multi-
CNN execution on FPGA platforms and uses execution time
prediction for making design decisions. Due to the complete
flexibility and visibility in datapath design, they use a simple
prediction model with total execution time being the sum of
computation and data access time. In contrast, EXPRESS uses
generic CNN accelerators like DPU where resource utilization
as well as the amount of overlap between computation and
memory access can vary significantly for different CNNs.
Moreover, f-CNNx does not consider any bus-based contention
which significantly affects DPU execution time.

The closest to our proposed work is the INFER frame-
work [14]. Their research problem is the same as ours, namely
“predicting runtime for CNN inferences on Xilinx DPU”.
Their methodology is also ML based modeling of empirical
measurement data for training some CNN and DPU configu-
ration combinations, and prediction for unseen combinations.
However, INFER [14] had two serious short-comings that
affected prediction accuracy – (a) not considering bus con-
figurations that affect data transfer latency between DPU and
external memory, increasing CNN runtime by upto 83% for
the same CNN-DPU combination and (b) not considering the
host CPU’s execution time for invoking the DPU, which again
can increase CNN execution time by more than 100%. More
importantly, through non-trivial engineering modifications, we
extend the Xilinx provided official capability of implementing
only 4 concurrent DPUs at a time, to the maximum possible
number of upto 8 concurrent DPUs on ZCU102. We also
extend our prediction framework to handle this additional
concurrency which significantly increases the design space, not
addressed in any prior work. We explicitly model bus and CPU
execution time in our work, improving prediction accuracy by
upto 10.8% (2.1% on average) over INFER [14].

III. DESIGN-TIME CONFIGURATION PARAMETERS OF DPU

A Deep learning Processor Unit (DPU) [11] is a CNN accel-
erator for Xilinx FPGAs which can execute any CNN. DPUs
are configurable in eight different sizes which are referred
to as B512, B800, B1024, B1152, B1600, B2304, B3136,
and B4096; where the suffix number represents the count
of parallel processing Multiply-Accumulate (MAC) units in



TABLE II
MAX. NUMBER OF DPUS OF DIFFERENT SIZES FEASIBLE ON ZCU102

DPU
Configuration

Max. number of
DPUs instantiated

Notation
used

B512 8 B512 8
B800 7 B800 7

B1024 6 B1024 6
B1152 6 B1152 6
B1600 5 B1600 5
B2304 4 B2304 4
B3136 3 B3136 3
B4096 3 B4096 3

the DPU. Due to the difference in the number of concurrent
MAC units, different DPUs require different amount of FPGA
resources and also consume different execution times for the
same CNN. Further, each DPU has multiple buses which
can connect to various system-level ports available in FPGA
chips in different combinations, and affect the overall data
transfer time. Thus, the size of DPUs, number of instances, and
the system-level bus configuration constitute various design-
time configurable parameters for a DPU-based system and are
described in more detail.

A. Size and count of DPUs
Smaller DPUs (e.g., B512) use less hardware resources as

compared to the larger DPUs (e.g., B4096). Thus, a larger
count of smaller DPUs can fit on a given FPGA as compared
to larger DPUs. However, existing Xilinx tools support a
maximum of only 4 DPUs on any FPGA board. We mod-
ified the provided configuration files and the driver code to
enable the support for larger number of instances. Table II
shows the maximum number of DPUs of different sizes that
can be instantiated on our evaluation board, ZCU102 [22],
featuring a Xilinx Zynq Ultrascale+ FPGA. While referring
to different count of DPU instances, we use a notation BX Y
(e.g., B4096 3, B512 8) where X refers to the parallel MAC
operations in the chosen DPU and Y refers to the number of
DPU instances.

Fig. 2 shows the supported processing speed in frames-
per-second (FPS) for various CNNs and DPU configurations.
We observe a significant variation in the FPS supported by
different DPU configurations. For most of the CNNs (e.g.,
yolo, rdet1), B4096 3 configuration provides the maximum
FPS. However, for CNNs with lower compute/memory re-
quirements (e.g., mob2), B1152 6 configuration provides the
maximum FPS. This establishes that different CNNs might
achieve their highest FPS under different DPU configurations
for the same FPGA board. Additionally, depending on the
input FPS requirement, it is possible that smaller DPUs or
fewer DPU instances, or both, will suffice. Configurable DPU
instances and sizes become advantageous in such cases, as
they save FPGA resources and reduce power/energy usage.
Remaining FPGA resources could be utilized for other tasks.

B. BUS configurations of DPU
Each DPU has three distinct buses – an instruction bus (I)

and two data buses (D0 and D1). The instruction bus is used to
transfer the instructions corresponding to the CNN that needs

4096
_3

3136
_3

2304
_4

1600
_5

1152
_6

1024
_6 800_7 512_8

0
100
200
300
400
500
600
700
800

Fr
am

es
 p
er
 se

co
nd

 (F
PS

)

mob2 achieves max. FPS
with B1152_6

yolo
rdet1
mossd

inc2
ped

inc1
mob2

Fig. 2. FPS of different CNNs for different DPU configurations

vgg inc2 ped inc10.0

0.5

1.0

1.5

2.0

2.5

3.0

Fr
ac
tio

na
l i

nc
re

as
e 

in
 F

PS

HP0_6
HP1_3,HP2_3
HP0_3,HP1_3
HP0_3,HP3_3

HP0_1,HP1_1,HP2_1,HP3_1,HPC0_2(default)
HP0_1,HP1_2,HP2_2,HP3_1
HP0_2,HP1_2,HP2_2
HP3_6

Fig. 3. Fractional increase in FPS of different CNNs for different bus
configurations of B4096 3

to be executed on the DPU while the data buses transfer
weights, input features, intermediate data, and output data
required for CNN execution. Zynq Ultrascale+ FPGA used in
ZCU102 board has six different ports named HP0, HP1, HP2,
HP3, HPC0, and HPC1 that are available to connect the three
DPU buses from each DPU instance. The connection between
DPU buses and system-level ports is fully configurable at the
design-time. Among the six available ports, HP0–HP3 support
high-speed data transfer while HPC0 and HPC1 ports incur
coherence overheads and are slower. Since the instruction bus
in DPUs requires considerably lower bandwidth than data
buses, we combine and connect instruction buses of all DPUs
together to one of the HPC ports. The remaining four ports
(HP0 – HP3) are connected to the two data buses (D0 and
D1) of DPUs and used to access data from external memory
(DRAM). For larger count of DPUs, the number of data
buses could be much larger than available ports and hence
different configurations could arise. For example, B4096 3
has 3 DPUs and thus a total of 6 data buses are required to
be connected to four HPx ports. Configurations with smaller
DPUs like B512 8 have even larger number of data buses
(16), which imply connecting 16 buses to four available ports.
These connections could be made in many different ways and
they would result in different execution times for the DPUs.

Fig. 3 shows the fractional increase in FPS of various
standard CNNs (Table I) for different bus connections for the
B4096 3 DPU configuration. Here, we use the notation HPx y
where x indicate the HP port number (0, 1, 2, or 3) and y
indicate the count of DPU buses connected to it. For example,



HPC1

HP0

HP1

DPU2
HP2

HP3

DPU3

HPC1

HPC0

HPC0

HPC1

HP0

HP1

HP2

HP3

HPC0

Memory 
Controller

FPD DMA

Display port

PL

CCI coherency 
and bypassARM Core

Inst.

Data

Data

Inst.

Inst.

Data

Data

Data

Data

I_1

D0_1

D1_1

I_2

D1_2

D0_2

I_3

D0_3

D1_3

DPU1

HPC1

Fig. 4. Default bus configuration for DPU B4096 3

HP0 6 indicates that all the 6 data buses of 3 DPUs are
connected to HP0, while {HP0 2, HP1 2, HP2 2} indicates
that 2 data buses are connected to HP0, HP1, and HP2 each.
The default bus configuration implemented in Xilinx tools is
shown in Fig. 4. We observe up to 83% variation in FPS
for different bus configurations, which emphasizes that bus
configuration should be considered as a part of the design
space for estimating execution time. We also observe that
the default bus configuration is up to 18% slower than the
best configuration. As shown in Fig. 4, the HP3 port gets
multiplexed with a Direct Memory Access (DMA) controller
and hence supports a lower FPS compared to other ports, with
HP3 6 having the lowest FPS. This motivates us to develop
an execution time estimation framework considering the size
of DPUs, number of DPU instances, bus configuration, and
the CNN as configurable parameters so that an appropriate
configuration can be chosen at the design-time.

C. Host CPU time for invoking DPU

CNN execution on a DPU is invoked by the host CPU. The
host CPU prepares the data (input image frame as well as the
CNN information) for processing and then signals the DPU
to start the computation. We refer to this processing time as
Interframe time as it is incurred whenever a new input frame
is to be processed. While the data preparation occurs only
once, the DPU needs to be triggered for each layer. Upon an
interrupt from DPU on completion of a layer, the host CPU
triggers the DPU for the next layer until all layers have finished
execution. This handshake between the DPU and CPU for each
layer consumes a small amount of time, which we refer to as
Interlayer time and the total Interlayer time for a CNN is the
sum of Interlayer time of all its layers. We consider the sum of
Interframe time and total Interlayer time as the total CPU time,
and the overall CNN execution time is the sum of total CPU
time and DPU time. Fig. 5 shows the CPU and DPU execution
times for different CNNs for the B4096 1 DPU configuration.
While the CPU execution time for larger CNNs like vgg and
rdet1 is very small compared to their DPU execution time, it is
a considerable fraction of the DPU execution time for smaller
CNNs like sqz and inc1 and cannot be ignored. This motivates
that CPU execution time must be considered when predicting
the execution time of a CNN on a DPU-based system.

sqz inc1 ped inc2 mossd rdet1 vgg0

10

20

30

40

50

Ex
ec

ut
io

n 
tim

e 
(m

s)

DPU time CPU time CPU + DPU time

Fig. 5. CPU and DPU execution time for different CNNs

IV. PROPOSED METHODOLOGY FOR CNN EXECUTION
TIME PREDICTION

The CNN execution time is computed as a sum of DPU time
and the CPU time, which are individually explained further.

A. DPU time prediction

EXPRESS predicts the execution time (FPS) for four differ-
ent configurable parameters in a DPU-based system i.e., CNN
being executed, DPU size, DPU count, and bus configuration.
In order to support these parameters during prediction, we
consider the following three categories of features. We use
subscript i and j in the notation where i represents the CNN
and j represents the DPU configuration.

1) CNN related features: We consider that the execution
time (Time(i , j )) of a given CNN (i) on a single DPU (j) is
already known, which could be either based on measurement
on the board or predicted using prior works like INFER [14].
Time(i , j ) corresponds to the {HP0 1, HP1 1} bus configu-
ration where D0 and D1 buses of DPU are connected to HP0
and HP1 ports respectively. This bus configuration is chosen
as it provides the lowest execution time for all CNNs. We use
Time(i , j ), MBpl(i), BW (i , j ), and N layers(i) as features
which are representative of these characteristics of CNNs.
MBpl(i) is the amount of data required per layer of a CNN.
BW (i , j ) is the bandwidth requirement of a CNN running on
a single DPU. MBpl(i) and BW (i , j ) are calculated as:

MBpl(i) =
Data(i)

N layers(i)
BW (i, j) =

Data(i)

Time(i , j )

Here, Data(i) is the total data required for computation of a
CNN. N layers(i) is the total number of layers present in the
given CNN. We also use N layers(i) as a separate feature for
our predictor. We observe that using it as a separate feature
reduces the mean error from 2.6% to 2.4% and the maximum
error reduces from 37.7% to 33.6%.

2) DPU related features: As discussed in Section III-A,
DPUs can be configured for their size and count at the design-
time. We consider the following DPU related features in our
framework: (i) N DPU indicating the count of DPUs used,
(ii) DPU Comp(j ) indicating the number of concurrent MAC
operations supported in the DPU j, and (iii) DPU Mem(j )
indicating the amount of on-chip memory present in the
DPU j. Previous works [14] assumed N DPU = 3 and
thus supported limited configurations while we support larger
values for N DPU .



TABLE III
ERROR (%) FOR DIFFERENT APPROACHES FOR PREDICTION OF DPU

EXECUTION TIME

Approaches Mean Max 90th 75th
Approach-1 24.7 136.7 49.3 34.0
Approach-2 11.5 91.7 26.7 15.8
Approach-3 3.2 64.8 8.5 3.4
Approach-4 2.4 33.6 6.3 2.7

TABLE IV
CORRELATION OF FEATURES CONSIDERED FOR PREDICTION OF

INTERFRAME CPU TIME

Features correlated Correlation factor
Number of layers of CNN 0.99
MAC operations 0.28
Total data required for computation 0.19
Data required per layer -0.25
MAC operations per layer -0.20

3) Bus related features: Since buses in different DPU
configurations can connect in many different ways to the four
system-level ports (HP0–HP3) which affect their overall exe-
cution time, we consider four different features corresponding
to each of these ports. We use HP0 N , HP1 N , HP2 N ,
and HP3 N as the four features which indicate the count
of DPU buses connected to HP0, HP1, HP2, and HP3 ports
respectively. Rather than considering the total count of buses
for each port, we could have alternatively considered more
detailed features indicating the connection of each bus of the
DPU. But our experiments suggest that the proposed set of
features are easier to obtain and provide similar accuracy.
Previous works [14] did not consider bus related features and
suffer from higher inaccuracies (Section V-B2).

Using these features, we explored the following four differ-
ent approaches for developing the prediction model:

• Approach-1: We predict the execution time for multiple
instances of CNNs running on multiple DPUs using vari-
ous features without considering the measured Time(i , j )
as an input feature.

• Approach-2: We consider that the single CNN execution
time (Time(i , j )) is available as an input feature and used
along with other features to predict the execution time for
multiple instances of a CNN running on multiple DPUs.

• Approach-3: Building up on approach-2, rather than pre-
dicting the absolute execution time for multiple instances,
we predict the increase in execution time compared to a
single DPU, and then add it to the single CNN execution
time to obtain the execution time for multiple instances.

• Approach-4: Modifying approach-3, instead of predict-
ing the absolute increase in the execution time, we predict
the percentage increase in execution time over the single
CNN/DPU scenario and use it to predict the execution
time for multiple instances.

We evaluate these approaches using various regression
based prediction techniques like random forest, polynomial,
and decision tree. As shown in Table III, Approach-4 provides
the lowest error among these and hence adopted as the final
approach in EXPRESS for prediction of DPU time.

2 4 6 8
Number of DPUs

30
40
50
60
70
80

CP
U 

tim
e 

(u
s)

Fig. 6. Interlayer CPU time versus
number of DPUs

20 40 60 80
Number of layers

0
500

1000
1500
2000
2500

CP
U 

tim
e 

(u
s)

Fig. 7. Interframe CPU time versus
number of CNN layers

B. CPU time prediction

The total CPU time comprises of Interframe and Interlayer
time, which are determined as follows.

1) Interlayer CPU time : Using a large number of mea-
surements for different CNNs, and DPU/bus configurations on
the hardware board, we observe that the Interlayer CPU time
remains almost constant for various combinations of CNN,
DPU size, and bus configuration and varies only with the count
of DPUs used. As shown in Fig. 6, Interlayer time has an
almost linear relationship to the number of DPUs used and
thus, we use a simple linear regression model with number of
DPUs as an input feature to predict the Interlayer CPU time.

2) Interframe CPU time : We measure Interframe CPU
time for various CNNs, and DPU/bus configurations and
observe that the Interframe CPU time is not affected by the
number of DPU cores, DPU type, or bus configuration but
depends primarily on the CNN to be executed. We further
evaluate different CNN related features for their effect on the
Interframe CPU time (Table IV) and observe that the number
of layers in a CNN have a very high correlation factor with
the Interframe CPU time. Further, as Fig. 7 shows, Interframe
CPU time has a linear relationship with the number of CNN
layers. Therefore, we use a simple linear regression model
with the number of CNN layers as an input feature to predict
the Interframe CPU time.

When number of DPUs significantly exceed the number of
CPUs, we see a rise in tail latency in Interframe and Interlayer
CPU times, as more DPUs get assigned to the same CPU core.
This might adversely affect some real time applications. We
will investigate this further in future, possibly designing our
own CPU scheduler to reduce unpredictable interference.

V. EXPERIMENTS AND RESULTS

A. Experimental Setup

1) Setup: We use Xilinx Zynq Ultrascale+ FPGA board
(ZCU102) [22], Vitis AI v1.3 framework [23], and DPU
v3.3 [11] for our experimentation. We consider eight different
DPU sizes and upto eight DPU instances, as listed in Table II.
Further, as discussed earlier in Section III-B, four HPx ports
can be used in various different ways to connect to the data bus
of each DPU instance, leading to many different bus configura-
tions. We generate a large number of configurations in the form
of bitstreams corresponding to various bus configurations, for
each of the DPU configurations. We evaluate EXPRESS using
16 standard CNNs (Table I) differing in their compute and
memory requirements. Table V shows the train and test data
used in EXPRESS. We choose 8 CNNs for training data



TABLE V
TRAIN AND TEST DATA FOR EXPRESS

DPUs →

CNNs ↓

DPU
config.

No. of
DPUs

DPU
config.

No. of
DPUs

B512
B1024
B2304
B4096

1-8
1-6
1-4
1-3

B800
B1152
B1600
B3136

1-7
1-6
1-5
1-3

sqz, ped,
mob2, rdet1,
inc1, yolo,
vgg, res50

Quadrant-1

Train data

Quadrant-2

Test data

res18, traf,
adas, rdet2,
rdet3, inc2,
inc3, mossd

Quadrant-3

Test data

Quadrant-4

Test data

and the remaining 8 CNNs for test data. We choose the
largest (B4096), smallest (B512), and two medium sized DPUs
(B1024 and B2304) for training, while the remaining four
DPU sizes are in the test dataset. We include all possible bus
configurations for the corresponding DPUs in both train and
test dataset. This creates a rich dataset with train and test data
size of 1175 and 3765 points respectively.

2) Measurement methodology: We use the profile mode
execution of DPUs to measure the execution time of a single
CNN executing on a single DPU, averaged over 100 different
images. When executing multiple CNNs on multiple DPUs,
we use dpuSetTaskAffinity API to ensure that each CNN is
executed on a fixed DPU and different layers of a CNN are
not assigned to different DPU instances. We consider that
multiple copies of the same CNN is executing on different
DPUs. While the CNN and DPU size are same for various
instances, use of different bus connections for different DPUs
could result in different execution time for each CNN. We
follow an approach to first extract the execution time of each
CNN on their assigned DPUs, out of which we consider the
lowest execution time (Tlow). Then, we calculate the number
of image frames (Fi) processed by each DPU (i) within Tlow.
The average execution time of the CNN per image (Tavg) is
thus obtained as:

Tavg =
Tlow∑

i Fi

We extract the Interlayer and Interframe CPU time by
processing the raw profile file created during DPU execution.

3) Prediction model: We explore three widely used pre-
diction techniques, namely random forest, decision tree, and
polynomial regression (first and second order), for training
the model and predicting the execution time. Random forest
provides the lowest percentage error (mean, median, and
maximum). This is also in-line with our expectations as
random forest is a non-linear predictor composed of several
uncorrelated decision trees that outperforms any individual
tree [24]. A similar observation about random forest predictor
is also reported by prior works [13], [14], and thus, we use
random forest based prediction in EXPRESS.

TABLE VI
DPU TIME PREDICTION ERROR (%) FOR DIFFERENT DPU

CONFIGURATIONS

DPU config. Mean 90th 95th 99th Max
B512 0.9 2.0 2.9 9.2 13.7
B800 2.0 4.6 6.9 16.8 29.1
B1024 2.7 6.1 12.9 28.1 33.6
B1152 2.6 6.9 9.7 19.5 33.1
B1600 3.1 8.5 13.0 20.8 25.5
B2304 4.0 10.8 13.8 21.9 33.1
B3136 2.8 6.2 8.9 21.1 26.1
B4096 3.7 7.4 12.9 23.5 24.3

All DPUs 2.4 6.3 9.9 20.6 33.6

0 50 100 150 200 250 300
Actual DPU execution time(ms)

0

10

20

30

Pr
ed

ict
io

n 
er

ro
r (

%
)

Fig. 8. Prediction error versus the actual DPU execution time for various test
points

B. Results

1) Prediction errors: We present the prediction accuracy
of EXPRESS for DPU time followed by the total time
(CPU+DPU). The test dataset (Quadrants-2, 3, and 4) used for
evaluation is shown in Table V. Table VI shows the percentage
estimation error of DPU time in comparison to the measured
execution time on ZCU102 board for various DPU sizes
and various number of DPU instances. The mean error for
various DPU sizes is within 4.0%, which is quite low. When
considering the entire test dataset together, the overall mean,
90th percentile, and 95th percentile errors are 2.4%, 6.3% and
9.9% respectively. We also observe a significant difference
for the 99th percentile and maximum error in comparison to
the 95th percentile, which indicates that most of the cases are
predicted with low error rate barring a few. The maximum
error goes as high as 33.6% due to a few extreme corner cases.
For example, if all the DPU buses are connected to the same
HP3 port, the execution time will be very high specifically
for B512 which can have upto 8 DPU instances. While such
cases are very unlikely to occur as the designer might also
want to use the other three HPx ports, EXPRESS shows high
percentage prediction errors for such cases.

To illustrate further, Fig. 8 shows the prediction error for
all points in our test dataset (Table V). The x-axis shows
the average execution time of DPU per image, measured and
averaged for a batch of 1000 images whereas the y-axis shows
the prediction error corresponding to these execution times.
We observe that high percentage errors correspond to small
actual execution times. When actual execution time is small,
a slight absolute error causes a high percentage error. In our
dataset, the execution time for various CNNs, DPUs and bus
configurations ranges from 0.7 ms to 299.8 ms while the abso-



TABLE VII
PREDICTION ERROR (%) FOR DPU AND CPU EXECUTION TIMES

Different prediction cases Mean 90th 95th 99th Max
DPU time only 2.4 6.3 9.9 20.6 33.6
Total time (with act. DPU time) 0.5 1.2 1.7 3.0 5.7
Total time (CPU + DPU) 2.2 5.5 8.8 17.6 32.2

Mean Max 99th 95th 90th 75th Median0

10

20

30

40

Pr
ed

ict
io

n 
er

ro
r (

%
) INFER

EXPRESS

Fig. 9. Prediction error (%) of EXPRESS and INFER [14]

lute prediction error for most of them is below 2.0 ms. These
results indicate that EXPRESS predicts execution time for
various DPU configurations, CNNs, and bus configurations,
with high accuracy.

We now present the prediction error for the total execution
time by considering two different scenarios. In one case,
we consider the total execution time with CPU time being
predicted from our model but combined with actual DPU time
obtained from measurements. In the second case, we consider
the total time as the sum of predicted times for CPU and DPU.
The error rate for these scenarios are shown in row-2 and row-
3 of Table VII. Overall, we observe that the total prediction
error is slightly lower than predicting only the DPU time,
which happens as the denominator is larger when considering
the total time. The overall mean, 90th percentile, and 95th
percentile errors are 2.2%, 5.5% and 8.8% respectively.

2) Comparison with state-of-the-art: We consider a recent
work, INFER [14], which predicts execution time of CNNs
on DPUs for a fixed number of DPUs (three) and does not
consider bus configuration. It does not take CPU time into
account while making predictions and just predicts the DPU
time. For a fair comparison between EXPRESS and INFER,
we modify our prediction model so that it predicts only the
DPU time, considers only the features used by INFER, and
uses only 3 DPUs when calculating the error. Further, we
also used the measured execution time of a single DPU as
an input feature for both EXPRESS and INFER. Fig. 9 shows
that EXPRESS significantly outperforms INFER. The mean
reduces from 4.7% to 2.5% and the 95th percentile error
reduces from 18.2% to 8.5%. This is because INFER performs
poorly on non-default bus configurations.

3) Prediction errors with varying train dataset: We conduct
a separate experiment to show the effect of varying the train
data size on the overall accuracy. In our previous experiments,
we considered only the Quadrant-1 from Table V for training
which uses only four DPU configurations. Now, we increase
the number of DPU configurations used in training set from
2 to 8 and measure the error for a common test dataset (only
Quadrant-4 from Table V). As shown in Fig. 10, increasing

2 3 4 5 6 7 8
Number of DPU sizes used in training

0

5

10

15

20

25

30

Pr
ed

ict
io
n 
er
ro
r (

%
) Mean

99th
90th
Median

Fig. 10. Prediction error (%) for increasing the number of DPUs in the
training

Quad-1 Quad-1,3 Quad-1,2 Quad-1,2,3
Quadrants used in training

0

5

10

15

20

25

Pr
ed

ict
io

n 
er

ro
r (

%
) Mean

99th
90th
Median

Fig. 11. Prediction error (%) by changing the quadrants used in training

the number of DPU configurations in the training set improves
the prediction accuracy of EXPRESS. We now include more
quadrants in the training set but consider a common test set
(Quadrant-4). Again, as shown in Fig. 11, prediction error
decreases as we include more quadrants in the training set.
From both these experiments, we observe that our choice of
using only Quadrant-1 for training set achieves almost similar
90th percentile error as compared to using three quadrants.
The 99th percentile error does show larger improvements with
larger training set, but a lot of these cases are not practically
useful as mentioned earlier. While one could improve the
accuracy by considering a larger training dataset, an estimation
model trained on a restricted dataset is a more viable choice
given the rapid advancement of CNNs and their accelerators.

4) Cross-validation: In order to show the performance of
our framework on unseen data, we perform a 16-fold cross
validation of EXPRESS for 16 standard CNNs listed in Table I.
We choose 15 CNNs for training and the remaining one as the
test set. This experiment is repeated 16 times for each CNN
and Fig. 12 shows the prediction error for individual CNNs.
We observe a low mean error for all CNNs except vgg. This
confirms that EXPRESS performs well on unseen data.

vgg shows a higher error because it has a relatively larger
fully connected layers, not present in other CNNs. As vgg is
not considered in training set during cross-validation for vgg,
such aspects are missed out and the error is higher. However,
in the actual training set of EXPRESS captured in Table V,
vgg is indeed a part of the training set and avoids this situation.

5) Prediction error for different clock frequencies: One key
change that can happen when the DPUs get implemented on
different FPGA devices is that the frequency of operation may
vary. Since we had physical access to only ZCU102 board,



ada
sinc1inc2inc3mob

2pedrdet
1
rdet

2
rdet

3
res1

8
res5

0sqz traf vggyolomos
sd

0

1

2

3

4

5

6
Pr
ed

ict
io
n 

er
ro

r (
%

)
12.4

Fig. 12. Prediction error (%) for 16-fold cross validation of EXPRESS

TABLE VIII
FEASIBLE DESIGN POINTS USING ACTUAL (ACT.) AND ESTIMATED (EST.)

EXECUTION TIMES

Time limit (ms) –> 5 10 20 50 80 100
Only DPU time (act.) 1349 2850 3942 4603 4783 4845
Only DPU time (est.) 1358 2860 3943 4604 4781 4845
CPU+DPU time (act.) 43 491 1267 3389 4191 4442
CPU+DPU time (est.) 36 482 1295 3407 4208 4437

in order to emulate different FPGA boards, we evaluate EX-
PRESS to predict CNN execution time on DPUs by changing
the clock frequency. We scale the base frequency of our FPGA
by 1.0x, 0.93x, 0.75x, and 0.60x and measure the execution
time for various CNNs and DPU configurations, for a subset
of the bus configurations. We identify that the execution
time of different CNNs increase in different proportions as
the memory access time does not scale with changing the
FPGA frequency. This behavior is indeed a closer match to
using another FPGA device and by using multiple frequency
scaling factors, we could emulate many devices. We are able
to achieve a low prediction error (within 2%) despite such
frequency variations and without any retraining of the model
because of the use of single DPU execution time as an
input feature in EXPRESS. This experiment demonstrates that
EXPRESS is robust and can easily be extended for different
FPGAs without any need for retraining.

VI. USE OF EXPRESS FOR DESIGN SPACE EXPLORATION

As mentioned in Section I, one of the primary use for a pre-
diction framework like EXPRESS is to enable a fast analysis
and exploration of various design choices for a DPU-based
system, without the need for actually generating a bitstream.
Prior works [5] that address design space exploration (DSE)
for DPU-based systems performed extensive measurements to
obtain the execution time data. However, it becomes practically
prohibitive to perform such measurements due to the many-
fold increase in design space due to consideration of bus
connections and variable number of DPU instances.

Similar to prior works [5], [6] and as per the needs of
targeted applications like drones, ADAS, traffic monitoring,
etc. that require CNN execution, we consider that a DPU-based
system would execute multiple computer-vision applications
concurrently, with a specified periodicity. One of the important
aspect of DSE in such cases is to identify whether a given

design choice would meet the specific period or not. For
example, if an application needs to support a frame rate of
30 FPS, then we could prune out design choices having an
execution time larger than 33.33 ms. During such pruning,
classifying a design point correctly as feasible or infeasible is
more important than the accuracy of the predicted execution
time. A design point whose execution time is either very high
or very low from the allowed period, might still get correctly
classified as feasible/infeasible despite high prediction errors
in the underlying model.

We conduct an experiment by considering various values
of allowed period in the range of 5 ms to 100 ms and
count the number of feasible design points from our entire
test dataset, as per actual and predicted execution times. We
consider using only DPU time and the total time (CPU+DPU)
for checking the feasibility. As shown in Table VIII, the count
of feasible points reported by EXPRESS is very close to that
identified using actual measurements. When we consider total
time (CPU+DPU) rather than just DPU time, the number of
feasible design points is significantly reduced, specifically for
shorter time periods (e.g., the feasible points reduce from
1349 to 43 for 5 ms period). Such a reduction illustrates the
importance of considering CPU time during prediction so as
to obtain more realistic design points.

In a similar manner, EXPRESS can also be used to make
decisions to switch CNNs dynamically during the run-time.
Lei et al. [6] propose to use heterogeneous DPUs to improve
system efficiency during concurrent CNN execution and use
measured execution time in their analysis. Such a work can
significantly benefit from an execution time prediction frame-
work like EXPRESS.

VII. CONCLUSION AND FUTURE WORK

We extend the existing tools to implement larger number
of DPU instances and study the effect of various bus con-
figurations on execution time of CNNs. Using these insights,
we developed EXPRESS framework to predict the execution
time of multiple instances of a CNN executing on DPUs,
by considering various design-time configurations. This is the
first work to consider variable number of DPU instances, bus
connections between DPU and external memory, and host CPU
time in such a prediction model. EXPRESS requires easy-to-
derive features of CNNs, DPUs, and buses for prediction and
hence the model is practically viable. We validate EXPRESS
using 16 standard CNNs, 8 DPU sizes, upto 8 DPU instances,
and many different bus configurations on a ZCU102 board
and achieve a low prediction error of 2.2% on an average.
Our detailed experimentation also indicate that EXPRESS has
significantly lower error rate compared to state-of-the-art, it is
robust to changes in FPGA frequency as well as the training
dataset, and it is highly effective for exploring various design
choices during system design.

In the future, we plan to support heterogeneous CNNs
executing on multiple DPUs. We would also augment our
framework to predict power and energy consumption alongside
execution time.



REFERENCES

[1] F. Restuccia and A. Biondi, “Time-predictable acceleration of deep
neural networks on FPGA SoC platforms,” in 2021 IEEE Real-Time
Systems Symposium (RTSS), 2021.

[2] M. S. Chauhan, A. Singh, M. Khemka, A. Prateek, and R. Sen,
“Embedded CNN based vehicle classification and counting in non-
laned road traffic,” in International Conference on Information and
Communication Technologies and Development (ICTD), 2019. [Online].
Available: https://doi.org/10.1145/3287098.3287118

[3] V. Sze, Y. Chen, T. Yang, and J. S. Emer, “Efficient processing of deep
neural networks: A tutorial and survey,” Proceedings of the IEEE, 2017.

[4] P. Subedi, J. Hao, I. K. Kim, and L. Ramaswamy, “AI multi-tenancy
on edge: Concurrent deep learning model executions and dynamic
model placements on edge devices,” in 2021 IEEE 14th International
Conference on Cloud Computing (CLOUD), 2021.

[5] R. Kedia, S. Goel, M. Balakrishnan, K. Paul, and R. Sen, “Design space
exploration of FPGA-based system with multiple DNN accelerators,”
IEEE Embedded Systems Letters, 2021.

[6] Y. Lei, Q. Deng, S. Long, S. Liu, and S. Oh, “An effective design to
improve the efficiency of DPUs on FPGA,” in International Conference
on Parallel and Distributed Systems (ICPADS), 2020, pp. 206–213.

[7] J. Peng, L. Tian, X. Jia, H. Guo, Y. Xu, D. Xie, H. Luo, Y. Shan, and
Y. Wang, “Multi-task ADAS system on FPGA,” in IEEE International
Conference on Artificial Intelligence Circuits and Systems (AICAS),
March 2019.

[8] R. Kedia, A. Sobti, M. Rungta, S. Chandoliya, A. Soni, A. K. Meena,
C. M. Lobo, R. Verma, M. Balakrishnan, and C. Arora, “MAVI:
Mobility assistant for visually impaired with optional use of local and
cloud resources,” in International Conference on VLSI Design and
International Conference on Embedded Systems (VLSID), 2019.

[9] M. Qasaimeh, K. Denolf, J. Lo, K. Vissers, J. Zambreno, and P. H. Jones,
“Comparing energy efficiency of CPU, GPU and FPGA implementations
for vision kernels,” in 2019 IEEE international conference on embedded
software and systems (ICESS). IEEE, 2019.

[10] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, “A survey of FPGA-
based neural network inference accelerators,” ACM TRETS, 2019.

[11] “DPU for CNN v3.3,” 2019. [Online]. Available: https://www.xilinx.
com/support/documentation/ip documentation/dpu/v3 3/pg338-dpu.pdf

[12] L. L. Zhang, S. Han, J. Wei, N. Zheng, T. Cao, Y. Yang, and Y. Liu,
“Nn-Meter: Towards accurate latency prediction of deep-learning model
inference on diverse edge devices,” ser. MobiSys, 2021. [Online].
Available: https://doi.org/10.1145/3458864.3467882

[13] Y. Ni, Y. Kim, T. Rosing, and M. Imani, “Online performance and
power prediction for edge TPU via comprehensive characterization,” in
Proceedings of the 25th Conference on Design, Automation and Test in
Europe, ser. DATE, 2022.

[14] S. Goel, R. Kedia, M. Balakrishnan, and R. Sen, “INFER: Interference-
aware estimation of runtime for concurrent CNN execution on DPUs,”
in 2020 International Conference on Field-Programmable Technology
(ICFPT), 2020.

[15] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao,
A. Mishra, and H. Esmaeilzadeh, “From high-level deep neural models
to FPGAs,” in International Symposium on Microarchitecture (MICRO),
2016.

[16] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong,
M. Jahre, and K. Vissers, “FINN: A framework for fast, scalable
binarized neural network inference,” in International Symposium on
Field-Programmable Gate Arrays (FPGA), 2017. [Online]. Available:
https://doi.org/10.1145/3020078.3021744

[17] M. Ferianc, H. Fan, R. S. Chu, J. Stano, and W. Luk, “Improving
performance estimation for FPGA-based accelerators for convolutional
neural networks,” in ARC, 2020.

[18] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang, N. Xu,
S. Song, and et al., “Going deeper with embedded FPGA platform
for convolutional neural network,” in International Symposium on
Field-Programmable Gate Arrays (FPGA), 2016. [Online]. Available:
https://doi.org/10.1145/2847263.2847265

[19] L. Mei, H. Liu, T. Wu, H. E. Sumbul, M. Verhelst, and E. Beigne, “A
uniform latency model for DNN accelerators with diverse architectures
and dataflows,” in Proceedings of the 25th Conference on Design,
Automation and Test in Europe, ser. DATE, 2022.

[20] G. Zhong, A. Prakash, Y. Liang, T. Mitra, and S. Niar, “Lin-analyzer:
A high-level performance analysis tool for FPGA-based accelerators,”
in Design Automation Conference (DAC), 2016, pp. 1–6.

[21] S. I. Venieris and C. Bouganis, “f-CNNx: A toolflow for mapping
multiple convolutional neural networks on FPGAs,” in International
Conference on Field Programmable Logic and Applications (FPL), Aug
2018, pp. 381–3817.

[22] Xilinx, “Zynq UltraScale+ MPSoC ZCU102 evaluation kit.”
[Online]. Available: https://www.xilinx.com/products/boards-and-kits/
ek-u1-zcu102-g.html

[23] “Vitis for CNN v1.3,” 2021. [Online]. Available: https://www.xilinx.
com/cgi-bin/docs/rdoc?t=vitis ai;v=1.3;d=ug1414-vitis-ai.pdf

[24] L. Breiman, “Random forests,” Mach. Learn., 2001. [Online]. Available:
https://doi.org/10.1023/A:1010933404324

https://doi.org/10.1145/3287098.3287118
https://www.xilinx.com/support/documentation/ip_documentation/dpu/v3_3/pg338-dpu.pdf
https://www.xilinx.com/support/documentation/ip_documentation/dpu/v3_3/pg338-dpu.pdf
https://doi.org/10.1145/3458864.3467882
https://doi.org/10.1145/3020078.3021744
https://doi.org/10.1145/2847263.2847265
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis_ai;v=1.3;d=ug1414-vitis-ai.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis_ai;v=1.3;d=ug1414-vitis-ai.pdf
https://doi.org/10.1023/A:1010933404324

