
INFER: INterFerence-aware Estimation of
Runtime for Concurrent CNN Execution on DPUs

Abstract—Convolutional Neural Networks (CNNs) are increas-
ingly becoming popular in embedded applications. Hardware
designers have proposed numerous accelerators to speed up
the execution of CNNs on embedded platforms. Deep Learning
Processor Unit (DPU) is one such generic CNN accelerator for
Xilinx platforms, available in different configurable sizes and
can execute any given CNN. Neural network researchers are
also rapidly bringing out newer CNN algorithms with improved
performance (typically higher prediction accuracy) with a trade-
off in size or energy consumption for embedded applications. In
a period of rapid growth in CNN algorithms and availability
of multiple configurations of CNN accelerators (like DPU), the
design space is fast expanding. To enable quick evaluation of these
choices, we propose INFER (INterFerence-aware Estimation of
Runtime), a framework to estimate the execution time of any
CNN on a given size of DPU without actual implementation.
Current FPGA platforms are capable of implementing multiple
DPUs whereas many applications consist of multiple sub-tasks
with each requiring separate and/or different CNNs. In such
scenarios of concurrent use of multiple DPUs on an FPGA,
INFER is also capable of estimating the additional time taken
for execution due to the sharing of memory bandwidth. Our
evaluation on various mixes of 16 standard CNNs and eight con-
figurations of DPU shows that INFER has an average prediction
error of 6.6%, which can be useful for design space exploration
as well as scheduling in multi-DPU platforms. We demonstrate
the applicability of INFER for a real traffic monitoring system
which requires the dynamic switching of CNNs at run-time.

I. INTRODUCTION

Owing to their high accuracy in many classification and
detection tasks, Convolutional Neural Networks (CNNs) [1]
are progressively becoming attractive for embedded systems
spanning across autonomous vehicles [2], traffic monitor-
ing [3], assistive devices [4], and many more. These systems
execute multiple CNNs concurrently to realize different kinds
of classification and detection tasks [2]–[5]. As shown in
Fig. 1, sustained effort to improve CNNs has resulted in the
availability of a large choice of CNNs for any given task [6].
These CNNs vary in terms of the accuracy that they are able
to achieve as well as their compute/memory requirements
(Tables II and III). Fig. 1 further shows that CNNs can be
implemented on a variety of platforms like CPU, GPU, FPGA,
etc. with a trade-off in terms of performance, power, and
energy consumption. FPGAs can support high performance-
per-watt [7] implementations and are widely used in embedded
systems [8].

Many prior works proposed accelerating CNNs or reducing
their power consumption using FPGA [8]–[16]. Deep Learning
Processor Unit (DPU) [17] from Xilinx, originally developed
by DeePhi Tech. and Tsinghua University [9], [11], [18], [19],

Autonomous
vehicles

Traffic
Management

Assistive
devices

YOLO-V2
Mobilenet

SSD

Inception

CPU
GPU

CNN

Application

Hardware

FPGAYOLO-V3

Fig. 1. Growing complexity of applications, CNNs, and hardware

is a generic CNN processor (or accelerator) that supports any
CNN. DPU is configurable for various sizes that vary in com-
pute capacity and the amount of FPGA resources required to
implement them. Further, the number of DPU instances is also
configurable and multiple DPUs could be active concurrently
on an FPGA, sharing the memory bandwidth.

Due to their ability to execute a variety of CNNs, DPUs
allow dynamic switching of CNN based on the application
requirements (at run-time) without any overhead of FPGA
reconfiguration. Such dynamic switching is needed for many
inference systems like traffic monitoring system [3], MAVI [4],
ADAS [2], and f-CNNx [5]. One of the key factors that deter-
mine such switching decisions is the execution time of a CNN
on the given DPU. With numerous choices of DPU sizes and
many newer CNNs evolving, it becomes essential to predict
the execution time for making efficient switching decisions at
the run-time. To this end, we propose INFER (INterFerence-
aware Estimation of Runtime), which is a framework to predict
the execution time of a CNN on a given DPU configuration
using easy-to-obtain characteristics of CNN and DPU.

INFER uses basic CNN characteristics like compute and
memory requirements, along with DPU characteristics like
number of available processing units and local memory size
for predicting the runtime. The estimated value of runtime is
further refined to account for memory interference (contention)
due to concurrent execution of CNNs on multiple DPUs.
INFER has an average error of 6.6% across 16 different
standard state-of-the-art CNNs (Table II). INFER is useful
both at the design-time for design space exploration to choose
the number/size of DPUs and at the run-time for scheduling
tasks on DPUs. Being able to successfully estimate the runtime
of CNNs using very simple features of CNN and DPU,
and interference modeling in a real-life setting are the key
highlights of this work. Specifically, this paper makes the
following key contributions:

1) Motivating the need for prediction of the runtime of
CNNs on generic CNN processors like DPU

2) A framework, INFER, to predict the runtime for a
given CNN and DPU size, augmented with interference
estimation to account for memory bandwidth sharing

3) Deployment of the proposed framework on various
mixes of standard CNNs and different DPU sizes, vali-
dated using actual measurements on FPGA board

4) Demonstrating a real traffic monitoring application that
uses INFER’s predictions to switch CNNs at run-time

II. RELATED WORK

There are several works on designing CNN accelerators for
FPGAs [8], [12], [13], [15], [20], [21]. FpgaConvNet [12] and
DNNWeaver [13] frameworks can map a variety of CNNs on
FPGA. DNNWeaver [13] framework also supports a variety
of FPGAs (Intel and Xilinx). However, both these works [12],
[13] are useful only at the design-time as a new bitstream
needs to be generated for every CNN. FINN [20] framework
focuses only on binary neural networks [22]. Haddoc2 [21]
is another accelerator where all the CNN weights are stored
in FPGA memory itself. This strongly restricts the CNNs
that can execute on an FPGA. Unlike all the above works,
Xilinx DPU [17] is a generic accelerator that can execute
any CNN (which can be changed at run-time using software
compilation only) and provides many options to configure
the IP at design-time. The presence of such configurability
and ability to switch CNNs at the run-time presents newer
opportunities for achieving efficiency and forms the motivation
for our work.

Prediction models are used across different compute hard-
wares like CPU [23], GPU [24], and FPGA [25], [26], [27].
Zheng et al. [23] use performance counters to model perfor-
mance and power of workloads for CPU. O’neal et al. [24] pro-
posed a design-time framework to predict the performance of
multiple workloads on GPUs using program counters. Works
on estimation for FPGA focus on improving the accuracy of
HLS reports as current HLS tools [28] have high error in
their prediction. Pyramid [26] and XPPE [27] use machine
learning to estimate resource usage and timing of a design for
different FPGA types. HLScope+ [25] estimates the number of
cycles considering memory interference when multiple PEs are
connected. All these works primarily focus on either predicting
the performance of only a single module or use internal design
details for prediction. In contrast, our prediction framework
addresses the concurrent execution of multiple IP blocks and
uses only the publicly available information for building the
model. Moreover, existing works perform prediction at design-
time for a known workload, whereas our framework is useful
at both design-time and run-time and adapts well to newer
workloads (CNNs).

ProxylessNAS [29] is orthogonal to our work as it considers
device-level hardware options like CPU/GPU/Mobile while we
consider options (DPU size) within a device (FPGA). Ferianc
et al. [30] uses Gaussian process based modeling for layer-
by-layer estimation of runtime and uses the off-chip memory

bandwidth as a feature. They use fixed hardware architecture
and only 3 CNNs for their evaluation. Their reported results
have a much higher mean average error than ours. Further,
both ProxylessNAS [29] and Ferianc et al. [30] consider a
single processor system where the effect of interference due
to multiple CNNs running concurrently is not applicable. Qiu
et al. [19] introduce an analytical model using DPU’s internal
architecture to predict the runtime of a CNN on a DPU. In
contrast, INFER uses machine learning with only the informa-
tion that is available publicly and performs significantly better.
Moreover, their model considers a single DPU, while we also
account for memory bandwidth sharing due to multiple DPUs
executing concurrently.

III. BACKGROUND ON CNN AND DPU

A. CNN: Convolutional Neural Network

A CNN consists of many cascaded layers of different types
like convolution layers, fully connected layers, etc. Each layer
can be characterized by various parameters like input size,
output size, kernel dimensions, number of input and output
channels, etc. which can be combined to form two important
attributes of a layer – (i) Computation load: Number of
MAC (multiply and accumulate) operations in a layer, and (ii)
Memory/data requirement: total data (input, kernel weights,
and output) accessed by the DPU from the main memory.

B. DPU: Deep Learning Processor Unit

A DPU [17] is a generic CNN processor (accelerator) for
Xilinx platforms which can be programmed to execute any
CNN. It performs layer by layer processing of CNN, which
is invoked by a host CPU (Fig. 3). DPU is available in
various sizes like B4096, B3136, or B512, where the suffix
number represents the processing capacity in terms of number
of concurrent MAC operations. A DPU with higher processing
capacity requires more FPGA resources. A DPU accesses data
from main memory (DRAM) through an AXI bus [31].

A compiler for DPU [18] converts a given CNN description
file into a DPU instruction code having details about the
number of layers, type of each layer, parameter size, kernel
size, scheduling of load/store operations, etc. DPU fetches the
required input data and weights from the main memory into
a local BRAM and updates the result into an output buffer
(BRAM). Once the output buffer (result) is ready, it is written
into an appropriate location in the memory [9] and an interrupt
informs the host CPU about the completion.

IV. PROPOSED APPROACH FOR RUNTIME ESTIMATION

In this section, we describe the INFER framework that uses
a regression model to predict the runtime of any CNN on a
DPU. As shown in Fig. 2, our framework is divided into two
modules. The first module predicts the runtime for a single
DPU. The second module estimates the memory interference
to predict the increase in runtime when different CNNs are
executing concurrently on multiple DPUs.

Interference
prediction

Runtime
Memory (Mem)

Number of layers

Calculation
of layerwise

features
of CNN

Layerwise
prediction
of runtime

Memory(MB)

Workload
(MOPs)

Number of parallel
MAC operations

Available memory

CNN specific features

DPU specific features

Runtime
for whole

CNN

Layerwise
runtime

(ms)
R1

R2

RK

Updated
runtime for K
CNNs

L1

L2

LN

.

.

.

CNN - 1

CNN - 2

CNN - K

.

.

.

.

.

.

CNN
description
file

Single DPU runtime prediction
Multiple DPU

runtime prediction

Interference
prediction

Calculation
of layerwise

features
of CNN

Layerwise
prediction
of runtime

Memory
(Mem)

Workload
(MAC)

Number of parallel MAC
operations (N_MAC)

Available memory (N_BRAM)

CNN specific features

DPU specific features

Runtime
for whole

CNN

Layerwise
runtime R1

R2

RK

L1

L2

LN

.

.

.

CNN - 1

CNN - 2

CNN - K

.

.

.

.

.

.

CNN
description
file

Multiple DPU
runtime prediction

Fig. 2. Block diagram of runtime estimation framework

A. Runtime Estimator for Single DPU
We predict the runtime of individual layers of a CNN, which

are then combined (added) to get the predicted runtime for
the whole CNN. For any prediction task, it is important to
identify the relevant features to build the model. Since we are
predicting the runtime of CNNs on different DPU sizes, the
features were identified in two categories: Hardware (DPU)
related features and CNN specific features.

With i representing the layer number of the given CNN and
j representing the DPU size to be used, we use the following
notations to define the features:

• MACi = Number of MAC operations in the layer
• Memi = Amount of data (in MB) required by the layer
• N MACj = Number of parallel MAC operations sup-

ported by the DPU
• N BRAMj = Available BRAM (in MB) in the DPU
CNN specific features: MACi contributes to the time taken

for computation of MAC operations in each layer. Memi

contributes to the time taken for data transfer between local
memory of DPU (BRAM) and main memory (DRAM). DPU
contains two separate AXI buses for accessing main memory
such that reading of weights and input data can happen
concurrently. Further, each AXI bus contains concurrent read
and write paths [31], which enables the writing of output data
to overlap with reading. Therefore, we consider the maximum
of the data size of weights, input data, and output data as the
memory requirement (Memi) of a CNN layer. We considered
various other features like taking the size of weights, input,
and output data separately or taking the sum of the three
parameters instead of the maximum. We observed that the
average error in prediction of the runtime is higher with the
use of these features (7.4% error in both cases) compared to
using the maximum of the three parameters as a feature (6.6%
error). Even intuitively, maximum seems appropriate due to
concurrent access that is possible due to multiple buses.

Further, some CNNs like mobilenet v2 [32] and
ssd mobilenetv2 (see Table II for details) have both
depthwise and pointwise convolution operation [33]. The
profile obtained by executing these CNNs on DPU indicates

that DPU merges the pointwise convolution with depthwise
convolution causing changes in the compute and data access
behavior of these layers. Therefore, we add a binary flag
Mergei to capture such merge behavior. Use of Mergei as
a feature reduces the error in runtime prediction from 9.9%
to 3.2% for mobilenet v2 and from 16.3% to 15.5% for
ssd mobilenetv2. In summary, 〈MACi ,Memi ,Mergei〉 are
CNN specific features used in our prediction model.

CNNs can have layers with the same number of MAC
operations and data requirements but with significantly dif-
ferent layer architecture (i.e., different number of input and
output channels, filter sizes, and feature map dimensions). We
experimentally observed that the difference in runtime for two
such layers with different layer architectures is small (∼0.15
ms) except for a very few outliers. Since we are interested
in predicting the total execution time of a CNN rather than
layer by layer execution time, the overall error still remains
within the acceptable range. Thus, we choose a small number
of simple features to predict runtime rather than a detailed set
of features of a CNN as well as DPU/FPGA architecture.

Hardware related features: As discussed in section III-B,
different DPUs differ in number of BRAMs and the sup-
ported parallel MAC operations. To generalize the pre-
diction model over different DPU configurations, we use
〈N MACj ,N BRAMj 〉 as hardware specific features.

The runtime of layer i of CNN on DPU configuration j can
now be written as:

Time(i, j) = fn

((
MACi

N MACj

)
,

(
Memi

N BRAMj

)
,Mergei

)
The runtime of any layer has two components – computation

time and data access time. The computation time is dependent
on MACi

N MACj
. The data access time from external memory is

dependent on the amount of data to be transferred, on-chip
memory size, and memory bandwidth. The memory bandwidth
is fixed for a given FPGA board and there is no interference
when executing a single CNN on a DPU. Since we first
calculate the execution time of a single CNN only, Memi

N BRAMj

can be considered as a suitable feature representing the data
access time.

TABLE I
ESTIMATION ERROR FOR DIFFERENT TECHNIQUES ON SINGLE DPU

Prediction Technique Mean Max. Median
Random forest 6.6 % 23.7 % 4.8 %
Decision tree 7.4 % 30.0 % 5.9 %

Linear regression (first order) 7.7 % 32.4 % 5.2 %
Polynomial model (second order) 8.0 % 23.1 % 6.7 %

Our prediction model uses these features to support various
CNN types (classification or detection) and DPU configura-
tions. These features are simple and easy-to-obtain, which
makes the predictor usable in practice. The CNN specific fea-
tures can be obtained from CNN description file and the DPU
related features are available from the hardware specifications
of DPU without any need for proprietary information. We use
ZCU102 board [34] to measure the runtime of different CNN
layers for various DPU sizes (details in Section V-A) and
perform training and runtime prediction using four standard
regression techniques (Table I). Our results indicate random
forest regressor to provide the lowest mean and median error
(and low maximum error). The random forest is a non-linear
predictor, formed of multiple uncorrelated decisions trees, and
provides better prediction than any individual tree [35]. Prior
works [24], [26] have also found random forest to provide the
best prediction. Therefore, we use random forest for runtime
prediction of CNNs on a single DPU.

B. Runtime Estimator for Multiple DPUs

Multiple DPUs can be implemented together on an FPGA
to enable concurrent CNN execution (each CNN can however
use only one DPU). Each DPU has independent compute
resources and local BRAMs, and the main memory is also of
much larger size than needed by CNNs. Therefore, concurrent
CNN execution would not see performance degradation due to
compute or memory size requirements. However, as shown in
Fig. 3, DPUs would experience interference due to sharing
of main memory bandwidth. Fig. 4 shows the increase in
runtime of various CNNs, measured on ZCU102 board, when
executing concurrently with other CNNs on separate DPUs
(CNN description in Table II). Despite a sophisticated memory
controller being available (Fig. 3) for efficiently scheduling
concurrent requests to DRAM [36], we observe up to 52%
increase in CNN runtime due to interference; which motivates
the need to account for it during runtime estimation.

Since memory bandwidth sharing is the cause for runtime
deterioration, the bandwidth requirement of a CNN as well
as the bandwidth requirement of other CNNs executing con-
currently would determine the amount of interference. The
interference behavior is not a linear function of the bandwidth
of different CNNs because it depends on how much the high
bandwidth access requirements of different CNNs overlap in
time. Thus we explored a few regression models to estimate
the increase in runtime due to such interference. A third-order
polynomial shows ∼1% higher accuracy than a second-order
model for training cases but overfits and causes lower accuracy
on unseen cases. Also, second-order predictor is a simpler
model for use. Therefore, we use a second order polynomial

Host
CPU

DPU 1

DPU 2

DPU N

AXI lite
bus

Memory
Controller

Memory
(DRAM)

AXI
bus

Memory
bus

AXI lite
bus

AXI lite
bus

AXI
bus

AXI
bus

Xilinx
Zynq SoC

Fig. 3. System level view of DPU and memory interface

B40
96

B31
36

B23
04

B16
00

B11
52

B10
24 B80

0
B51

2
0

10

20

30

40

50

60

R
un

tim
e

in
cr

ea
se

 (%
)

mob, incv1, incv1
sq, ref1, incv1
mob, ref1, res50
mob, yol, sq
sq, yol, res50
res50, res50, res50

res50, sq, ped
incv2, incv2, trssd
ref2, res18, res18
sq, mob, ref3
incv1,incv1,incv1
ped, ped, ped

Fig. 4. Runtime increase due to memory contention for various CNNs

regression model for interference prediction. With Data being
the total data requirement (in MB) of the CNN and Time
being its total execution time (in ms), the average bandwidth
(BW) of each concurrently executing CNN is defined as:

BW = 1000× Data

Time
(1)

Further, we also observed that CNNs with smaller data
requirement per layer (e.g., sq, mob, incv3) suffer from larger
interference. For such CNNs, we understand that the overhead
of fetching instruction code for every layer becomes a signif-
icant fraction causing them to experience higher interference.
To account for this behavior, we define a new attribute
MBpl = Data

Nlayer
(MegaBytes per layer), where Nlayer is the

total number of layers in the CNN. We consider 1
MBpl of

each concurrent CNN as a feature into our model. Although
different layers in a CNN can have varying data requirements,
MBpl is sufficient since we measure only the average effect
of interference.

To compute the bandwidth of each CNN, the single DPU
runtime measured on ZCU102 board is used as Time in
Eq. 1. Using the measured increase in runtime along with
corresponding BW and MBpl features, we train a second
order polynomial regression model to estimate the percent-
age increase in runtime. We compare the behavior of the
second order polynomial model to other regression models
like decision tree, random forest, and third order polynomial.
We observe the second order polynomial model to provide
the lowest error. The estimated increase in runtime due to
interference is multiplied with the runtime predicted for the
single DPU to obtain the final runtime.
Time used in Eq. 1 to calculate the bandwidth of a CNN

is the runtime of the CNN for a given DPU size. Since Time
already comprehends the effect of DPU size within it, we

believe that DPU size might be redundant as a feature for
prediction. We experimentally observed that including DPU
size as an additional feature reduces the maximum error by
about 1%, but increases the mean error by about 0.5%. We
chose to improve the mean error and hence excluded DPU
size from the feature set, but including it could be also an
acceptable design decision.

V. EXPERIMENTS AND RESULTS

A. Experimental Setup and Measurement Methodology

We evaluate our proposed framework using 16 standard
CNNs with different characteristics as shown in Table II. Eight
CNNs (TRAIN type) are used for training purposes and the
remaining eight CNNs (TEST type) along with TRAIN set
are used to validate the trained predictor. Each CNN consists
of a large number of layers, thereby forming a rich training
dataset (1042 data points) for single DPU prediction. These
CNNs also form a large number of combinations used to
create the dataset for multiple DPU prediction (837 training
points). We consider eight standard sizes of DPU [17] named
B4096, B3136, B2304, B1600, B1152, B1024, B800, B512
(see Sec. III-B for description). We use B4096 (largest), B512
(smallest), and B2304 (mid-sized) DPUs for training purposes
whereas validation is performed on all DPU sizes.

We create multiple hardware designs, each with three in-
stances of a particular DPU size,1 and implement them on
Xilinx Zynq UltraScale+ (ZCU102) board [34]. Due to the
generic nature of DPUs, we can execute any CNN from
Table II on any size of DPU. To measure the standalone
execution time for a CNN, we execute it as a single thread
on the ZCU102 board. We repeat this experiment for each
combination of CNN and DPU. We enable the profile mode
of DPU which helps to record the execution time for individual
layers as well as the complete CNN. To account for variability
during the measurements, we consider the average value of 50
readings as the measured execution time.

For analyzing the increase in runtime due to memory
interference for concurrent DPUs, we create all possible
combinations of three CNNs from each of the TRAIN and
TEST category. The CNNs in each combination are executed
as three concurrent threads with each thread repeating until
every thread has been executed for atleast 50 times. Since
different CNNs have different execution times, the faster
running CNNs get executed more often. For each CNN, we
compute the average of measured runtimes and compare it
with its standalone runtime to obtain the increase in runtime
of the particular CNN for each combination. Please note that
while the standalone execution time study requires recording
the runtime for each layer, the interference study considers the
execution time of the CNN as a whole.

The number of layers, number of MAC operations, and the
data requirement (shown in Table II) are static information for

1Xilinx tools currently allow a maximum of 3 DPUs only of the same
configuration and not different configurations. We believe such restriction may
be removed soon.

TABLE II
CHARACTERISTICS OF VARIOUS CNNS USED IN OUR EXPERIMENTS

CNN Name
#MAC

Operations
(x106)

Data
Required

(MB)

#
Layers Type

squeezenet (sq) 775.50 4.88 26
mobilenet v2 (mob) 601.55 9.86 36
inception v1 (incv1) 3165.34 14.62 59 T
ssd pedestrian (ped) 5891.81 17.50 35 R
resnet50 (res50) 7715.95 51.98 55 A
refinedet 1 (ref1) 25196.19 41.79 48 I
vgg16 (vgg) 30940.53 156.78 16 N
yolo v3 (yol) 60569.32 156.95 83
resnet18 (res18) 3653.84 17.08 23
inception v2 (incv2) 4037.70 22.13 79
refinedet 3 (ref3) 5084.69 20.04 48 T
ssd adas (adassd) 6284.15 19.80 35 E
ssd mobilenetv2 (mossd) 6537.10 43.74 50 S
ssd traffic (trssd) 11670.46 21.12 35 T
refinedet 2 (ref2) 10096.35 25.43 48
inception v3 (incv3) 11426.43 49.53 103

a particular CNN (and its layers) and are extracted from the
CNN description file for the corresponding CNN.

B. Results and Discussion

We present quantitative results of single and multiple DPU
runtime prediction (with different number of CNNs).

1) Single DPU runtime prediction: Fig. 5 presents the
distribution of error in runtime prediction for different layers
across all CNNs and DPU sizes. High percentage errors are
concentrated towards layers with small runtime (0.01-1.0 ms)
as minor prediction errors become larger percentage when
base value is small. The figure also shows the distribution
of absolute error in predicting the runtime for various CNN
layers. We observe the absolute error to be mostly below 2
ms.

Fig. 6 shows the runtime for different CNNs by combining
runtime of their layers for B4096 DPU. We observe that the
execution time for different CNNs vary significantly, ranging
from ∼1.5 ms to ∼65 ms for B4096 DPU, and goes up to
∼405 ms for B512 DPU. Qiu et al. [19] uses internal design
details and propose a model to estimate the theoretical runtime
of vgg16 network on a particular DPU. Their estimation has
an error of ∼30% compared to 9% in our model.

Fig. 7 shows the prediction error for all CNNs for different
DPU sizes. The overall average error across all DPU sizes is
6.6% and the maximum error is 23.7%. We also observe the
average as well as median error to be significantly lower than
the maximum error due to a small number of outliers which
significantly increase the maximum error.

INFER is also useful to predict the runtime for custom
CNNs created by modifying any standard CNN by changing
the number of filters or adding a new layer. Apart from the 16
standard CNNs mentioned in Table II, we created six custom
CNNs by modifying these standard CNNs. We modified
yolo v3 CNN for 3 new image sizes (608x608, 412x412 and
320X320) as well as different counts of filters (for 2-3 different
layers). We also tried other variants of yolo like tiny yolo v3
and yolo v2 and combination of other CNNs like ssd vgg16.
We observe a 6% average error in prediction of runtime for

0 10 20 30
Actual runtime (ms)

0
50

100
150
200
250

Re
la

tiv
e

er
ro

r (
%

) Relative error
Absolute error

0

1

2

3

4

5

Ab
so

lu
te

 e
rro

r (
m

s)

Fig. 5. Error distribution for different layers of
various CNNs (for single DPU prediction)

sq
m

ob
inc

v1 pe
d

re
s5

0
re

f1
vg

g yo
l

re
s1

8
inc

v2 re
f3

ad
as

sd
m

os
sd

trs
sd re
f2

inc
v3

Av
g.

0
10
20
30
40
50
60
70

R
un

tim
e

(m
s)

Actual
Predicted

Fig. 6. Actual versus predicted runtime for various
CNNs for B4096 (for single DPU prediction)

B4096
B3136

B2304
B1600

B1152
B1024

B800
B512

Overall0

5

10

15

20

25

30

35

Es
tim

at
io

n
er

ro
r (

%
)

Median Mean Max.

Fig. 7. Prediction error for different DPU
sizes (for single DPU prediction)

B4096
B3136

B2304
B1600

B1152
B1024

B800
B512

Overall
0

5

10

15

20

25

Es
tim

at
io

n
er

ro
r (

%
)

Mean

90th
95th

99th

Max.

Fig. 8. Interference estimation error for different
DPU sizes

B4096
B3136

B2304
B1600

B1152
B1024

B800
B512

Overall
0

5

10

15

20

25

30

Es
tim

at
io

n
er

ro
r (

%
)

Mean

90th
95th
99th

Max.

Fig. 9. Final estimation error (single DPU along
with interference model) for different DPU sizes

(A, A) (A, F) (F, A) (F, F)
(DPU sizes, CNNs) used for training

0

5

10

15

20

25

30

35

Es
tim

at
io
n
er
ro
r (
%
)

Mean

90th

95th
99th

Max.

Fig. 10. Final estimation error for various
training sets. A: All, F: Few (only TRAIN set)

these custom CNNs, which establishes that INFER can be used
for a larger range of CNNs.

2) Estimating the effect of memory interference: Fig. 8
presents the error in estimating the effect of interference
(increase in the CNN’s execution time due to co-execution
on multiple DPUs). We observe that the maximum value of
mean estimation error is 4.2% (for B4096), and it decreases
with decreasing size of DPU. The reduction in error is because
of the reduction in the overall range of interference for smaller
DPU sizes (Fig. 4), making it more predictable. We also
observe the 90th, 95th, 99th percentiles and maximum error
to be considerably apart, indicating that only a few outliers
degrade the prediction performance. Therefore, it is important
to consider these percentile errors during the evaluation of es-
timation models. Overall, across DPU sizes, the 99th percentile
error is 9.4% and the mean error is only 2%.

We study the effect of including MBpl (MegaBytes per layer
of a CNN) as a feature in the estimation model. Our results
indicate that use of MBpl reduces the maximum error from
39.5% to 19.4%, 99th percentile error from 16.0% to 9.4%,
and the mean error from 2.8% to 2%. This clearly justifies the
use of MBpl for interference estimation for CNNs executing
concurrently on DPUs.

3) Multiple DPU runtime estimation considering interfer-
ence: Now, we study the error in estimating the final runtime
of three CNNs executing concurrently on three different DPUs.
The execution time predicted for a given CNN by our single
DPU predictor is multiplied by the estimated interference due

to other CNNs to predict the final execution time in the pres-
ence of memory interference. The predicted execution time
is compared with the actual time measured on the ZCU102
board to obtain the prediction error. Fig. 9 shows the error for
different combinations of CNNs for different DPU sizes. We
observe an overall mean error of 6.6% and maximum error of
25.3%. The overall 90th and 99th percentile errors are within
15% and 20%, respectively.

INFER executes on ARM CPU core available on Xilinx
Zynq chips (Host CPU from Fig. 3) and takes ∼2.4 ms on
ZCU102 board for the CNN with largest number of layers
(incv3). The measured time is negligible in comparison to the
much larger period (few seconds to hours) at which switching
of CNNs might be required in an application. Moreover, the
prediction happens on the CPU core and does not affect the
execution of CNNs on DPUs. Therefore, our prediction model
is suited to be used at both design-time as well as run-time.

4) Sensitivity to training set size: The presented results
have considered the prediction model to be trained using only
the TRAIN set of CNNs (Table II) and DPU sizes (B4096,
B2304, and B512). We show the effect of including more
DPU sizes and/or CNNs in the training set. Fig. 10 shows the
estimation error across all CNNs and DPU sizes for four cases
when all CNNs/DPU sizes are considered for training versus
only a few (the TRAIN set) are used for training. We observe
that the prediction accuracy improves by including more DPU
sizes or CNNs into the training set. The mean error and the
90th percentile error reduces by about 5% and 3%, respectively,

when including all CNNs and DPU sizes into the training set.
However, the maximum error shows an improvement of only
3%. For systems where the set of CNNs and DPU sizes to be
used are known to be limited, we could improve the prediction
accuracy by training with all CNNs and DPU sizes. However,
due to rapid evolution of CNNs and DPUs being developed
for variety of sizes, a prediction model trained on limited set
is a reasonable choice.

5) Applicability to other CNN counts: Now, we study the
usability of the proposed predictor for a smaller (two) and
larger (four) number of CNNs. For the former case, we execute
various combinations of two CNNs on two separate DPUs on
ZCU102 board and measure the increase in runtime, averaged
over atleast 50 measurements for each CNN. For the purpose
of prediction, we set the bandwidth and MBpl of the third
CNN as 0. Similarly, we generate various combinations of
four CNNs and execute first two on two separate DPUs and
the other two alternatively on the third DPU. We measure
the increase in runtime for each of these CNNs. We set the
bandwidth and MBpl values of the third CNN as the average
of the two CNNs executing on the third DPU. CNNs executing
on the same DPU do not face any interference from each other.

We use the prediction model developed so far, without any
additional training, to predict the execution time for two and
four CNN scenarios (1040 and 6636 test points, respectively).
We obtain a mean error of 7.1% and 6.9%, and a maximum
error of 25.8% and 24.7% for two and four CNN scenarios,
respectively. These error rates are of similar order as presented
earlier for three CNNs (Fig. 9), indicating that the proposed
predictor generalizes well for different count of CNNs.

Having explained our proposed runtime estimation frame-
work (INFER), the next section presents the example of a real
system where one can use INFER to make switching decisions
at run-time.

VI. APPLICATION: TRAFFIC MONITORING SYSTEM

We demonstrate the utility of INFER in a traffic monitoring
application [3], which benefits from dynamic switching of
CNNs at runtime, using INFER’s execution time predictions.

A. The Traffic Monitoring Application

Our application involves traffic monitoring system for a
typical 4-way intersection, with two cameras to monitor each
approach. The two cameras are placed in opposite directions
to capture the full view of traffic when it moves (green light)
and when it stops (red light). A total of 8 cameras are placed
at different positions on the road, as shown in Fig. 11.

We run two detection tasks, one on the feed from each
camera – (i) detecting speed violation when it is a green
signal and (ii) detecting signal violation when it is a red
signal. The CNN task (object detection) is same in both cases
which detects the vehicles and their position in the frame.
For speed violation detection, vehicle is detected at time t1
and t2, and speed is calculated as Speed = Distance

(t2−t1) . If speed
exceeds the permitted limit, we consider it as a speed violation.
On the other hand, if vehicle is detected on or beyond the

4

3
2

1

CAM 1 CAM 2

Speed
violation
detection

Signal
violation
detection

Fig. 11. Traffic monitoring system

zebra crossing at red light, it is considered a signal violation.
The CNN task runs on DPU whereas this post processing to
identify signal violation or speed violation runs on the CPU.

We experimentally observe that based on number of vehicles
on the road, different CNNs show different vehicle detection
accuracies (Table III). The number of vehicles (traffic density)
can vary at different times of the day – like low density
during early morning time, high density during peak office
hours, and moderate density otherwise. Detecting this density
at run-time is a computationally simple task that can run on
CPU, without using CNN, based on background subtraction
and optical flow. Based on measured density, CNNs can be
dynamically switched using INFER’s prediction of runtime.

Choice of CNN – (i) High FPS CNN during low traffic
density: Speed violations typically occur at low traffic density.
To detect a vehicle at both times t2 and t1, processing at high
FPS (frames per second) is needed, else a vehicle will escape
the frame before the CNN detects it. (ii) High accuracy CNN
during high traffic density: Signal violation occurs in high
traffic density when the signal is red. In that chaotic scene,
detecting the violating vehicle (typically the small motorbikes
in non-laned traffic in developing countries) will need a very
accurate CNN. It is acceptable if this CNN is slower, as at high
density, the vehicles move slowly and can be caught even at
low FPS.

Considering this target application, 8 CNNs need to run
continuously on our DPUs. Each CNN receives an image from
1 camera (total 8 cameras placed). Out of 8 images, the signal
violation detection task runs on 4 images (from 4 cameras,
namely CAM2 in Fig. 11 looking at outgoing traffic) and speed
violation detection task runs on other 4 images (from other 4
cameras, namely CAM1 in Fig. 11 looking at incoming traffic).

B. Experimental Setup to Demonstrate INFER’s Use
We train different CNNs using the non-laned, road traffic

dataset of developing regions [3] and measure the inference
accuracy of each CNN as mean average precision (MAP), as
shown in Table III. We also show other metrics (precision and
recall) for each CNN. Precision is the fraction of correctly
identified objects among total predictions made by the CNN
while recall is the fraction of correctly identified objects of
interest among its total count. MAP is the mean value of
precision when varying recall between from 0 to 1.

The table shows three categories for the traffic density that
are high, moderate and low. Taking 600 images from the
dataset, we manually classify them as high (vehicles more

TABLE III
RUNTIME AND ACCURACY TRADE-OFFS FOR DIFFERENT CNNS

CNN
Different traffic densities Runtime for different

DPU sizes (ms)
High Moderate Low Small LargeMAP Precision Recall MAP Precision Recall MAP Precision Recall

yolo v2 77.83 0.78 0.73 88.62 0.85 0.89 91.50 0.76 0.93 231 31
yolo v3-320 76.46 0.91 0.76 86.62 0.95 0.84 87.16 0.90 0.77 247 38
yolo v3-416 93.06 0.88 0.94 94.15 0.91 0.96 95.33 0.83 0.96 428 61
yolo v3-608 94.22 0.91 0.94 94.46 0.94 0.96 95.03 0.91 0.96 873 123

than 15), moderate (between 6 and 15), or low (less than or
equal to 6) density by looking at the number of vehicles in
each image. There are 200 images in each category.

The table also shows the execution time of different CNNs
measured for two different sizes of DPU on Xilinx Zynq
UltraScale+ ZCU102 board [34]. We take 2 DPUs for this
example that are DPU 4096 (largest) and DPU 512 (smallest).
We have listed 4 networks in the table. We also trained VGG-
16 SSD on the traffic dataset. Since it was less accurate than
other networks, we did not include it in the table.

C. Observations Highlighting INFER’s Importance

1) INFER’s use when only 8 CNNs run: As seen from
Table III, different CNNs have different accuracy in different
traffic densities. At low densities, all CNNs are accurate. But
at high densities, especially in developing countries where
vehicles do not follow lanes making the scene chaotic with
motorbikes, cars, buses, and trucks all standing together, larger
CNNs outperform smaller CNNs. For high traffic density, more
accurate CNN is required. Both yolo v3-416 and yolo v3-608
have similar accuracy (MAP) for high traffic density. Since
yolo v3-608 has higher precision, it is chosen. Precision is
important in rule violation detection, as false positives can lead
to fining of drivers who are following the rules. For low traffic
density, CNN with high FPS is required. The choice is between
yolo v2 and yolo v3-320 (lower runtime compared to other
CNNs). Both have similar accuracy and FPS but yolo v3-
320 has higher precision. Hence, yolo v3-320 is chosen. The
runtime predicted by INFER for different DPU sizes, given any
CNN, is crucial to make dynamic choices of CNN as described
above, based on the current traffic density. Table III only shows
the runtime when a single CNN is running on a single DPU.
But INFER can also predict the time when multiple CNNs run
together (taking interference into consideration).

2) INFER’s use when additional critical tasks run: There
can be some other critical tasks that gets scheduled occasion-
ally, like routing an ambulance or a fire engine, detecting and
tracking a stolen vehicle. Since priority is given to the critical
task, remaining time will be available to run the 8 CNNs. The
network with highest accuracy feasible within the remaining
time budget should be dynamically selected. Again INFER’s
runtime predictions are crucial for these dynamic decisions.

3) How much overhead does INFER introduce?: If we use
INFER, the time taken to evaluate CNN choice would be 9.6
ms (for 4 choices of CNNs in Table III). This time is very
small compared to time taken for running each of the 4 CNNs,

which would take more than 1.8 sec (in case of small DPU)
or 250 ms (in case of large DPU). Thus in comparison to the
CNN runtime, INFER’s prediction time is very small.

4) Design overhead in absence of INFER: CNNs are evolv-
ing fast and DPUs have numerous choices. Since INFER can
predict execution time without compiling CNNs or generating
bitfiles, it is useful at design-time to choose proper size FPGA
and identify suitable CNNs and DPUs as per cost-accuracy
trade-off analysis. Doing the same using measurements would
take considerable time and effort. For example, if we consider
3 FPGA boards, 8 CNNs and 8 DPU configurations, total of
192 bitfiles are generated to evaluate the choices. However,
INFER can do such evaluation without generating bitfiles. Af-
ter design-time decisions, execution times could be stored in a
table to be used at run-time. At run-time, newer CNNs evolved
after system deployment could be evaluated by executing on
DPU and added to table, but such evaluation would disturb the
ongoing execution. Use of INFER can avoid such disturbance.

VII. CONCLUSION AND FUTURE WORK

We presented the motivation for predicting the execution
time of Convolutional Neural Networks (CNNs) on generic
CNN accelerators like DPU. Subsequently, we developed a
framework to predict the runtime of a CNN on a given size
of DPU. For systems that use multiple DPUs to concurrently
execute CNNs, we developed an interference estimation model
that is used to refine the predicted runtime to account for
interference due to shared memory bandwidth. We evaluated
our prediction framework (INFER) using various mixes of 16
standard CNNs and 8 different sizes of DPU. Using only 8
CNNs and 3 DPU sizes for training, we obtain an average
prediction error of 6.6% across the entire set of CNNs and
DPU sizes. Specifically for the vgg16 network, INFER has an
estimation error of 9% compared to ∼30% in prior works.

INFER uses basic CNN and DPU characteristics which are
easy to obtain and are publicly available. We show that INFER
generalizes to different number of concurrent CNNs and can
be used at both design-time and at run-time. We also show
the use-case of INFER for a real traffic monitoring system
that require switching the CNNs dynamically. In the future,
we would like to incorporate energy estimation into INFER
to enable energy-aware decision making under performance
constraints. We also plan to integrate INFER in a scheduler
so that given the resources one can choose an appropriate CNN
that gives the best performance while still being able to meet
the time deadlines.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, p. 436, 2015.

[2] J. Peng, L. Tian, X. Jia, H. Guo, Y. Xu, D. Xie, H. Luo, Y. Shan, and
Y. Wang, “Multi-task ADAS system on FPGA,” in IEEE International
Conference on Artificial Intelligence Circuits and Systems (AICAS),
March 2019, pp. 171–174.

[3] M. S. Chauhan, A. Singh, M. Khemka, A. Prateek, and R. Sen,
“Embedded CNN based vehicle classification and counting in non-
laned road traffic,” in International Conference on Information and
Communication Technologies and Development (ICTD), 2019. [Online].
Available: https://doi.org/10.1145/3287098.3287118

[4] R. Kedia, A. Sobti, M. Rungta, S. Chandoliya, A. Soni, A. K. Meena,
C. M. Lobo, R. Verma, M. Balakrishnan, and C. Arora, “MAVI:
Mobility assistant for visually impaired with optional use of local and
cloud resources,” in International Conference on VLSI Design and
International Conference on Embedded Systems (VLSID), Jan 2019, pp.
227–232.

[5] S. I. Venieris and C. Bouganis, “f-CNNx: A toolflow for mapping
multiple convolutional neural networks on FPGAs,” in International
Conference on Field Programmable Logic and Applications (FPL), Aug
2018, pp. 381–3817.

[6] V. Sze, Y. Chen, T. Yang, and J. S. Emer, “Efficient processing of deep
neural networks: A tutorial and survey,” Proceedings of the IEEE, vol.
105, no. 12, pp. 2295–2329, 2017.

[7] E. Nurvitadhi, G. Venkatesh, J. Sim, D. Marr, R. Huang, J. Ong
Gee Hock, Y. T. Liew, K. Srivatsan, D. Moss, S. Subhaschandra,
and G. Boudoukh, “Can FPGAs beat GPUs in accelerating next-
generation deep neural networks?” in International Symposium on
Field-Programmable Gate Arrays (FPGA), 2017, pp. 5–14. [Online].
Available: http://doi.acm.org/10.1145/3020078.3021740

[8] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, “A survey
of FPGA-based neural network inference accelerators,” ACM Trans.
Reconfigurable Technol. Syst. (TRETS), vol. 12, no. 1, Mar. 2019.
[Online]. Available: https://doi.org/10.1145/3289185

[9] K. Guo, L. Sui, J. Qiu, J. Yu, J. Wang, S. Yao, S. Han, Y. Wang, and
H. Yang, “Angel-eye: A complete design flow for mapping cnn onto
embedded FPGA,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), vol. 37, no. 1, pp. 35–47, Jan
2018.

[10] D. Wu, Y. Zhang, X. Jia, L. Tian, T. Li, L. Sui, D. Xie, and Y. Shan,
“A high-performance CNN processor based on FPGA for mobilenets,”
in International Conference on Field Programmable Logic and Appli-
cations (FPL), Sep. 2019, pp. 136–143.

[11] K. Guo, S. Han, S. Yao, Y. Wang, Y. Xie, and H. Yang, “Software-
hardware codesign for efficient neural network acceleration,” IEEE
Micro, vol. 37, no. 2, pp. 18–25, Mar 2017.

[12] S. I. Venieris and C. Bouganis, “Latency-driven design for FPGA-based
convolutional neural networks,” in International Conference on Field
Programmable Logic and Applications (FPL), Sep. 2017, pp. 1–8.

[13] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao,
A. Mishra, and H. Esmaeilzadeh, “From high-level deep neural models
to FPGAs,” in International Symposium on Microarchitecture (MICRO),
Oct 2016, pp. 1–12.

[14] Xuechao Wei, Cody Hao Yu, Peng Zhang, Youxiang Chen, Yuxin Wang,
Han Hu, Yun Liang, and J. Cong, “Automated systolic array architecture
synthesis for high throughput CNN inference on FPGAs,” in Design
Automation Conference (DAC), June 2017, pp. 1–6.

[15] N. Suda, V. Chandra, G. Dasika, A. Mohanty, Y. Ma,
S. Vrudhula, J.-s. Seo, and Y. Cao, “Throughput-optimized
OpenCL-based FPGA accelerator for large-scale convolutional neural
networks,” in International Symposium on Field-Programmable
Gate Arrays (FPGA), 2016, p. 16–25. [Online]. Available:
https://doi.org/10.1145/2847263.2847276

[16] Q. Sun, T. Chen, J. Miao, and B. Yu, “Power-driven DNN dataflow
optimization on FPGA,” in International Conference on Computer-Aided
Design (ICCAD), Nov 2019, pp. 1–7.

[17] Xilinx, “DPU for CNN v3.0,” 2019. [Online]. Avail-
able: https://www.xilinx.com/support/documentation/ip documentation/
dpu/v3 0/pg338-dpu.pdf

[18] Y. Xing, S. Liang, L. Sui, X. Jia, J. Qiu, X. Liu, Y. Wang, Y. Shan,
and Y. Wang, “DNNVM: End-to-end compiler leveraging heterogeneous
optimizations on FPGA-based CNN accelerators,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems (TCAD), pp.
1–1, 2019.

[19] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang, N. Xu,
S. Song, and et al., “Going deeper with embedded FPGA platform
for convolutional neural network,” in International Symposium on
Field-Programmable Gate Arrays (FPGA), 2016, p. 26–35. [Online].
Available: https://doi.org/10.1145/2847263.2847265

[20] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong,
M. Jahre, and K. Vissers, “FINN: A framework for fast, scalable
binarized neural network inference,” in International Symposium on
Field-Programmable Gate Arrays (FPGA), 2017, p. 65–74. [Online].
Available: https://doi.org/10.1145/3020078.3021744

[21] K. Abdelouahab, C. Bourrasset, M. Pelcat, F. Berry, J.-C. Quinton, and
J. Serot, “A holistic approach for optimizing DSP block utilization
of a CNN implementation on FPGA,” in International Conference
on Distributed Smart Camera (ICDSC), 2016, p. 69–75. [Online].
Available: https://doi.org/10.1145/2967413.2967430

[22] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks,” in Neural Information Processing Systems
(NeurIPS), D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon,
and R. Garnett, Eds., 2016, pp. 4107–4115. [Online]. Available:
http://papers.nips.cc/paper/6573-binarized-neural-networks.pdf

[23] X. Zheng, L. K. John, and A. Gerstlauer, “Accurate phase-
level cross-platform power and performance estimation,” in Design
Automation Conference (DAC), 2016. [Online]. Available: https:
//doi.org/10.1145/2897937.2897977

[24] K. O’neal, P. Brisk, A. Abousamra, Z. Waters, and E. Shriver,
“GPU performance estimation using software rasterization and machine
learning,” ACM Trans. Embed. Comput. Syst. (TECS), vol. 16, no. 5s,
Sep. 2017. [Online]. Available: https://doi.org/10.1145/3126557

[25] Y.-k. Choi, P. Zhang, P. Li, and J. Cong, “HLScope+: Fast and accurate
performance estimation for FPGA HLS,” in International Conference
on Computer-Aided Design (ICCAD), 2017, p. 691–698.

[26] H. Mohammadi Makrani, F. Farahmand, H. Sayadi, S. Bondi, S. M. P D,
H. Homayoun, and S. Rafatirad, “Pyramid: Machine learning framework
to estimate the optimal timing and resource usage of a high-level
synthesis design,” in International Conference on Field Programmable
Logic and Applications (FPL), Sep 2019, pp. 397–403.

[27] H. M. Makrani, H. Sayadi, T. Mohsenin, S. rafatirad, A. Sasan,
and H. Homayoun, “XPPE: Cross-platform performance estimation
of hardware accelerators using machine learning,” in Asia and South
Pacific Design Automation Conference (ASPDAC), 2019, p. 727–732.
[Online]. Available: https://doi.org/10.1145/3287624.3288756

[28] “Vivado design suite user guide (ug902),” 2020. [Online].
Available: https://www.xilinx.com/support/documentation/sw manuals/
xilinx2019 2/ug902-vivado-high-level-synthesis.pdf

[29] H. Cai, L. Zhu, and S. Han, “ProxylessNAS: Direct neural
architecture search on target task and hardware,” in International
Conference on Learning Representations, 2019. [Online]. Available:
https://arxiv.org/pdf/1812.00332.pdf

[30] M. Ferianc, H. Fan, R. S. Chu, J. Stano, and W. Luk, “Improving
performance estimation for fpga-based accelerators for convolutional
neural networks,” in International Symposium on Applied Reconfigurable
Computing. Springer, 2020, pp. 3–13.

[31] ARM, “AMBA R© AXI and ACE protocol specification,” 2013.
[Online]. Available: https://static.docs.arm.com/ihi0022/e/IHI0022E
amba axi and ace protocol spec.pdf

[32] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bilenetv2: Inverted residuals and linear bottlenecks,” in IEEE conference
on computer vision and pattern recognition (CVPR), 2018, pp. 4510–
4520.

[33] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[34] Xilinx, “Zynq UltraScale+ MPSoC ZCU102 evaluation kit,” 2019.
[Online]. Available: https://www.xilinx.com/products/boards-and-kits/
ek-u1-zcu102-g.html

[35] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001. [Online]. Available: https://doi.org/10.1023/A:1010933404324

[36] Xilinx, “Zynq UltraScale+ Device,” Aug. 2019. [Online].
Available: https://www.xilinx.com/support/documentation/user guides/
ug1085-zynq-ultrascale-trm.pdf

https://doi.org/10.1145/3287098.3287118
http://doi.acm.org/10.1145/3020078.3021740
https://doi.org/10.1145/3289185
https://doi.org/10.1145/2847263.2847276
https://www.xilinx.com/support/documentation/ip_documentation/dpu/v3_0/pg338-dpu.pdf
https://www.xilinx.com/support/documentation/ip_documentation/dpu/v3_0/pg338-dpu.pdf
https://doi.org/10.1145/2847263.2847265
https://doi.org/10.1145/3020078.3021744
https://doi.org/10.1145/2967413.2967430
http://papers.nips.cc/paper/6573-binarized-neural-networks.pdf
https://doi.org/10.1145/2897937.2897977
https://doi.org/10.1145/2897937.2897977
https://doi.org/10.1145/3126557
https://doi.org/10.1145/3287624.3288756
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug902-vivado-high-level-synthesis.pdf
https://arxiv.org/pdf/1812.00332.pdf
https://static.docs.arm.com/ihi0022/e/IHI0022E_amba_axi_and_ace_protocol_spec.pdf
https://static.docs.arm.com/ihi0022/e/IHI0022E_amba_axi_and_ace_protocol_spec.pdf
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://doi.org/10.1023/A:1010933404324
https://www.xilinx.com/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf

