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Abstract—Convolutional Neural Networks (CNNs) are increas-
ingly becoming popular in embedded and energy limited mobile
applications. Hardware designers have proposed various acceler-
ators to speed up the execution of CNNs on embedded platforms.
Deep Learning Processor Unit (DPU) is one such generic CNN
accelerator for Xilinx platforms that can execute any CNN on
one or more DPUs configured on an FPGA. In a period of
rapid growth in CNN algorithms and the availability of multiple
configurations of CNN accelerators (like DPU), the design space is
expanding fast. These design points show significant trade-off in
execution time, energy consumption and application performance
measured in terms of accuracy. To be able to perform this
trade-off, we propose a methodology for energy estimation of
a CNN running on a DPU. We build an energy model using
characteristics of few CNNs and use this model for energy
prediction of other unseen CNNs. We evaluate our approach
using 16 different standard and popular CNNs with an average
prediction error of 9.9%. Energy estimation can be useful in
various scheduling applications where one can choose from
multiple CNNs based on its energy consumption. We demonstrate
the utility of our approach in a drone that is deployed for
detecting objects on the ground.

Index Terms—FPGA, CNN accelerator, Deep neural networks,
Energy estimation, DPU.

I. INTRODUCTION

High power and resulting energy consumption are some
of the biggest concerns in todays’ systems, ranging from
drones [1] to data-centers [2]. Convolutional Neural Networks
(CNN) are used for classification and object detection tasks in
such systems. There is a large variety of CNNs which have
different power/energy consumption, accuracy and computa-
tional/memory requirements as shown in Tables I and IV.

Many prior works are proposed for the acceleration
of CNNs or reduction in their power consumption using
FPGA [3]-[5]. Deep Learning Processor Unit (DPU) [6] is
one such generic accelerator designed specifically for FP-
GAs by Xilinx, originally developed by DeePhi Tech. and
Tsinghua University [4]. It can execute any CNN on any FPGA
which can be changed at the run-time by reprogramming the
instruction memory i.e. without reconfiguration. DPUs are
available in various sizes which differ in the FPGA resources
they utilize and their associated computational capacity. Also,
multiple CNNs can execute on multiple DPUs concurrently.
Such flexibility motivates us to use DPU for our work.

ZCU102 board used in this work was funded by MeitY, Govt. of India
under “SMDP-C2SD” project.

Due to the ability of DPUs to execute a variety of CNNs,
DPUs allow dynamic switching of CNNs based on the ap-
plication requirements (at run-time) without the overhead of
FPGA reconfiguration. Such dynamic switching is needed for
many inference systems like traffic monitoring system [7],
MAVI [8] and drones [1]. Due to the availability of large
number of CNNs (n) which is further growing continuously,
many choices of DPU sizes (m) and possibility of imple-
menting a large number of DPUs on the same device (k),
the design space is very large (k™). Thus we develop an
energy prediction methodology for DPU based systems called
EnergyNN (Energy estimation for Neural Network Inference
tasks on DPU). It is useful at the design time for rapid design
space exploration [9]. It is also useful for an application like
drone to choose a set of CNNs during mission planning for
suitable deployment at the run-time.

Corcoran et al. [10], Nasser et al. [11] and Lin et al. [12]
propose different strategies for estimating the power consump-
tion for FPGAs. Corcoran et al. and Nasser et al. require
complete hardware architectural details to estimate the power
whereas we propose a strategy where we use very simple
features to model energy without any prior knowledge of
hardware. Lin et al. [12] propose a hardware based power
estimation approach that gets embedded in the hardware itself
which is not a very flexible approach. EnergyNN estimates the
energy consumption for a particular CNN running on a DPU.
It uses basic characteristics of a CNN like its computational
and memory requirements to predict the energy consumption.
We evaluate our prediction model for 16 different CNNs. In
particular, the main contributions of our work are as follows.

1) A prediction model which predicts the energy for any

CNN running on a DPU.

2) We show validation of our methodology using actual

energy measurements on an FPGA board.

3) We show the use case of our proposed framework for a

real world application like drone.

II. APPROACH ADOPTED FOR MEASURING POWER

In our approach, we first measure power and subsequently
use it to measure energy for a CNN running on a DPU. We
do layerwise power measurement for a CNN.

A. Why layerwise power measurement?

We measured the power and energy for 16 different CNNs
running on a DPU (Table I). The Table shows average PL



TABLE I
POWER, EXECUTION TIME AND ENERGY VARIATION ACROSS VARIOUS CNNS

Execution Power Energy Number #MAC Data
Network time W) (mJ) of layers operations  required  Type
(ms) (x10°8) (MB)
squeezenet (sq) 1.78 5.18 9.22 26 7.76 4.88
mobilenet_v2 (mob) 3.75 4.40 16.50 36 6.02 9.86 T
inception_v1 (incl) 5.23 6.14 32.13 59 31.65 14.62 R
ssd_pedestrian (ped) 8.61 7.54 64.89 35 58.92 17.5 A
resnet50 (res50) 12.03 6.28 75.56 55 77.16 51.98 I
refinedet_1 (ref 1) 24.57 8.04 197.47 48 251.96 41.79 N
vggl6 (vgg) 44.84 5.75 257.89 16 309.41 156.78
yolo_v3 (yol) 64.01 8.54 546.51 83 605.69 156.95
resnet18 (res18) 4.42 6.91 30.50 23 36.54 17.08
inception_v2 (inc2) 6.65 6.09 40.51 79 40.38 22.13
ssd_adas (adas) 7.75 7.72 59.86 35 62.84 19.8 T
refinedet_3 (ref3) 8.24 7.06 58.23 48 50.85 20.04 E
refinedet_2 (ref2) 12.05 7.59 91.44 48 100.96 25.43 S
ssd_traffic (traf) 12.34 7.96 98.14 35 116.70 21.12 T
ssd_mobilenetv2 (mossd) 15.12 5.88 88.91 50 65.37 43.74
inception_v3 (inc3) 16.00 6.68 106.87 103 114.26 49.53
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Fig. 1. Variation of power within a CNN (VGG16)

(Programmable Logic) power measured for a CNN. The
energy values are shown for processing one image. We observe
the variations in power values for these CNNs even when
running on the same size DPU. To know more about the
effect, we plotted the values of power for a particular CNN
(Fig. 1). The figure shows the three power components, namely
PL (Programmable Logic), PS (Processing System) and MGT
(Multi-gigabit transceiver) power. MGT rails are used for
transmitting the image to a DisplayPort display so it always
remains constant (0.26W) for any CNN.

One of the CNNs, vggl6 with a total of 16 layers, has
an execution time of 45 ms. Fig. 1 shows layerwise power
consumption for vggl6. Out of 16 layers, first 13 layers are
relatively more compute intensive whereas the last 3 layers
are more memory intensive. This is reflected in the graph
where PL power is more for first 13 layers while for the last 3
layers, PL power drops and PS power slightly increases. Last
3 layers corresponds to fully connected layers where memory
bandwidth becomes the bottleneck. Due to this, PS power
increases as it includes DDR power. This motivates us to study
the layerwise power consumption for different CNNs as power
or energy measurements at the CNN level would miss these
dynamic patterns within a CNN. The variations in PS power
is very small (0.5 W) as compared to variations in PL power
as seen in Fig. 1. Hence, for rest of our work, we study only

Fig. 2. Breaking a CNN with n layers into n smaller CNNs

PL power and its corresponding PL energy.

B. Tool and methodology used for power measurement

We use Xilinx FPGA board (ZCU102 [13]) for our measure-
ments and experimentation. Power measurement can be done
in a number of ways for ZCU102. The important requirement
is we should be able to measure power when CNN is executing
on an FPGA.

One of the methods for power measurement is using
Maxim’s powertool dongle [14]. This dongle can help to
measure both current and voltage across FPGA. The limitation
for using this dongle is that it does not allow one to record the
power measurements at the run-time. Xilinx power estimator
(XPE) [15] is another method for power measurement which
is a spreadsheet based tool to record the power consumption.
This tool can only be used at design time for measurements
and not at the run-time. Corcoran et al. [10] reports that XPE
has a very high percentage error (624%). Moreover, we predict
energy directly instead of separately predicting both power
and execution time and then combining. Anyway for battery
powered systems like drones energy estimation is a critical
requirement.

ZCU102 FPGA board is specifically designed to support
power monitoring. It has a total of 18 power rails for the
measurement of power across different FPGA components like
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Fig. 3. Relation of MAC operations and power consumption

PS and PL, which can be accessed by the application software.
This can be useful for power measurements at the run-time
when CNNs are executing on an FPGA board. Power from
various rails are combined to report PS, PL and MGT power
by a Xilinx utility [16]. The minimum sampling rate for power
measurement that can be achieved using this utility is 1.3ms.

C. Approach used to measure layerwise power consumption

For our experiments, we considered 16 different CNNs
shown in Table I. These CNNs have different execution times
which varies from 1.78 ms to 64.01 ms. Within a CNN, most
of the layers have execution time less than 1.3 ms. Thus,
it is difficult to capture the power for each layer within a
CNN if we run the whole CNN together. In our proposed
methodology EnergyNN, a CNN is broken into smaller CNNs
typically containing just one layer and each smaller CNN is
run individually on an FPGA as shown in Fig. 2. For example,
if a CNN has 16 layers then it is broken into 16 individual
CNNs. The input for the new CNN is modified as the input
requirement for that particular layer. We consider a total of
16 CNNs which are broken into 779 new CNNs that run
individually to measure the power for each layer in these
CNNs. Each new CNN processes 1000 images and is repeated
10 times. We take average of these values to measure total PL
power associated with that particular layer. The deviation in
measured power values is less than 5% for each layer.

We also observed the effect of input image characteristics on
the power consumption of a CNN. We used images that could
be considered as extreme cases - A black and white image with
fixed pixel values of 0 and 255 respectively, a colour image
with considerable variation in pixel values, and an image with
20 objects in it. We observed that the image characteristics
do not have any noticeable impact on the power consumption
for any CNN. This can be explained as all the CNNs used,
run all the computations independent of input characteristics.
Power consumption variation due to “data values” seem to be
insignificant in DPUs.

III. ENERGY MODEL, EXPERIMENTS AND RESULTS

A. Model and feature selection

We started with the prediction of power for a CNN running
on a DPU. We plotted the number of MAC operations in
a layer vs the power as shown in Fig. 3. We observed
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Fig. 4. Relation of MAC operations and Energy

that there is no direct correlation between MAC operations
and its corresponding power. The graph looks like a scatter
plot. On the other hand, we plotted the number of MAC
operations in a layer vs energy as shown in Fig 4. We observed
that MAC operations and energy in a layer has very high
correlation coefficient of 0.98. So, instead of first predicting
power and then predicting energy, we predict directly the
energy consumed by a layer.

The energy is predicted for each layer in a CNN. These
values for individual layers are further summed up to get the
energy for the whole CNN. In order to develop an energy
model, several features that represent CNN characteristics and
DPU architecture were evaluated for prediction. In Table II, we
show various features of a layer considered for prediction. We
find the correlation coefficient of all the features with energy.
We observe that MAC operations and sum of weight, input
and output data have maximum correlation factor with energy.
Thus, we consider these two features for our prediction model.

The energy of a layer ¢ of a CNN running on a DPU can
be written as:

Energy(i) = fn (MAC;, Mem;)

o MAC; represents the number of MAC (Multiply and
accumulate) operations a particular layer needs to per-
form. This feature contributes to the power and energy
consumption due to computation happening on the DPU.

o Mem,; represents the memory requirement for each layer.
It corresponds to the total amount of data transfer that
happens between internal memory (BRAM) and external
memory (DRAM). This feature contributes to the power
consumption due to data transfers between memories. To
calculate the total data transfer, we take sum of number
of weight, input and output requirements for each layer.

In each DPU configuration, certain number of MAC opera-
tions can be performed in parallel but as each layer typically
requires a large number of operations to be performed, a
number of such iterations contribute to computation and thus
energy of each layer. The ratio of MAC operations to data ac-
cess is significant as in certain layers input/output requirements
may constrain the achievable parallelism in MAC operations.

Our framework use these simple features to predict energy
for various type of CNNs (classification or detection task).
These features are easily obtained from any CNN descrip-



TABLE II
CORRELATION OF CONSIDERED FEATURES WITH ENERGY

Correlation factor

Features considered .
with energy

MAC operations 0.98
SUM (weight, input and output) 0.74
MAX (weight, input and output) 0.64
Outputs 0.53
Inputs 0.49
weights 0.43
Kernel size 0.24
Output image size 0.21

Input image size 0.2

Input channels 0.17
Output channels -0.09
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Fig. 5. Percentage error for different layers of various CNNs

tion file. We show results on a specific DPU size (4096
parallel units) which is B4096. This methodology can be
easily extended to other DPU sizes by additionally considering
DPU specific features for modelling as we considered in our
execution time prediction model [17].

B. Experimental setup

To evaluate EnergyNN, we choose 16 different CNNs (total
of 779 layers) which have different characteristics like number
of computations, number of layers and the data requirement as
shown in Table 1. Out of these 16 CNNs, we use eight CNNs
(TRAIN type) to train the prediction model which comprises
a total of 358 data points. The rest eight CNNs (TEST type),
with total of 421 data points, are used to validate the trained
model. This choice of CNNs in test and train set is made to
distribute a variety of CNNs in both categories.

We wuse Xilinx Zynq UltraScale+ (ZCU102) FPGA
board [13]. We measure PL power for each layer of a CNN
on a DPU for 1000 images and take its average value. This
average power is multiplied with the execution time for that
particular layer to give energy for a layer for processing
one image. For a particular CNN and its layers, the number
of MAC operations and data requirement information are
obtained from the CNN description file.

C. Results

We train our prediction model using various regression
models as shown in Table III. The table shows the mean,
maximum and median percentage error for these models on

TABLE III
PERCENTAGE ERROR FOR DIFFERENT PREDICTION TECHNIQUES USED
Resgression model Mean Median Maximum
€gressio ode Error (%) | Error (%) | Error (%)
Polynomial (degree 2) 9.0 6.1 22.1
Random forest 9.8 10.9 15.6
Linear 9.9 7.0 23.6
Decision tree 14.8 14.3 28.6
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Fig. 6. Actual vs predicted energy for various CNNs running on a DPU

the test dataset. We observe that both linear and random forest
have similar mean percentage error. Also, when we go from
linear to polynomial regression model, with degree 2, there is a
very slight drop in the mean error. Random forest regression
model has comparatively higher median error as compared
to the other two models. Thus, owing to the simplicity of
linear regression model, we tolerate slightly higher errors and
choose a linear regression model over other models for our
methodology, EnergyNN.

We adopt the sixteen-fold cross validation method. There
are a total of 16 CNNs. The linear regression model is trained
using 15 CNN models and the model is tested using one CNN.
This method is repeated 16 times to consider all possible cases.
The average leave-one-out cross-validation error for B4096
DPU is 10.36% whereas the average out-of-sample error for
B4096 DPU with 8 train and 8 test CNNs is 9.9%. The
high cross validation error is due to some specific CNNs like
mobilenet (with depthwise separable convolutions) and resnet
(with residual connections) as they have some architectural
differences as compared to other CNNs. Thus, we include
them in the training data for our prediction model.

Fig. 5 shows the percentage error of energy prediction for
different layers of all the CNNs. The figure also shows the
corresponding absolute error values for prediction. We observe
that most of the layers which have high percentage error in
prediction have very small actual energy values (0.01 to 1 m)J).
This is because small absolute error results in high percentage
error for very small actual values. Absolute error is mostly
observed to be less than 2 mJ except for a few outliers. Fig 6
shows the actual and predicted dynamic PL energy to process
one image for various CNNs running on a DPU. Dynamic
PL energy refers to energy based on dynamic PL power. We
observe that energy values varies from 2.86 mJ to 251.19 mJ.
The absolute error in prediction varies from 0.00 to 6.54 mJ.



TABLE IV
ENERGY, EXECUTION TIME AND ACCURACY TRADE-OFFS FOR DIFFERENT
CNNs
CNN Execution | Accuracy | Energy Flight time
time (ms) (MAP) (@)] of drone (mins)
ssd_mobilenet 14 30 2076 16
refinedet_1 24 67 3316 15
yolo v2 31 78 4713 14
yolo v3 - 320 38 76 5334 14
yolo v3 - 416 61 93 5423 13
yolo v3 - 608 123 94 5500 13

* Table shows PL energy of FPGA when CNN runs for 10 mins.
* Flight time: Time for which drone flies till battery drains out.

IV. APPLICATION OF THE PROPOSED METHODOLOGY

We demonstrate the use case of our methodology for a drone
application. We consider the case of a drone which is flying at
a fixed speed and a fixed height. The drone has a fixed flight
time. The drone has FPGA mounted on it which is used for
object detection task. The object detection task is to count the
number of vehicles passing by on the road. We use DJI Mini
2 (JP version) Drone [18] specifications for our analysis.

1) Usefulness of EnergyNN in mission planning: Table IV
shows the execution time, accuracy and energy tradeoff for
various CNNs running on a DPU. Table also shows the flight
time of drone when the particular CNN runs on it. The
tradeoff is between accuracy and energy. ssd_mobilenet would
be chosen for energy efficient system as it requires least energy
or yolo v3 - 608 would be chosen if higher accuracy is the
preference. Also, as we know that the flight time of drone
is fixed - say 15 minutes. Thus the choice would be only
between ssd_mobilenet and refinedet_1 as only their energy
consumption can support flight time of 15 minutes or higher.
(Table IV).

The above example shows how the energy information
present in Table IV is useful during the mission planning
of a drone to choose between different CNNs. During the
time of mission planning, energy values are predicted using
EnergyNN and could be stored in a table. Newer CNNs can
easily be added without extensive energy measurements using
the EnergyNN prediction model.

2) Overhead introduced by EnergyNN: The design space is
very large, especially when one can implement a number of
DPUs of different sizes. In such scenarios, it is not possible to
pre-evaluate energy consumption of all design points and store
the values as a table-lookup at the run-time. In such situations,
it becomes desirable to predict energy consumption at run-time
to enable dynamic decision making. In case of EnergyNN,
the time taken to evaluate one CNN choice is of the order
of microseconds which is a small fraction of CNN execution
time.

3) Design overhead in absence of EnergyNN: Since En-
ergyNN can predict energy without compiling CNNs or gen-
erating bitfiles, it is useful at design-time to choose proper
size FPGA and identify suitable CNNs and DPUs as per cost-
accuracy trade-off analysis. Doing the same using measure-
ments would take considerable time and effort. For example,
if we consider 3 FPGAs, 8 CNNs and 8 DPU sizes, total of

192 bitfiles would need to be generated to evaluate all the
choices. Generally, one bitfile generation takes around two to
six hours. However, EnergyNN can do such evaluation without
generating bitfiles.

V. CONCLUSION AND FUTURE WORK

We presented the motivation for prediction of energy of a
Convolutional Neural Network (CNN) running on a hardware
CNN accelerator like DPU. We proposed a complete method-
ology for measurement of energy of a CNN executing on an
FPGA. We developed an estimation model which first predicts
the dynamic PL energy of each layer of a CNN running
on a DPU. These values are summed up to predict energy
consumption of the CNN. We evaluated our prediction model
on 16 different standard CNNs which gives an average error
of 9.9%. We use very simple features like CNN characteristics
as the features for energy prediction. Using these simple easy
to obtain features and without using any specific hardware
implementation details, we can predict energy for any CNN
accelerator for DPUs. We show the use case of predicted
energy values for a drone application. Once integrated with
runtime prediction model, this approach can support many
scheduling applications on different platforms. Primarily, one
can support the trade-off between execution time, energy
consumption and application performance as a future work.
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