This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

IEEE EMBEDDED SYSTEMS LETTERS, VOL. XX, NO. Y, MONTH YEAR

http://dx.doi.org/10.1109/LES.2020.3017455

Design Space Exploration of FPGA Based System
with Multiple DNN Accelerators

Rajesh Kedia, Shikha Goel, M. Balakrishnan, Kolin Paul, and Rijurekha Sen

Abstract—Many emerging systems concurrently execute mul-
tiple applications that use deep neural network (DNN) as a key
portion of the computation. To speed up execution of such DNNs,
various hardware accelerators have been proposed in recent
works. Deep Learning Processor Unit (DPU) from Xilinx is one
such accelerator targeted for FPGA based systems. We study
the runtime and energy consumption for different DNNs on a
range of DPU configurations and derive useful insights. Using
these insights, we formulate a design space exploration (DSE)
strategy to explore trade-offs in accuracy, runtime, cost, and
energy consumption arising due to flexibility in choosing DNN
topology, DPU configuration, and FPGA model. The proposed
strategy provides a reduction of 28x in the number of design
points to be simulated and 23x in the pruning time.

Index Terms—Design space exploration, Deep neural networks,
FPGA, Accelerators, Embedded systems.

I. INTRODUCTION

Many energy and runtime efficient deep neural network
(DNN) accelerators have been proposed recently [1]-[4]. Xil-
inx’s DPU (Deep Learning Processor Unit) [3], [4] is a generic
DNN accelerator which can be used for any DNN topology
(unlike others that are specific to particular DNN [1], [2]).
DPU can be configured for different sizes that vary in terms
of resource requirements and execution rate. Further, many
systems [2], [5], [6] have a growing need to support multiple
concurrent applications that involve DNN computations.

Each of these applications can be mapped to one or more
standard DNNs (different topology) with different inference
accuracy [7]. Due to the generic nature of DPU, each choice
of DNN for an application can be mapped to a different DPU
size, resulting in different execution times. Further, the count
and size of DPUs that can be integrated on an FPGA depends
upon the resources available on the chosen FPGA chip which
in-turn influences the DNNSs that are feasible within a required
execution time period. Such dependencies of applications on
DNN topology and DPU size and then further on the chosen
FPGA chip creates a complex design space. In this letter, we
explore this design space at an early stage of design cycle
to define the hardware platform that can support the required
accuracy level, cost, and energy budget.

We study the performance and energy behavior of different
DNNs on various DPU sizes using FPGA board and derive
insights resulting in pruning rules for DSE (Section IV). We
obtain 28x reduction in the number of invocations of the

The authors are affiliated to the Indian Institute of Technology Delhi, India.
E-mail: {kedia, shikha.goel, mbala, kolin, riju} @cse.iitd.ac.in.

Lokesh Siddhu provided useful feedback on the manuscript. Rajesh Kedia
was supported by Visvesvaraya PhD Scheme, MeitY, Govt. of India MEITY-
PHD-2671. MeitY also funded ZCU102 board under “SMDP-C2SD” project.

simulator/estimation function and an overall speedup of 23x
in exploration time. Our DSE flow also identifies newer Pareto
points (Fig. 5) in comparison to just using a fixed type of
FPGA/platform. This letter makes the following contributions:
1) The first work to consider DSE at an early stage for
DNN accelerator (DPU) based inference system.
2) DSE strategy involving various designer insights derived
using measurements from a real FPGA board.
3) Comprehensive results demonstrating benefits of the
proposed approach on standard DNNs.

II. RELATED WORK

A system with multiple types of DPU can be considered
as a heterogeneous multi-core system. Baruah [8] was one
of the firsts to study the feasibility of given real-time tasks
on heterogeneous systems. Recently, Chwa et al. [9] and
Moulik et al. [10] extended Baruah’s work [8] to consider task
migration and minimize preemption. All these works focus on
mapping of tasks onto given cores on the platform. However,
they neither explore allocating the number/type of cores nor
consider different accuracy levels for the tasks.

Quan et al. [11] and Stralen et al. [12] identify appropriate
platform to be allocated and task mapping for a scenario aware
system. Fiihr et al. [13] address hardware-software partitioning
of tasks onto a Xilinx Zynq device. Li et al. [14] explore
pre-characterized DSP function library for FPGA to explore
area and latency trade-offs. However, none of these works
consider tasks with variable accuracy levels. Quan et al. [11]
and Stralen et al. [12] consider resource allocation but are
limited to identifying whether to include a particular resource
or not. Exploring the number/type of each resource is a more
complex problem, which is not addressed in these works.

Network Architecture Search (NAS) [15] explores the in-
ternal architecture of DNN for a single application. For an
advanced driver-assistance system, Peng et al. [5] proposed
combined training to use one DNN for all inference tasks.
Both these approaches are orthogonal to our focus of effi-
ciently using off-the-shelf DNNs and components. Studying
co-execution of multiple DNN accelerators has experienced
limited attention. f-CNN* [2] (a recent work) maps multiple
independent CNN applications on a given FPGA; however, it
neither explores choice of FPGA nor trade-off in accuracy.

III. SYSTEM MODEL AND PROBLEM STATEMENT

A. Notations

A ={A;, Ay, ..., A,} is a set of n periodic applications
repeating at a defined interval known as period. Each applica-
tion A; = ((a},a?,...,a$), p;), where p; represents the period

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

of A; and a] represents the accuracy of application A; when
mapped to network (DNN) NJ. If application A; cannot use
N7, then a = 0.

N = {N!,N?,...N*} is a set of s different networks.
Each network N7 is characterized as: N7 = (t],t},...,tJ)
where t; represents the execution time when network N7 is
executed on DPU of type Dj. Similar model has been used
previously for heterogeneous multi-core systems [8], [10].

D is an ordered set ({D1,Da,...,Dy,}) of m different
types of DPUs available for implementation on FPGA. Each
DPU type is characterized as Dy = (areay,perf,), where
areay, is a tuple representing the area (number of FPGA
resources in terms of LUT, BRAM, and DSP) required for Dy,
and per f;, is the peak performance in GOPs (Giga operations
per second) supported by Dy. D is ordered in increasing
order of per f (and area as well). The final hardware platform
consists of a few of such DPU IPs realized on an FPGA.

F ={F, Fy,...,F.}isaset of r FPGA chips. Each FPGA
chip F; = (areaTotaly, costy, f;), where areaTotal; repre-
sents the total resources (in terms of LUT, BRAM, and DSP),
cost; represents the price, and f; represents the normalized
frequency of the FPGA w.r.t. a reference FPGA (ZCU102).
fi is used for scaling the execution time for different FPGAs
(currently only Zynq devices support Xilinx DPU).

B. Problem Statement

The design space being explored in this letter consists of
various application (A) to DNN (N) and DNN (N) to DPU
(D) mappings. It considers count of each DPU type (Dy) to
be used, mapping of applications on allocated DPUs, and the
FPGA chip (F}) to use for final implementation. We aim to
quickly eliminate design points that are either infeasible (due
to constraints on cost, accuracy, or schedulability) or inferior
to other points in terms of energy consumption.

IV. PROPOSED APPROACH FOR DSE

In this letter, our focus is to quickly eliminate the infeasible
design points so that expensive evaluation techniques like
simulations are invoked less. We define and use the following
rules in Algorithm 1 for pruning the design space.

1) RI — Accuracy: The system must support a minimum re-
quired accuracy level as determined by its use-case. All DNNs
may not be able to satisfy the accuracy requirement for all
applications. Rule R1 eliminates all application (A) to DNN
(D) mappings that do not meet the accuracy requirement.

2) R2 — Area: Since one application uses only one DPU
at a time, a maximum of n DPUs can be useful for the
system. Within these choices, we eliminate all configurations
that require more resources than available on the FPGA chip.

3) R3 — Individual utilization: Our applications are periodic
and repeat themselves with a defined period (p). The temporal
utilization of a DPU Dj, by a DNN N/ executing application
A; (with period p;) refers to the fraction of time for which the

DPU is utilized by the application and defined as: (u7,); = ;—%,
where ¢] is the runtime of N7 on Dy, For a mapping to be
valid, the execution time should be less than the period. Hence,

we eliminate all DNN to DPU mappings where (ui)i > 1.

http://dx.doi.org/10.1109/LES.2020.3017455
IEEE EMBEDDED SYSTEMS LETTERS, VOL. XX, NO. Y, MONTH YEAR

Therefore, certain smaller sized DPUs might not be valid
choices for an application having smaller period.

4) R4 — Group utilization: Even though individual uti-
lization of a DPU by an application might be less than 1
as per rule R3, multiple applications might have chosen the
same DPU type. If sufficient instances of that DPU type are
not available, schedulability would be violated. We consider
multiple instances of same DPU type together as a group
and check schedulability for the group. Assuming DPUs of
type D) have Cnt; number of instances in a particular
configuration, we eliminate all points for which the total
utilization (3}, (u},);) of DPU type Dy, exceeds its count Cnty.
Such a grouping avoids evaluating various symmetric mapping
of tasks on same sized DPUs.

5) R5 — Platform configurations: We performed various
measurements on ZCU102 board [16] (details in Section V-A)
and derive two key designer insights. First, as shown in Fig. 1,
the energy consumption for executing any DNN increases with
decreasing size of DPU (or remains almost same as in smaller
DNNs like mobilenet_v2 and squeezenet). Fig. 2 shows the
measured increase in execution time and Fig. 3 shows the
reduction in power averaged across DNNs (measured on board
as well as reported from synthesis reports) and reduction in
FPGA resources. The LUTs and registers do not decrease
much with smaller DPUs and the area (and power) reduction
achieved with a smaller DPU is less when compared to the
increase in the execution time with use of smaller DPU.
This explains the energy behavior shown in Fig. 1. Secondly,
as shown in Fig. 4, running multiple DNNs back to back
on a single DPU consumes more energy than concurrent
execution on multiple DPUs of same type. This is because
the power consumption of common resources (clock, bus,
memory controller, and processing system) do not increase
in proportion with multiple instances. The maximum increase
in power consumption is 1.4x and 1.8x for 2 DPUs and 3
DPUs, respectively (Fig. 4). On average across DNNGs, the total
runtime for processing 1000 images reduces to 0.54x (with 2
DPUs) and 0.40x (with 3 DPUs) of the runtime for a single
thread.

Across different Zynq chips, the detailed power for DPUs
reported by Vivado tool showed similar trend as Fig. 3. Due to
a fixed micro-architecture, a given DPU consumes same cycles
across FPGA chips and hence, the runtime trend follows Fig. 2.
Therefore, energy would behave similar to Fig. 1 and Fig. 4.

Using these observations about the energy consumption,
we define the following pruning rule RS for DPU based
systems — eliminate all platform configurations that have
the same number of DPUs, which are also smaller or same
sized as previously evaluated configurations. The eliminated
configurations cannot be Pareto points as they will consume
higher energy and cannot execute faster than configurations
that use larger or more number of DPUs.

Algorithm 1 shows the pseudocode for various rules, elab-
orating rule R5 in lines 3-26. The procedure starts with the
configuration having larger sized DPUs and gradually replaces
them with smaller sized DPUs while adding more instances.
Lines 7-11 generate the first configuration containing max-
imum instances of largest DPU that can fit in the FPGA,

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

http://dx.doi.org/10.1109/LES.2020.3017455

KEDIA et al.: DSE OF FPGA BASED SYSTEM WITH MULTIPLE DNN ACCELERATORS 3
@ 8 . . 1.

3 3.0 . inceptionv3 ¢ resnet50 1S 71 |nce;?t|onv3 o °resnet50

E © »—e mobilenet_v2 «—e squeezenet € 8 6 b mo‘bllenet_vz °—* squeezenet - 508 LS

59 2.5, . refinedet 1 oo ssd_adas c g s o—orefinedet_1 oo ssd_adas s3 0.6 " #LUTs

DR 2.0 °resnetls o—a yolov3 :// Qo | o resnetls o yolov3 % 5hS °° #Regs.

R —2 R4 3 ;0.4 ~— #BRAMs

st14 - e E Q% g ° o #DSPs

§ E é E 2 E " e--e Total Power (from board)

g 1.0 = R ———| § _ - = 0.0 ¢ Total power (from synth.)
B4096 B3136 B2304 B1600 B1024 B800 B512 B4096 B3136 B2304 B1600 B1024 B800 B512 B4096 B3136 B2304 B1600 B1024 B800 B512
(Largest) DPU size (Smallest) (Largest) DPU size (Smallest) (Largest) DPU size (Smallest)

Fig. 1. Energy consumption for different DPU

sizes (shown for a few DNNs for brevity) various DNNs

subsequently moving to the next largest DPU and so on. In
the while loop from lines 12-25, the DPU at the last index in
the first configuration is replaced with next smaller sized DPU
(line 14). If such replacement allows adding another DPU, the
configuration could be a Pareto point and is considered for
evaluation (lines 16-19). If the last DPU is already the smallest
DPU, it is removed and the same procedure is repeated with
DPUs in previous index (lines 20-25). Valid configurations are
further checked in line 13 for various mappings using other
pruning rules indicated in the algorithm (lines 27-34).

We use an example of two applications (A; and As) to
illustrate various pruning rules. There are 3 DNNs (N, No,
N3) with accuracy of A;:(80, 0, 65) and A5:(70, 68, 50). Ay
and A, should support an accuracy of 60 and period of 50 ms
and 80 ms, respectively. There are 3 DPU types (D1, Ds, D3),
s.t. D3 > Dy > Dy with execution time (in ms) of N;:(70,
50, 30), N5:(62, 45, 25), and N3:(60, 42, 20). Let us consider
only one FPGA which can fit either (Ds+D1) or (Ds+D5) in
it. Configurations like (Ds+D3) or (Ds+D3) are eliminated as
they use larger DPUs and cannot fit on FPGA (rule R2). Since
we can fit (D3+D1) and (D2+D>) on the FPGA, we eliminate
configurations like (Ds+D1), (D1+D1), (D3), (D2), (D7) as
they use smaller DPUs and would consume higher energy (rule
RS5). A; to Ny and As to N3 mappings are eliminated in
line 28 of Algorithm 1 due to accuracy requirement of 60
(rule R1). Line 30 will eliminate use of D; for A; due to
runtime being more than its period (rule R3). For (Ds+D53)
configuration, we treat both D, as equivalent and line 30
checks the total utilization of Dy to be less than 2 (rule R4).
Overall, we were able to eliminate many design choices.

V. EVALUATION AND RESULTS
A. Experimental Setup

1) Characterization methodology: We implement various
hardware platforms containing multiple instances of different
DPU types on a Xilinx Zynq Ultrascale+ based ZCU102
board [16] and execute different DNNs. The DPUs considered
are: B512, B800, B1024, B1600, B2304, B3136, B4096 (the
suffix number indicates peak execution rate in Giga-operations
per second) [3]. We execute 15 standard classification and
detection type DNNs on these DPUs: inception (vl, v2,
v3), mobilenet_v2, squeezenet, resnet (50 and 18 layers),
yolov3, refinedet (v1, v2, v3), ssd_(adas, pedestrian, traffic,
mobilenet) [3]. We also create multiple threads (1, 2, and 3)
of these DNNs to use multiple DPUs concurrently.

ZCU102 allows monitoring the power/current consump-
tion through software using sensors on the supply rails. We

Fig. 2. Execution time for different DPU sizes for

Fig. 3. Reduction in resource count and total power
of FPGA chip for different DPU sizes

Algorithm 1: Overall DSE flow

1 for each FPGA type F; in F do
2 L generateAndEvalConfig(F})

3 Procedure generateAndEvalConfig (F})

4 avail Area < areaT otal;

5 ind <0

6 C'is an empty vector // chosen DPUs

7 for k in m..1 do // generate first config.

8 count < Lia“(f:le‘;\:eaj

9 C.push(k) for count number of times

10 avail Area <+ avail Area — (areax * count)

1 ind < ind + count

12 while rrue do

13 evalConfig(C) // evaluate DPU config. C

14 Clind] = Clind] —1 // Reduce DPU size

15 update avail Area

16 if space gets created for another DPU d then

17 C.push(d) // This config. increases
concurrency and should be evaluated

18 update avail Area

19 ind < ind + 1

20 if Clind] =0 then // smallest DPU reached

21 if ind=0 then // all indices are covered

2 | return

23 else

24 C.delete(ind) // Delete the entry

25 L ind < ind —1 // Move to prev. index

26 return

27 Procedure evalConfig(C) // C is DPU config.

28 for each A to N mapping do // use rule Rl

29 for each A to C mapping do // use R4

30 if design point is infeasible then // use R3,R4

31 | continue

32 else

33 L Evaluate (simulate) the design point.

34 return

measure the execution time, power consumption, and energy
consumption for each DNN, averaged over 1000 executions
of the DNN. The accuracy for each application when mapped
to a particular DNN is obtained from prior works [7], but
standard measurements could also be performed if desired. The
resource requirement for each DPU has been obtained from
synthesis reports. The total available resources on a FPGA
chip is obtained from corresponding datasheet. The cost for
each FPGA type is obtained from the same vendor (DigiKey).

2) Applications (A): We consider a driver assistance sys-
tem that executes three different applications using camera im-
ages — Aj:person detection, Ay:vehicle detection, and Ag:road

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

http://dx.doi.org/10.1109/LES.2020.3017455

4 IEEE EMBEDDED SYSTEMS LETTERS, VOL. XX, NO. Y, MONTH YEAR
) 7 12
: —_ e—e Baseline
[} o S 68 n 10
% 5 1.8 energy) 66 o a—a Rule R4 applied
S22 1.6 =--= power e > o 8 .
-0 1.4 & 64 o u_g R4+R5 applied
L=1.2 5 62 08 ® ® g 6 (Our proposal)
T 1.0 260 oe v 4
20 g o7 £
. Z56 oe
= 0.4 54 4‘.
1DPU 2 DPU 3 DPU 10 1.5 2.0 2.5 3.0 3.5 4.0 45 5.0 5.5 3 4 5 6

Number of concurrent DPUs

Fig. 4. Energy and power consumption for differ-
ent number of DPUs (B4096) for various DNNs

TABLE I
DNN MAPPING AND PERIOD FOR DIFFERENT APPLICATIONS

Appln. | DNN and accuracy Period (FPS)

Aq refinedet_1: 67.47%, refinedet_2: 64.50%, | 33.33 ms (30)
refinedet_3: 60.65%

Ag resnet50: 91.30%, inceptionvl: 89.41%, | 33.33 ms (30)
mobilenet_v2: 85.07%, squeezenet: 77.01%

As yolov3: 49.14%, ssd_mobilenetv2: 30.19% 100.00 ms (10)

sign detection. Their accuracy (taken from Xilinx Al model
kit [7]) and period for different DNNs are shown in Table I.
The system provides useful information to a driver upfront.
We consider the following design choices for DSE.

e DNNs (IN): DNN choices are shown in Table 1.

« DPUs (D): B512, B800, B1024, B1600, B2304, B3136,
B4096. Suffix indicates peak execution rate in GOPs [3].

o FPGA types (F): XCZU2EG, XCZU3EG, XCZU4EG,
XCZUSEG, XCZU6EG, XCZU7EG, XCZU9EG,
XCZU11EG, XCZUI15EG. These are listed in increasing
order of their cost and available resources.

B. Results

We compare our pruning strategy against a baseline strategy
which implements rules R1, R2, and R3 and explores all
platform configurations and all DNN to DPU mappings. We
show improvements in two steps — (i) Grouping similar type
of DPUs together to evaluate feasibility (rule R4) and (ii)
Additionally, eliminating platform configurations based on
designer insights (rule R4+RS5).

We observe significant reduction in the number of design
points evaluated and considered for simulation. While the
baseline strategy evaluates 285288 design points and consid-
ers 25181 points for simulation, our proposed strategy (rule
R4+R5) evaluates only 5376 design points (53 % reduction)
and considers 894 design points for simulation (28x reduc-
tion). This results in a runtime improvement of about 23 x.

Fig. 5 shows that a bigger and more expensive FPGA (e.g.,
XCZUG6EG) can support higher accuracy than smaller ones
(e.g., XCZU3EQG). Therefore, exploring various FPGA chips
during DSE presents many new trade-offs in accuracy and cost
compared to considering only one fixed FPGA chip, which
to our knowledge has never been considered in any prior
works. Very small FPGAs (e.g., XCZU2EGQG) get eliminated for
not meeting periodicity whereas big FPGAs (e.g., XCZU7EG
onwards) do not show up as Pareto points as additional
resources offered by them are not needed for the system.

Next, we studied the quality of results obtained through
different DSE strategies. Our approach eliminates the points

Energy (Joules)

Fig. 5. Pareto points obtained after exploration.
Size of points represent FPGA cost and size.

Number of applications

Fig. 6. Exploration time for different application
sizes with different pruning approaches

which are definitely infeasible or inferior based on the in-
sights obtained through experimentation. We examined that
the design points eliminated due to rules R4 or R5 were non-
Pareto points, which would have anyway been eliminated after
simulation. Our strategy was able to prune many such design
points early and thereby, reduced the exploration time.

We also studied scalability of the proposed approach for
a larger number of applications (Fig. 6). Compared to the
baseline, rule R4 and rules R4+R5 result in 6.8x and 36x
lower exploration time, respectively for 6 applications.

VI. CONCLUSION AND FUTURE WORK

We motivated the need for early stage DSE for systems
with multiple DNN based applications. We obtained various
insights from energy and runtime behavior for a commercial
DNN accelerator (Xilinx DPU). Using these insights, we
formulated a DSE strategy and deployed it to explore choice of
FPGA types, DPU sizes, and application accuracy for a driver
assistance system. We obtained 28x reduction in number of
design points to be simulated and 23 X improvement in pruning
time, which nicely scales with higher number of applications.

In future, we plan to develop an energy estimation model
to further reduce the number of simulations.

REFERENCES

[11 K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, “A survey of FPGA-
based neural network inference accelerators,” ACM TRETS, 2019.

[2] S. I. Venieris and C. Bouganis, “f-CNNx: A toolflow for mapping
multiple convolutional neural networks on FPGAs,” in FPL, 2018.

[3] “DPU for CNN v3.0,” 2019. [Online]. Available: https://www.xilinx.
com/support/documentation/ip_documentation/dpu/v3_0/pg338-dpu.pdf

[4] K. Guo et al., “Angel-Eye: A complete design flow for mapping CNN
onto embedded FPGA,” IEEE TCAD, 2018.

[5] J. Peng et al., “Multi-task ADAS system on FPGA,” in AICAS, 2019.

[6] R. Kedia et al., “MAVI: Mobility assistant for visually impaired with
optional use of local and cloud resources,” in VLSID, 2019.

[7] “Xilinx AI Model Zoo,” August 2019. [Online]. Available: https:
//github.com/Xilinx/AI-Model-Zoo

[8] S. Baruah, “Feasibility analysis of preemptive real-time systems upon
heterogeneous multiprocessor platforms,” in RTSS, 2004.

[9]1 H. S. Chwa, J. Seo, J. Lee, and I. Shin, “Optimal real-time scheduling

on two-type heterogeneous multicore platforms,” in RTSS, 2015.

S. Moulik, R. Devaraj, and A. Sarkar, “HEART: A heterogeneous

energy-aware real-time scheduler,” in VLSID, 2019.

W. Quan and A. D. Pimentel, “A hybrid task mapping algorithm for

heterogeneous MPSoCs,” ACM TECS, 2015.

P. van Stralen and A. Pimentel, “Scenario-based design space exploration

of MPSoCs,” in ICCD, 2010.

G. Fiihr et al., “Automatic energy-minimized HW/SW partitioning for

FPGA-accelerated MPSoCs,” IEEE ESL, 2019.

S. Li et al., “System level synthesis of hardware for DSP applications

using pre-characterized function implementations,” in CODES, 2013.

W. Jiang et al., “Accuracy vs. efficiency: Achieving both through FPGA-

implementation aware neural architecture search,” in DAC, 2019.

“Zynq UltraScale+ MPSoC ZCU102 evaluation kit.” [Online]. Available:

https://www.xilinx.com/products/boards-and-kits/ek-ul-zcul02-g.html

[10]
[11]
[12]
[13]
[14]
[15]

[16]

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

https://www.xilinx.com/support/documentation/ip_documentation/dpu/v3_0/pg338-dpu.pdf
https://www.xilinx.com/support/documentation/ip_documentation/dpu/v3_0/pg338-dpu.pdf
https://github.com/Xilinx/AI-Model-Zoo
https://github.com/Xilinx/AI-Model-Zoo
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html

