Practical Attestation for Edge Devices Running Compute Heavy
Machine Learning Applications

Ismi Abidi
ismi.abidi@cse.iitd.ac.in
Indian Institute of Technology Delhi
New Delhi, India

ABSTRACT

Machine Learning (EdgeML) algorithms on edge devices facilitate
safety-critical applications like building security management and
smart city interventions. However, their wired/wireless connec-
tions with the Internet make such platforms vulnerable to attacks
compromising the embedded software. We find that in the prior
works, the issue of regular runtime integrity assessment of the de-
ployed software with negligible EdgeML performance degradation
is still unresolved. In this paper, we present PracAttest, a practi-
cal runtime attestation framework for embedded devices running
compute-heavy EdgeML applications. Unlike the conventional re-
mote attestation schemes that check the entire software in each
attestation event, PracAttest segments the software and random-
izes the integrity check of these segments over short random at-
testation intervals. The segmentation coupled with the random-
ization leads to a novel performance-vs-security trade-off that can
be tuned per the EdgeML application’s performance requirements.
Additionally, we implement three realistic EdgeML benchmarks
for pollution measurement, traffic intersection control, and face
identification, using state-of-the-art neural network and computer
vision algorithms. We specify and verify security properties for
these benchmarks and evaluate the efficacy of PracAttest in attest-
ing the verified software. PracAttest provides 50x-80x speedup over
the state-of-the-art baseline in terms of mean attestation time, with
negligible impact on application performance. We believe that the
novel performance-vs-security trade-off facilitated by PracAttest
will expedite the adoption of runtime attestation on edge platforms.

CCS CONCEPTS

« Computer systems organization — Embedded systems; At-
testation; Security; Performance.

KEYWORDS

Internet of things (IoT); edge devices; machine learning (ML); EdgeML;
security; attestation.

The first author was supported by the Visvesvaraya PhD Scheme, MeitY, Govt. of India,
with awardee number MEITY-PHD-2673.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ACSAC 21, Dec 6-10, 2021, Virtual Event, USA

© 2021 Association for Computing Machinery.

ACM ISBN 9978-1-4503-8579-4/21/12...$15.00
https://doi.org/10.1145/3485832.3485909

Vireshwar Kumar
viresh@cse.iitd.ac.in
Indian Institute of Technology Delhi
New Delhi, India

Rijurekha Sen
riju@cse.iitd.ac.in

Indian Institute of Technology Delhi
New Delhi, India

ACM Reference Format:

Ismi Abidi, Vireshwar Kumar, and Rijurekha Sen. 2021. Practical Attestation
for Edge Devices Running Compute Heavy Machine Learning Applications.
In Annual Computer Security Applications Conference (ACSAC °21), Dec 6—
10, 2021, Virtual Event, USA. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3485832.3485909

1 INTRODUCTION

Extensive efforts have been made to process the collected raw data
locally on the edge devices and to facilitate intelligent functionali-
ties in the modern Internet of things (IoT) networks,. This recent fo-
cus stems from the considerations of reducing the network latency,
saving bandwidth costs of transferring the raw data from the device
to the cloud server, and resolving the privacy issues involved in
sharing the raw data with third-party cloud servers [62]. The recent
advancements in the domain of machine learning (ML) algorithms,
such as compression of deployed models using quantization and
pruning, training model with simpler architectures, and facilitating
publicly available EdgeML libraries, make it possible to effectively
process the collected data at the edge devices [18, 42, 44, 71, 73].
Further, advanced hardware support with specialized embedded
accelerator for fast matrix multiplication, multi-core processors at a
moderate cost, and embedded GPU and FPGA, contribute towards
building powerful edge devices including Raspberry Pi, Hikey, and
Odroid boards [31, 40]. Hence, the IoT devices running EdgeML
applications find their usage in a variety of fields ranging from
personal health monitoring to smart city management [69].
However, when IoT devices become an integral part of our daily
lives, they also become easy targets for attacks that could disrupt
our daily activities. Since these devices are connected to the Internet
through wired or wireless protocols (typically wireless like WiFi,
LoRa, NB-IoT, or Bluetooth for ease of deployment), they are ex-
posed to network-based attacks [51]. An attacker can compromise
the device’s software to perform malicious activities by exploiting
the security vulnerabilities in such protocols. For instance, after
hacking into a wireless pacemaker, the attacker can manipulate the
embedded software to report false heart rate values and prompt the
patient to take/abandon critical medication [27]. Also, if a camera is
deployed to record some sensitive activities, the embedded software
might be compromised by the attacker to leak the recorded data [7].
Further, an attacker can exploit the compromised IoT devices as bots
to launch a distributed denial-of-service (DDoS) attack jeopardizing
the entire IoT ecosystem [5]. Therefore, ensuring regular runtime
software integrity assessment of the IoT devices is of paramount
importance for the security and privacy of the processed data.

https://doi.org/10.1145/3485832.3485909
https://doi.org/10.1145/3485832.3485909
https://doi.org/10.1145/3485832.3485909

ACSAC °21, Dec 6-10, 2021, Virtual Event, USA

One way to address such issues is to employ the hardware-
based trusted execution environment (TEE), such as the ARM Trust-
Zone [55] and Intel SGX [15]. The TEE architecture facilitates two
environments within the same device: (1) the untrusted environ-
ment (or normal world) running the operating system (OS) with
the application software, and (2) the trusted environment (or secure
world) executing functions which cannot be altered by any software
running in the untrusted environment. In this architecture, the at-
testation is carried out in the secure world to validate that the kernel
running in the normal world has not been tampered [1, 2, 19, 20, 35].

In the conventional software attestation (CSA) schemes [49], the
secure world performs the integrity assessment by computing a
cryptographic hash of the current kernel and comparing it with the
pre-stored gold hash of the deployed kernel. We highlight that in
CSA, the integrity check of the entire kernel has to be conducted
in each attestation event. This is because attesting parts of the
software sequentially in different attestation events can leave the
system vulnerable to a roving malware which can switch its location
among the unattested parts of the kernel to avoid detection [4, 11].
Unfortunately, computing the cryptographic hash of the entire
kernel takes millions of clock cycles which can translate into a
significant execution time in a typical IoT device. For instance,
on a Raspberry Pi 3 Model B board running at 1.2 GHz, utilizing
Raspbian OS in the normal world and OPTEE kernel in the secure
world, CSA takes around 2 seconds.

In CSA, if the inter-attestation time (i.e., the time between two
attestation events) is long, the attacker cannot be detected if it
can compromise the kernel, carry out the malicious activities and
remove its trace in between the attestation events [9, 53]. How-
ever, if the inter-attestation time is short, the device cannot find
enough time to run its applications. Specifically, it is impractical
to utilize CSA in the IoT devices running a compute-heavy appli-
cation, e.g., traffic intersection control using continuous real-time
image processing with a deep neural network algorithm. Moreover,
it is impossible to implement CSA for devices running EdgeML
algorithms for safety-critical applications, which cannot be halted.

In this paper, we propose PracAttest, an attestation framework
that employs the TEE architecture to facilitate a novel performance-
vs-security trade-off in IoT devices running extremely compute-
intensive EdgeML workloads (Section 4). In PracAttest, the OS
kernel is divided into short segments. Then, in each runtime attes-
tation event, PracAttest randomly selects one segment and attests
it. It then determines an attestation interval bound based on the
CPU usage of the application. It finally selects the inter-attestation
time randomly between zero and the attestation interval bound.
PracAttest triggers the next attestation event after this random
inter-attestation time.

We point out that the kernel segmentation allows PracAttest
to attest any segment independently and check its integrity. The
application-driven determination of inter-attestation time brings
forth the trade-off between the device security and the applica-
tion performance. Further, the runtime randomization in the inter-
attestation time and in selecting the kernel segment introduces
unpredictability in exactly when the attestation is triggered and
what segment is attested, respectively. It makes it difficult for an
attacker to monitor the attestation events and target the device
during the time windows when the attestation is not happening.

Ismi Abidi, Vireshwar Kumar, and Rijurekha Sen

To evaluate the efficacy of PracAttest, we develop three real-
world EdgeML workloads — PolloT, TrafloT, and FaceloT (Section 5).
PolloT measures air pollution data and correlates pollution with
road traffic using deep neural networks (DNN and LSTM) algo-
rithms on vehicle-mounted low-cost IoT devices. TrafloT utilizes
the background subtraction and optical flow-based computer vision
methods for the traffic density estimation and uses Reinforcement
Learning based intersection control [12]. FaceloT recognizes the hu-
man face in a captured image and matches it against the stored valid
faces of individuals using one DNN for face detection and a second
DNN for face matching. We highlight that the post-deployment
attestation on edge devices is effective only if, before deployment,
the edge computing software is verified according to the privacy,
security, and other specifications. Thus, we also statically analyze
and verify these requirements of the three EdgeML applications us-
ing Java Object-sensitive ANAlysis (JOANA). We show that JOANA
successfully verifies our IoT benchmarks with no false negatives
and a limited number of false positives that are manually vetted.

We demonstrate empirically that the application performance
and security trade-offs are not adequately balanced in CSA and its
trivial extensions in the above mentioned edge computing applica-
tions. The conventional attestation mechanism gives precedence to
the security over the performance of the device, i.e., the integrity of
the software is monitored with the desirable granularity by stalling
the application execution leading to lower application performance.
We also consider an attestation scheme called Shadow-Box [35]
as our baseline. Shadow-Box considers the application’s perfor-
mance at the cost of security. Our results validate that PracAttest
provides 50x-80x speedup in the attestation time compared to this
baseline, achieving the desired security requirements without sig-
nificantly affecting EdgeML application performance (Section 6).
Our EdgeML benchmarks and the PracAttest framework have been
open-sourced for field adoption and further optimizations by the
research community!. Our major contributions are as follows.

e We design and build PracAttest, a novel runtime attesta-
tion framework that triggers the attestation of a randomly
selected segment of the OS kernel at a randomly selected
time. This skillful combination of the kernel segmentation
and randomization enables PracAttest to realize short inter-
attestation time (giving very little opportunity for any soft-
ware tampering to go undetected) without significantly de-
grading the device’s EdgeML application performance.

e We present three real-world EdgeML benchmarks PolloT,

TrafloT, and FaceloT, that use state-of-the-art deep neural

networks (e.g., DNN and LSTM) and other computer vision

algorithms (e.g., background subtraction and optical flow).

Since the post-deployment software attestation is typically

facilitated along with the pre-deployment software verifica-

tion of the security and privacy requirements, we verify our

EdgeML benchmarks for the sake of completeness.

Using the three realistic workloads, we empirically show the

shortcomings in balancing security-vs-performance trade-off

by existing attestation schemes and highlight the advantages
of PracAttest on actual Raspberry Pi as an edge device.

Uhttps://github.com/iabidi/attestation

Practical Attestation for Edge Devices Running Compute Heavy Machine Learning Applications

ACSAC 21, Dec 6-10, 2021, Virtual Event, USA

Table 1: Qualitative comparison of PracAttest with the prior works.

Scheme Security Feature

Security Technique

Suitable for S i
Workload/Application uitable for Securing

Heavy Workloads
Sensing [21, 29, 54, 72] X X Pollution Measurement X.
Deep Learning [47, 58, 73] X X Image, Speech, ECG Classification X
Preech [3] User Input (Speech) Privacy Differential Privacy (DP) Speech Recognition (DNN) X
TrustShadow [34] Protection from Untrusted OS ~ Access Policy+Encryption LMBench [50], Embedded Web Server X
DIAT [19] Control Flow Integrity Control Flow Attestation Flight Controller X
LiteHax [2] Control Flow Integrity Control Flow Attestation Syringe Pump X
Shadow-Box, SMARM, HAtt [4, 11, 35] Malware Detection Remote Kernel Attestation X X
Conventional Software Attestation [49] Malware Detection Remote Kernel Attestation X X

Pollution Measurement (DNN, LSTM or SVM),

PracAttest [This Work] Malware Detection Remote Kernel Attestation Traffic Intersection Control (Computer Vision, v

2 RELATED WORK

In the existing literature, the attestation of control flow, data, or
memory regions have been explored on various embedded plat-
forms like Odroid, RISC-V SoC, and Raspberry Pi [1, 2, 10, 19, 20, 37].
These works focus on providing security to simple applications like
a syringe pump [19] and a flight controller of a drone [2]. Unfor-
tunately, either they do not discuss the attestation time, or their
schemes take a few seconds even for attesting such simple sys-
tems [2, 35]. In this paper, we handle much more compute-intensive
edge workloads and seek to balance the performance-vs-security
trade-off for them. Most papers on sensing [21, 29, 54, 72] or learn-
ing [47, 58, 73] on edge devices ignore device security, and focus
on optimizing the ML performance on the constrained platforms.
Recent attacks, on edge devices, like Mirai, Ransomware, and Tri-
ada malware [5, 27, 32] are compelling researchers to design a
holistic system that guarantees performance as well as privacy and
security. Among such few recent works are OMG [6], Sanctuary
[8], and Preech [3] which seek to balance both the high compute
requirement of the ML/DL algorithms and the privacy/security re-
quirement of the system. In this paper, we extend this recent trend
by evaluating the Conventional Software Attestation (CSA) mecha-
nisms, examining the shortcomings based on real edge computing
workloads, and fixing the shortcomings through careful design of
PracAttest. Table 1 summarises the prior works designed to provide
solutions for IoT application performance, security or both.

3 SYSTEM AND THREAT MODEL

3.1 Threat Model

We let the IoT devices be equipped with a hardware root of trust
(e.g., ARM TrustZone) which cannot be compromised by an at-
tacker without physically accessing the device. We assume that
while the attacker cannot access the deployed devices physically, it
can conduct network-based attacks. The scope of this paper includes
malware-based attacks that manipulate the application or kernel
code. We do not consider dynamic attacks like Return Oriented Pro-
gramming (ROP) or Data Oriented Programming (DOP) attacks, as
demonstrating such attacks in the context of the considered EdgeML
applications is non-trivial in the presence of existing mechanisms
for preserving control and data flow integrity [2, 57, 63].

Reinforcement Learning), Face Analysis (DNN)

3.2 System Architecture

Here, we provide a comprehensive ecosystem for securing IoT de-
vices and point out the specific contribution made in this paper.
Figure 1 presents the secure IoT system architecture. Before deploy-
ing the edge devices in the field, the EdgeML software needs to
be formally verified to give security and privacy guarantees to the
stakeholders. It ensures that IoT developers have not inadvertently
introduced any vulnerability in the EdgeML software during the
device’s software development. This one-time verification compo-
nent is shown in the top box in Figure 1. After deployment, as the
application software starts running in the field, the remote attesta-
tion needs to be executed continuously. It ensures that the verified
software is not manipulated at runtime. This recurring attestation
component comprises of the following three components as shown
in the bottom box in Figure 1.

3.2.1 EdgeML Application Integrity. The application software’s in-
tegrity can be checked by comparing the hash of the source and
executable files with the pre-stored gold hash. For calculating, stor-
ing, and regularly checking these hash values, the Integrity Mea-
surement Architecture (IMA) can be used [39, 60] in the normal
world of the device. IMA is a Linux kernel module that generates
and appraises the hash value of the given files according to the
specified policy. This not only ensures the integrity of the applica-
tion software but also prevents other programs from altering the
output files generated by the application software.

3.22 OS Integrity. While the IMA can monitor the integrity of the
application software in the normal world, the integrity of the IMA
must be checked by recurring attestation of the OS kernel. This
attestation can be executed by the TEE in the secure world. In the
conventional software attestation scheme, the cryptographic hash
of the entire kernel running in the normal world is computed and
then checked in the secure world. Unfortunately, in IoT devices, the
whole kernel cannot be attested without significantly obstructing
the application. In this paper, we propose PracAttest that runs in
the secure world to practically assess the integrity of the OS kernel.
PracAttest provides a framework for appropriate load balancing
between the kernel attestation and EdgeML application execution to
balance the security-vs-performance trade-off. The internal details
of PracAttest are discussed in Section 4.

ACSAC °21, Dec 6-10, 2021, Virtual Event, USA

Ismi Abidi, Vireshwar Kumar, and Rijurekha Sen

& Specifications

Verification

Manually check
and fix alerts

| PRE DEPLOYMENT
APP VERIFICATION

ATTACKER — — — == — = — = =P normal World

10T DEVELOPER Tool
3 o 0
o o= gy §
SERVERS & CLIENTS
< E d = Operating TEE
ncryplle ~ e 0S8 integrity
A a"esft'o" Application 4 check POST DEPLOYMENT
repo 1 | S “PL MED
= integrity check (PracAttest) REMOTE ATTESTATION

Secure World

Figure 1: Comprehensive system architecture for securing IoT devices. The one-time pre-deployment verification of security
requirements is conducted based on the policies specified by the IoT device developers and users (e.g., the EdgeML data servers
and clients). The runtime attestation of the deployed software (running in the normal world) is conducted with the help of
the hardware root of trust (in the secure world). The attacker aims to compromise the software running in the normal world.

Edge devices running ML applications typically use Linux OS,
which has important kernel modules like IMA for application in-
tegrity checks, as mentioned above. The size of Linux is in MBs.
There can be smaller custom OS like Uni-Kernels with smaller at-
tack surface and lesser size than Linux to allow faster attestation.
However, the support for ML frameworks is absent in such custom
kernels [46]. Hence, Linux is still the default OS for practical edge
devices running state-of-the-art EdgeML software (e.g., neural net-
works like DNN and LSTM). PracAttest, therefore, tries to optimize
the Linux kernel attestation time through a careful design.

3.2.3 Attestation Reports. A remote server can request for the
latest kernel attestation results. These results can be encrypted
using a pre-shared secret key stored in the TEE. The query-response
can also be associated with a nonce to ensure the response freshness.
This way, any malware infection in the OS will be detected based
on the encrypted response. If the remote server does not receive
the response because the OS drops the network packets to and from
TEE, it would consider the OS to be compromised.

4 PracAttest DESIGN

In this section, we focus on the problem of attesting the OS kernel
while limiting the impact of the attestation event on the application
performance. To solve this problem, there are two pertinent issues
that need to be resolved by a runtime attestation scheme: (1) how
should the kernel be attested in an attestation event, and (2) when
should the attestation event be carried out or what should be the
inter-attestation time (i.e., the time between two attestation events)?

We note that the conventional software attestation (CSA) scheme
fails to resolve these issues. Figure 2 presents an illustration of the
impact of attestation on an EdgeML application in CSA. In Figure 2,
we observe that in the absence of any attestation scheme, the device
can execute different instances of an EdgeML application. With
CSA, whenever an attestation event is triggered, the entire kernel
is attested consuming significant amount of CPU time. In CSA,
halting the attestation event after partially attesting the kernel is
not possible because this would make the device vulnerable to a
roving malware-based attack [4, 11]. However, since the application

Secure World
Uninterrupted Attestation
Attestation
under CSA
Application Application halted

EdgeML
Application

Normal World

0 2000 4000 6000 8000
Time(ms)

Figure 2: Continuous attestation hampers application in the
Conventional Software Attestation (CSA) scheme.

cannot be executed during the attestation, CSA adversely affects
the performance of the application. This illustration demonstrates
that CSA gives an absolute priority to security over performance.
We believe that this prioritization has been severely hindering the
adoption of runtime attestation in real-world IoT devices.

In this paper, we present a novel attestation framework, PracAt-
test, that regularly performs attestation of the OS kernel of an IoT
device running extremely compute-intensive EdgeML workloads.
In PracAttest, before the deployment of the device, the kernel is
divided into multiple short segments, and the cryptographic hash of
each segment is independently calculated and stored in the secure
memory. This way, the pre-stored gold hash of each kernel segment
provides the flexibility to independently verify the integrity of any
selected segment. After the deployment, when an attestation event
is triggered at runtime, the secure world performs the following.

(1) It takes over the control of the device halting any EdgeML
application running in the normal world.

Practical Attestation for Edge Devices Running Compute Heavy Machine Learning Applications

(2) It randomly selects only one segment among all the kernel
segments, and attests that segment. This addresses the first
open issue of what part of kernel to attest.

(3) It retrieves the last CPU usage sample recorded in the normal
world before the start of the attestation event.

(4) Tt defines an attestation interval bound which is set to be
directly proportional to the value of the CPU usage sample.

(5) It selects the inter-attestation time randomly between zero
and the attestation interval bound. The next attestation event
is triggered after this inter-attestation time. This addresses
the second open issue of when to attest the kernel.

(6) Finally, it grants the control back to the normal world re-
suming any stalled application.

We highlight that in each attestation event, only one kernel seg-
ment is attested. The inter-attestation time is determined based on
the attestation interval bound which in turn is directly proportional
to the CPU usage. This ensures that the inter-attestation time is
small when the CPU usage is low, i.e., the attestation is mostly
performed when the device is not running the EdgeML application.
The randomization of the inter-attestation time and the kernel seg-
ments introduces unpredictability in exactly when the attestation
is triggered and what segment is attested, respectively. This makes
it difficult for an attacker to guess and target specific kern/el seg-
ments of the device during the time windows when the attestation
is not happening. In this way, PracAttest resolves the two afore-
mentioned issues of when and what to attest while enabling an
advantageous coexistence between the attestation and application
execution. Below, we elaborate on the design choices undertaken
in the runtime mechanisms of PracAttest. The notations utilized in
this paper are presented in Table 2.

Table 2: Notation utilized for the parameters in PracAttest.

Notation Description
n Number of kernel segments
k Number of malignant segments
1 Number of segments selected for attestation
Pr Probability of failure to detect malware
Ty Duration of an instance of the application
Tm Maximum attestation interval for the device
é Design parameter affecting the application
Te Duration of an attestation event
ty Attestation interval bound
ta Inter-attestation time

4.1 Selecting Kernel Segment

In PracAttest, the OS kernel is not attested at once but rather in
segments. During an attestation event, the cryptographic hash of
a randomly selected segment is matched with the corresponding
gold hash. If an adversary makes any change in the selected kernel
segment, the attestation fails, and the attack is detected. Let the
time taken in each attestation event be denoted by T,. We note
that the value of the duration of one attestation event T, can be
determined experimentally for an IoT device and is agnostic to the
application.

ACSAC 21, Dec 6-10, 2021, Virtual Event, USA

During multiple attestation events spread over time, PracAttest
is able to randomly select and attest multiple kernel segments. This
decreases the impact of attestation on the application performance,
but it also decreases the system security, i.e., the ability to detect
any malignant kernel segments. To analyze the impact of PracAttest
on security, we provide the following probabilistic guarantee. Let
the kernel memory be divided into n equal segments. Also, let
there be k malignant segments. Over a time period, PracAttest runs
I attestation events in which it randomly selects | segments for
the attestation. Out of these I segments, PracAttest fails to detect
the attack, i.e., the intrusion by malware, if it does not detect any
malignant segment. Let the probability of failure of PracAttest in
detecting the attack be denoted by P¢. Now we consider two types
of malware: roving and non-roving malware.

4.1.1 Roving Malware. A roving malware can first infect a kernel
segment, carry out malicious actions, move to another segment,
and restore the previous segment to its benign state. By utilizing
the capability of moving among the kernel segments stealthily, the
malware can attempt to avoid detection by PracAttest. In this case,
the probability of failure can be expressed as:

1
n—k
Pr= . 1
' (") 1)
4.1.2 Non-Roving Malware. A malware that remains static in in-
fected segments, and does not move between two kernel segments

is called a non-roving malware. In this case, the probability of the
failure of PracAttest in detecting the malware can be expressed as:

("7 _ =01

Pr= @ " a-k-Dlal

It is clear from both the above equations that as the number of
selected segments [increases or the number of malignant segments
k increases, the probability of failure Py decreases.

()

4.2 Determining Inter-Attestation Time

A typical EdgeML application performs real-time sensing, makes
certain computations, stores the relevant data, and finally commu-
nicates its decisions to the concerned entities. This sense-compute-
store-communicate cycle can either be periodic or event-driven
based on the nature of the application. In a periodic EdgeML ap-
plication, typically, there exists a sleep instruction to control the
data processing frequency and avoid device throttling. On the other
hand, in an event-driven EdgeML application, the CPU is usually
not busy before and after the event. PracAttest performs a fine-
grained CPU usage sampling to record such patterns to find the
appropriate low CPU usage windows to attest the kernel segments.
PracAttest needs to halt the application and switch to the secure
world to attest the kernel segment. Hence, to limit the impact on the
application, the time for the attestation and the time for retrieving
the CPU usage samples must be selected skillfully. To address this
challenge systematically, PracAttest proceeds as follows.

4.2.1 Setting Maximum Attestation Interval. PracAttest selects the
inter-attestation time randomly between zero and an attestation
interval bound. The maximum attestation interval, denoted by T,
is defined as the attestation interval bound when the CPU usage is

ACSAC °21, Dec 6-10, 2021, Virtual Event, USA

detected to be 100%. Let the mean inference time of an instance of
the application’s EdgeML algorithm running without any interrup-
tion be denoted by T;. The time T; can be observed experimentally
by running the application. Then, the maximum attestation interval
is selected based on this mean inference time such that Tp,, = § - Ty.
Here, 6 is a design parameter such that 0 < § < 1. This design
ensures that at least one attestation event is triggered during each
instance of the application, but the extension in the application’s
mean inference time due to the attestation remains limited.

4.2.2 CPU Usage Sampling. The CPU usage sampling allows Pra-
cAttest to attest the kernel by following the execution profile of
the application. This way, when the application is not running,
PracAttest can aggressively attest the kernel segments. When the
application is being executed, it halts the application only briefly.
Due to the architectural limitations, the processor can be either
in the normal world or in the secure world. Since the application
runs in the normal world and the CPU usage of the application can
only be recorded when the application is running, the sampling
is performed in the normal world (as shown in Figure 3). In Pra-
cAttest, the CPU usage samples are collected in the normal world
through by an application and then retrieved by the secure world
to determine the inter-attestation time.

Secure World

Sloy Attestation Faster Attestation
Attestation

et 52528 | 10

ncter pravmetect | IR0 OO A
Low CPU Usage High CPU Usage
Application

with pracattest] (MM WNIL SRR AU
EdgeML
apiicaton] HH TN N R

Normal World

0 2000 4000 6000 8000
Time(ms)

Figure 3: Flexible coexistence of attestation and application
in PracAttest (the spaces represent the CPU idle time, the
red lines represent the application execution time, the pur-
ple lines represent the kernel attestation time, and the green
lines represent the CPU usage sampling time)

4.2.3 Determining Attestation Interval Bound. The attestation in-
terval bound, denoted by ¢, is determined based on the retrieved
CPU usage sample such that t;, = uc - T,, where the retrieved
CPU usage sample is denoted by u,. This relationship ensures that
the inter-attestation time is linearly dependent on the CPU usage
values. This also ensures that if the CPU usage is high, a large
attestation interval bound is selected. Similarly, if the CPU usage is
low, a small attestation interval bound is selected.

Ismi Abidi, Vireshwar Kumar, and Rijurekha Sen

4.2.4 Randomizing Inter-Attestation Time. We point out that deter-
mining the inter-attestation time using only the CPU usage value
brings forth a critical security vulnerability. In this case, since the at-
tacker can also track the CPU usage of the device, it can easily guess
the inter-attestation time. To exploit this vulnerability, the attacker
can execute the modified software right after an attestation event
when the application is supposed to execute. To avoid detection, it
can bring back the benign state of the software right before the next
attestation event. To prevent such an attack, PracAttest also uses a
pseudo-random number generator along with the CPU usage sam-
pling to determine the inter-attestation time. The inter-attestation
time, denoted by t,, is selected randomly from the uniform dis-
tribution between zero and the attestation interval bound t;. As
seen from Figure 3, when the CPU usage is low, faster attestation
takes place (denser purple lines), as small ¢, is selected. We note
that this randomness in inter-attestation time is bounded by the
maximum attestation interval T,,,. The random inter-attestation
time mitigates the predictability of the attestation. Hence, even if
the adversary obtains the CPU usage pattern or tweaks the CPU
usage, the inter-attestation time remains unpredictable.

5 VERIFIED EDGEML BENCHMARKS

To assess the impact of attestation on edge computing applications,
we need real-world workloads that can run on edge devices. These
workloads will help us evaluate the efficacy of state-of-the-art attes-
tation mechanisms, and then evaluate PracAttest’s advantages over
such baselines. Here, we describe three such workloads and discuss
verification of some desirable properties of these applications.

5.1 Benchmark Applications

5.1.1 PolloT: Air Pollution Measurement. Our first benchmark Po-
IIoT measures the level of air pollution using vehicle-mounted
low-cost IoT devices. In PolloT, each edge device is equipped with
multiple sensors to sample the relevant data, which is then pro-
cessed locally at the device to avoid any overhead related to the
wireless transmission of the data to the back-end servers. The de-
vice consists of five sensors: (1) particulate matter (PM) sensor to
record the level of air pollution, (2) Global Positioning System (GPS)
sensor to tag the PM value with the device’s location, (3) tempera-
ture and humidity sensor (BME) to rectify the PM values, (4) inertial
measurement unit (IMU) to detect any jerky movement leading to
a noisy PM value, and (5) camera to take pictures of traffic in the
device’s vicinity to correlate the PM value with the vehicle counts.
We keep the IMU sampling frequency at 50 Hz, based on literature
review [41, 48, 61, 68]. All other sensors work at 0.5 Hz.

The device performs two heavy data processing tasks: (1) Deep
Neural Network (DNN) based image processing for counting the
number of vehicles and identifying the type of vehicles, and (2) Sup-
port Vector Machine (SVM) based analysis of the IMU data for
tracking vehicle’s movements including braking, turning and over-
speeding. Overall, the IoT device runs four concurrent threads,
which are shown in Table 3. As a result of this concurrency, the
device records one PM value, one GPS value, one BME value, one
DNN-based image inference result, and one SVM-based IMU infer-
ence result every two seconds. Figure 4a presents the CPU usage
of the device running PolloT.

Practical Attestation for Edge Devices Running Compute Heavy Machine Learning Applications

ACSAC 21, Dec 6-10, 2021, Virtual Event, USA

-]
(=]
-]
o

N
(=]

CPU usage per core (%)
3

CPU usage per core (%)
N B
o o

o
=)

=)
>

CPU usage per core (%)
[-
> >

>

0 2 4 6 8 10 12 0
Time (s)

(a) Air pollution measurement (PolloT)

5 6 0 10 20 30 40 50 60

3 a
Time (s) Time(s)
(b) Traffic signal control (TrafIoT)

(c) Event-driven face identification (FaceloT)

Figure 4: CPU usage profile for the EdgeML benchmarks.

Table 3: Concurrent threads running in PolloT.

1. Read PM on UART, GPS on UART, BME on 12C, write to SD card
2. Read image from camera, run DNN, write to SD card
3. Read IMU on I2C, run SVM, write to SD card

4. Read inferences from SD card, communicate to back-end server

5.1.2 TrafloT: Traffic Signal Control. We further present another
edge computing application, called TrafloT, a road traffic density
estimation-based traffic intersection control system [12]. To decide
whether to keep/change the signal light, TrafloT employs two met-
rics: (1) queue density corresponding to both static and moving
vehicles, and (2) dynamic density corresponding to only moving
vehicles. The queue density rises when the signal turns red and falls
when the signal turns green. On the contrary, the dynamic density
falls when the signal turns red and rises when the signal turns
green. TrafloT processes traffic images at five frames per second
(FPS) and takes a signal control decision every 5 seconds (25 frames).
To extract the information about the vehicles, TrafloT subtracts the
current image from a background mask. The background mask is
periodically updated to handle changing lighting conditions. Fur-
ther, an optical flow algorithm is used to detect changing pixels
(moving vehicles) between consecutive images. These computer
vision based inputs are fed into a Reinforcement Learning (RL)
based signal control agent [12], which decides whether to keep or
switch the current green signal. Figure 4b presents the CPU usage
while running TrafloT.

5.1.3 FaceloT: Face Identification. We also design an edge comput-
ing application, FaceloT, which captures and processes an image for
identity verification. In FaceloT, a passive infrared (PIR) sensor is
triggered when a person enters a building. It then awakes the secu-
rity camera to take a picture. The captured image is then processed
to identify the face in the image using a DNN-based face detector.
Once the face is detected, the face pixels are passed as an input to
a DNN-based face classifier. The image classifier first classifies the
face into a known or unknown face. If the face is known, it will
record the person’s details in the database, such as name and time
of entry. However, if the face is unknown, it will raise an alert. We

use FaceloT as a representative event-driven EdgeML application.
Figure 4c presents the CPU usage when running FaceloT.

5.2 Benchmark Verification

Runtime attestation of these benchmarks after the field deployment
uses the three components: (a) EdgeML application integrity check,
(b) OS integrity check, and (c) attestation report communication
to the remote server, as shown in the lower rectangle of Figure 1.
But before deploying them in the field, the EdgeML benchmark
software applications need to be verified based on the security and
privacy specifications (top rectangle in Figure 1). We describe this
verification procedure for our EdgeML benchmarks next, focusing
on PolloT, which has the camera along with other sensors and
corresponding software. TrafloT and FaceloT comprise only the
camera and related software, and therefore have security-privacy
specifications as a subset of PolloT security-privacy specifications.

5.2.1 Specification of Desired Properties. We assume that the IoT
developers who build the hardware and software for the different
applications (e.g., the traffic signal control or face biometric-based
access control) and the deployment partners (e.g., the urban traffic
control authority or security personnel for office buildings) will
work in close collaboration for specifying the desired properties
for these benchmark applications. We describe a sample of three
desirable properties in the context of our benchmarks.

Data Privacy: TThe camera captures the faces of individuals with
or without their consent. Additionally, the accelerometer, gyroscope,
and GPS data are captured in PolloT, using which sensitive infor-
mation about the vehicle can be inferred. The collected data from
IoT devices should assuredly go to only the dedicated server. There
could be personal privacy concerns if face images get leaked in
FaceloT or public reputation-related concerns if the vehicle deploy-
ing PolloT drives rashly (detected by GPS or IMU data in PolloT).
We must validate that the deployed software does not violate such
privacy requirements.

Non-Interference: The PolloT application has some specific non-
interference requirements, as articulated by its users, e.g., environ-
mentalists. Most policy debates related to air quality control are
highly contentious. For instance, whether the urbanization should
happen at the expense of the green cover [26, 65, 66], whether pol-
luting industries should be shut down causing unemployment [16,

ACSAC °21, Dec 6-10, 2021, Virtual Event, USA

28, 38], whether farmers should incur economic losses to dispose
of crop residues using non-polluting means [22, 23, 56], or whether
on-road private vehicles should be reduced causing commuter hard-
ships [24, 36, 64]. In this context, guaranteeing that the PolloT
software does not favor particular sides in a policy debate is nec-
essary. For instance, the software should not deliberately reduce
the PM values when the GPS value indicates that the device is near
favored industries while boosting the PM values near industries tar-
geted for shutdown. Ensuring non-interference across the sensors’
data in the software is therefore needed.

Software Vulnerability Check: Our EdgeML benchmarks are
safety-critical in nature, whether it is signal control at intersec-
tions (TrafloT) or intrusion detection in buildings (FaceloT). Data
or code integrity violations or malware attacks on the system run-
ning these applications can lead to safety hazards. Therefore, it is
important to check for the presence of known vulnerabilities in
the software [27, 32, 70]. As there are many existing tools [13, 14]
for checking software vulnerabilities like buffer overflow/under-
flow or string formatting, we do not discuss these specifications in
detail. We instead focus on the data privacy and non-interference re-
quirements, which need some analysis using off-the-shelf software
verification tools.

5.2.2 Verification of Privacy and Non-Interference Properties. We
employ the static information flow analysis which is a standard
method for software verification [59]. Typically, the information
flow control (IFC) is modeled in a system by defining the start point
of the information flow in a program as the source and the end point
as the sink. There are several methods to define information flow
policies. One method is to label the data, variables and expressions
in the program with security levels. These levels are then modelled
as a lattice [17]. The lattice provides a way to check flows among
different variables of the program, flagging all flows between higher
to lower security levels as forbidden.

Data Privacy: To model this property, we select a lattice with two
levels {low, high} representing the low and high privacy require-
ments, respectively. We define that the information labeled as low
is only allowed to flow into the information labeled as high, and not
vice versa. This lattice is used to classify the sources and sinks in
our software into the two privacy levels. Specifically, the data and
the deployment partner’s server URL are considered as the source
and sink, and labeled with low and high privacy level, respectively.
Non-Interference: To model the non-interference property, we
employ the aforementioned lattice-based information flow verifica-
tion. Here, we demonstrate it in the context of the PolloT applica-
tion. We model the lattice as shown in Figure 5. In the figure, each
sensor datatype is given a separate label. The information labeled
as trusted is only allowed to flow into the information labeled as
GPS and server, and not vice versa. Similarly, for all other sensors,
the information can flow from trusted to any of the sensor label
and the server label. Any flow between two sensor labels is ille-
gal. For example, setting of the PM value based on the GPS value
would lead to an illegal flow between the PM and GPS in the re-
sultant dependence graph. To check these types of illegal flows, a
non-interference IFC policy is defined such that one sensor node is
considered as a source and other as a sink, and vice-versa.

Ismi Abidi, Vireshwar Kumar, and Rijurekha Sen

server=T

PM GPS BME IMU camera

trusted=_L

Figure 5: Lattice for PolloT non-interference requirements
(any information flow between sensor nodes is considered
illegal).

Among various tools that we explored [25, 45, 52], JOANA is
the one that works directly on Java bytecode. Hence, it is conve-
nient to use for large external software libraries that are needed to
implement realistic EdgeML applications. JOANA can verify both
sequential as well as multi-threaded programs. It is one of the sound
open-source verification tools available and requires few annota-
tions. The above-mentioned properties make it a good choice for
our verification requirements. The application executable is pro-
vided as the input to JOANA, where the IFC policies are specified.
JOANA then raises alerts based on all violations of the IFC poli-
cies it finds in the executable. The developer has to iteratively go
through these alerts and fix them unless they are false positives
(vetted in collaboration with the respective stakeholders). When all
true positive alerts are fixed, the executable is copied to the edge
devices for deployment. As shown in Appendix A for the sample
case of PolloT application, JOANA correctly catches all data privacy
and non-interference violations at very low and manually verifiable
false positive rates.

6 EVALUATION

In this section, we will evaluate our post-deployment recurring
attestation mechanism for compute-heavy EdgeML workloads.

6.1 Experimental Setup

The experiments are performed on Raspberry Pi 3B board with quad-
core ARM Cortex A53 processors @1.2 GHz and 1 GB RAM. The
Linux OS attestation scheme, PracAttest, is implemented using the
virtualization. We run Raspbian Linux OS in the normal world and
OPTEE kernel in the secure world [67]. The Linux IMA is configured
to check the application integrity. PolloT and FaceloT benchmarks
are implemented using OpenCV DNN APIs, and TrafloT benchmark
utilizes the OpenCV Computer Vision Library APIs. The C++ APIs,
called with Java wrapper applications, are utilized for enabling soft-
ware verification with JOANA on the Java bytecodes. The verified
EdgeML software runs in the normal world Linux, while OPTEE
in the secure world runs PracAttest to ensure Linux integrity. To
realize PracAttest, the Linux kernel of size around 8.5 MB is divided
into 2130 segments each of size 4 KB.

Practical Attestation for Edge Devices Running Compute Heavy Machine Learning Applications

e.’ 10—4.

g

> 10—14.

E

“6 10—24.

510_34_ —-- k/n=0.05%
ElO““‘- === k/n=0.5%
3 — k/n=1.0%
o

0 20 40 60 80 100
Percent of segments selected for attestation (//n)

Figure 6: Ratio of segments selected for attestation and total
segments (n = 2130) vs. Py for a non-roving malware.

6.2 Evaluation Metrics

As our goal is to balance the performance-vs-security trade-off
in EdgeML applications, we need to define metrics for both per-
formance and security. ML application performance is typically
measured by the inference latency, i.e., how much time each ML
inference takes. The lower this number, the more performant is an
EdgeML application. In our experiments, we run our benchmarks
continuously for 15 minutes and report the mean inference times
and their standard deviations (SD) as the metrics of performance.

Next, we define our security metric. Let PracAttest take T}, time to
attest [segments. The probability of detecting at least one infected
segment among the [segments is 1 — Py. Then the expected or
mean attestation time, denoted by Ty, is calculated as

Tp = Tp(1— Py) +2T,Pp(1 - Py) + 3TPPJ%(1 -Pp)+.. (3)
=T,/(1-Pf) 4

The first term in Equation 3 refers to the case when the malware
is detected within the first [segments (with probability 1 — Py)
while the time to attest is T. The second term refers to the case
when malware is not detected within the first [segments (with
probability Py), but detected in second / segments (with probability
1 - Py) while the overall attestation time is 2Tp. The other terms
in the equation can be inferred using a similar logic. We use this
mean attestation time as our security metric. The lower the mean
attestation time, the earlier the malware is detected, making the
system more secure.

6.3 Number of Kernel Segments To Be Attested

PracAttest does not attest all kernel segments sequentially. Instead,
it uses kernel segment randomization. Therefore it is important
to evaluate how many kernel segments need to be attested for a
desired low probability of failure Py. Figure 6 shows the percentage
of randomly selected kernel segments [/n along the x-axis vs. the
probability of failure P to detect the malignant segments along the
y-axis. The curves in this figure are plotted for non-roving malware
using Equation 2. The trend shows that even if the number of
infected kernel segments is only one, i.e., k/n = 0.05%, there is a
very low probability of missing the malware. In this case, if we
attest at least 75% segments, the malware will be detected with the
probability of 0.9. As the number of infected segments increases,

ACSAC 21, Dec 6-10, 2021, Virtual Event, USA

P Ty Ty p—— N -
- -1
3 10
=]
= -3 |
5 10 ~ee_
NN
51051 ~.
2 —-- k/n=0.05%
= 1077
5 —-=- k/n=0.5%
S 1079 — kin=1.0%
o

0 20 40 60 80 100
Percent of segments selected for attestation (//n)

Figure 7: Ratio of segments selected for attestation and total
segments (n = 2130) vs. P for a roving malware.

the malware can be detected with fewer attestation of segments at
a much higher probability. For instance, if the malware has infected
around 21 kernel segments, i.e., k/n = 1.0%, our system requires
attestation of around 50% segments to ensure that it will fail to
detect the malware only once in 10° runs. Figure 7 shows the same
plots for the roving malware using Equation 1. Compared to the
non-roving malware, this needs more kernel segments to be attested
to detect the malware for the same k and Pf. For instance, when
k/n = 0.5% and I/n = 75.5%, the probability of detecting a non-
roving malware is 1 — 1078 while the probability of detecting a
roving malware is slightly lower at 1 — 5 - 1074,

6.4 Inter-Attestation Time Distribution

In addition to choosing random kernel segments to attest, an im-
portant design choice for PracAttest is when to perform attestation,
i.e., selecting appropriate inter-attestation time t,. Figure 8 shows
cumulative distribution functions (CDFs) of ¢, values in msecs, as
observed in experimental runs of the three benchmark applications.
Recall that Ty, is set by the IoT developer based on the EdgeML
application’s mean inference time by selecting the value of the
parameter . In our experiments, we choose § = 0.1, i.e., T, is set
to be 10% of the EdgeML application’s mean inference time — 100
msecs for PolloT, 50 msecs for TrafloT and 150 msecs for FaceloT.
Recall that PracAttest samples the CPU usage to be u.% where
0 < uc < 100. Equipped with inter-attestation time randomization,
it randomly chooses t, between 0 and u.% of T,,. The dotted lines
in Figure 8 show the CDFs of these t, values. To highlight the
significance of time randomization, we also consider a scheme
where PracAttest is utilized without the time randomization, i.e.,
PracAttest chooses t; as u:% of the maximum attestation interval
Tin. The solid lines in Figure 8 show the CDFs of these ¢, values.
Thus, compared to the solid curves, which have a step-like function
for discrete CPU usage levels u., the dotted curves are smoother
and have a higher proportion of smaller t, values. The smoothness
should make it more difficult for the attacker to guess the exact
attestation time, and the smaller ¢, values should help in reducing
mean attestation time. We see the overall effect of these design
choices on the performance-security metric trade-off next.

ACSAC °21, Dec 6-10, 2021, Virtual Event, USA

—— PolloT (CPU sampling)

0.2 PolloT (Inter-attestation 0.2
time randomization)

0.0 0.0

0 20 40 60 80 100
Inter-attestation time (ms)

(a) PolloT

—— TrafloT (CPU sampling)
TrafloT (Inter-attestation

time randomization)

0 20

40
Inter-attestation time (ms)

60

(b) TrafloT

0.2
0.0

Ismi Abidi, Vireshwar Kumar, and Rijurekha Sen

—— FaceloT (CPU sampling)

FaceloT (Inter-attestation
time randomization)

0 50 100
Inter-attestation time (ms)

150

(c) FaceloT

Figure 8: CDF plots of inter-attestation time in different EdgeML benchmarks.

Table 4: Mean kernel attestation and inference time comparison.

Attestation Scheme Mean Attestation Time/SD (s) || Mean Inference Time/SD (s) Malware
PolloT | TrafloT | FaceloT PolloT | TrafloT | FaceloT || Detection Rate
No Attestation - - - 0.9 0.53 1.36 0
Conventional Software Attestation [49] 2 2 2 - - - 1
Shadow-Box [35] 701/147 947/120 18.9/2 1.04/0.3 0.58/0.1 1.45/0.2 1
against Non-Roving Malware
PracAttest without Time and Segment Randomization 35.2/1.8 | 29.7/1.4 43.6/1.8 0.96/0.2 | 0.54/0.1 1.39/0.1 0
against Roving Malware (k/n = 0.5%,1/n = 100%)
PracAttest without Segment Randomization 19.1/1.9 | 16.2/1.0 20.4/1.4 0.95/0.2 | 0.54/0.1 1.39/0.2 0
against Roving Malware (k/n = 0.5%,1/n = 100%)
PracAttest 14.3/2 12.2/0.8 15.4/1.1 0.95/0.2 | 0.54/0.1 1.4/0.2 1-5-107%
against Roving Malware (k/n = 0.5%,1/n = 75.5%)
PracAttest 14.3/2 12.2/0.8 15.4/1.1 0.95/0.2 0.54/0.1 1.4/0.2 1-1078
against Non-Roving Malware (k/n = 0.5%,1/n = 75.5%)

6.5 PracAttest Performance-Security Trade-off

Table 4 shows the security and performance metrics for the three
benchmark applications in different attestation schemes, including
Conventional Software Attestation (CSA) [49], Shadow-Box [35]
and PracAttest. In CSA, the entire kernel is attested in each at-
testation event. While only one gold hash (of length 256 bits) of
the entire kernel is needed in CSA, PracAttest must use 66 KB of
secure memory to store the gold hash values corresponding to 2130
kernel segments. PracAttest achieves advantage of application per-
formance at the cost of a mild increase in secure memory usage
and attestation time. We also consider Shadow-Box as a reasonable
baseline that considers the application performance at the cost of
security. Shadow-Box samples CPU usage every second and cate-
gorizes the measured CPU usage to three different levels: 0 — 30%,
31 — 70% and 71% — 100%. Then, the inter-attestation time is se-
lected as 5 msec, 500 msec, and 2 sec corresponding to the three
levels, respectively. In a periodic application like PolloT and TrafloT,
sampling every second means that the sample will fall in the high
CPU usage value with high probability before hitting a low CPU
usage value. This coarse-grained CPU usage monitoring misses low
CPU usage windows quite frequently. Hence, the inter-attestation
times remain high, giving a high mean attestation time. Most im-
portantly, interrupting the attestation to sample the CPU usage
makes Shadow-Box vulnerable to the roving malware.

10

PracAttest significantly improves the mean attestation times of
periodic applications such as PolloT and TrafloT. In Table 4, we
also observe the impact of the successive design choices utilized in
PracAttest. For instance, we consider PracAttest without the time
and segment randomization while using the inter-attestation time ¢,
proportional to the CPU usage with a bound T;, on maximum values
based on application. This scheme gives 20x and 33x improvement
over Shadow-Box in terms of the mean attestation time for PolloT
and TrafloT, respectively. We also consider PracAttest without
segment randomization while randomizing the inter-attestation
time. This scheme gives 37x-59x improvement over Shadow-Box.
Finally, we observe that PracAttest gives 50x-80x improvement,
with a very high probability of catching the malware. While Table 4
gives the value of the selected metrics for a particular value of I/n
in segment randomization, Figure 9 shows how mean attestation
time grows with [/n for a roving malware.

The event-driven application, FaceloT, has plenty of idle win-
dows, as shown in Figure 4(c), which can be utilized for aggressive
kernel attestation. Therefore, Shadowbox and PracAttest have the
same order of mean attestation times for FaceloT. PracAttest’s se-
curity advantages are thus more pronounced when the EdgeML
application is compute-heavy, with small idle windows as in PolloT
and TrafloT.

We also note that PracAttest slightly improves the mean in-
ference time compared to Shadow-Box for all three benchmark

Practical Attestation for Edge Devices Running Compute Heavy Machine Learning Applications

-
% 291 — PolloT =
S —_
< 15 TrafloT P
c === FaceloT Kt
L2 -~
-
£ 10
n
i)
© 51
c
©
0 20 40 60 80 100

Percent of segments selected for attestation (//n)

Figure 9: Mean attestation time for varying ratio of random
segments and total segments (n = 2130) required for hashing
to achieve a fixed Py (~ 0).

applications. Thus the tremendous security benefits (in terms of
the mean attestation time) do not come at a cost to application
performance (in terms of the mean inference time), but on the
contrary, application performance also improves from choosing
carefully when to attest. We point out that the slight increase in the
inference latencies are well within our benchmarks’ requirements,
as seen from the first row in Table 4, where only the applications
are run without any attestation mechanism in place.

7 CONCLUSION AND FUTURE WORK

In this paper, we propose PracAttest, a practical OS kernel attes-
tation scheme for edge devices running compute-heavy EdgeML
applications. Unlike the conventional software attestation scheme,
which provides security at the cost of the application performance,
PracAttest brings forth an advantageous security-vs-performance
trade-off. We also present three EdgeML benchmarks and verify
their data privacy and non-interference requirements with zero
false negatives and acceptable false positives. Through these bench-
marks, we demonstrate that our attestation tool, PracAttest, gives
50x-80x improved runtime for kernel attestation over state-of-the-
art baseline, at negligible overhead on the ML application perfor-
mance. With edge devices becoming an integral part of our lives,
our practical immediately deployable attestation mechanism, Pra-
cAttest, can play an important role in securing ML at the edge.

In the future, we plan to explore the dynamic attack scenarios
where attesting the static code (as done in this paper) does not
suffice [2, 57, 63]. Such attacks could potentially be detected by
monitoring the control flow path, when an EdgeML application
runs. However, it is impractical to continuously explore and an-
alyze all valid control paths in the secure memory of the edge
device. For detecting such attacks, we plan to examine the poten-
tial of a PracAttest-like mechanism involving random selection
and inspection of control flow paths. The design of such a secu-
rity mechanism will again focus on minimizing the impact on the
EdgeML application’s performance. Another promising extension
of our work is to investigate the feasibility of further minimizing the
computational overhead of the remote attestation for very low-end
resource-constrained IoT platforms, e.g., wearables.

11

ACSAC 21, Dec 6-10, 2021, Virtual Event, USA

REFERENCES

[1] Tigist Abera, N Asokan, Lucas Davi, Jan-Erik Ekberg, Thomas Nyman, Andrew
Paverd, Ahmad-Reza Sadeghi, and Gene Tsudik. 2016. C-FLAT: control-flow
attestation for embedded systems software. In Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security. 743-754.

[2] Tigist Abera, Raad Bahmani, Ferdinand Brasser, Ahmad Ibrahim, Ahmad-Reza
Sadeghi, and Matthias Schunter. 2019. DIAT: Data Integrity Attestation for
Resilient Collaboration of Autonomous Systems. In NDSS.

[3] Shimaa Ahmed, Amrita Roy Chowdhury, Kassem Fawaz, and Parmesh Ra-
manathan. 2020. Preech: A system for privacy-preserving speech transcription.
In 29th {USENIX} Security Symposium ({USENIX} Security 20). 2703-2720.

[4] Muhammad Naveed Aman, Mohamed Haroon Basheer, Siddhant Dash, Jun Wen
Wong, Jia Xu, Hoon Wei Lim, and Biplab Sikdar. 2020. HAtt: Hybrid remote
attestation for the Internet of Things with high availability. IEEE Internet of
Things Journal 7, 8 (2020), 7220-7233.

[5] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein,
Jaime Cochran, Zakir Durumeric,] Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, et al. 2017. Understanding the mirai botnet. In 26th { USENIX} security
symposium ({USENIX} Security 17). 1093-1110.

[6] Sebastian P Bayerl, Tommaso Frassetto, Patrick Jauernig, Korbinian Riedhammer,
Ahmad-Reza Sadeghi, Thomas Schneider, Emmanuel Stapf, and Christian Weinert.
2020. Offline model guard: Secure and private ML on mobile devices. In 2020
Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 460—
465.

[7] Bloomberg. 2021. Retrieved Jun 1, 2021 from https://www.bloomberg.com/
news/articles/2021-03-09/hackers-expose- tesla-jails-in-breach-of- 150-000-
security-cams

[8] Ferdinand Brasser, David Gens, Patrick Jauernig, Ahmad-Reza Sadeghi, and
Emmanuel Stapf. 2019. SANCTUARY: ARMing TrustZone with User-space
Enclaves.. In NDSS.

[9] Sergey Bratus, Nihal D’Cunha, Evan Sparks, and Sean W Smith. 2008. TOCTOU,

traps, and trusted computing. In International Conference on Trusted Computing.

14-32.

Xavier Carpent, Karim Eldefrawy, Norrathep Rattanavipanon, Ahmad-Reza

Sadeghi, and Gene Tsudik. 2018. Reconciling remote attestation and safety-

critical operation on simple IoT devices. In 2018 55th ACM/ESDA/IEEE Design

Automation Conference (DAC). IEEE, 1-6.

Xavier Carpent, Norrathep Rattanavipanon, and Gene Tsudik. 2018. Remote

attestation of IoT devices via SMARM: Shuffled measurements against roving

malware. In 2018 IEEE International Symposium on Hardware Oriented Security
and Trust (HOST). 9-16. https://doi.org/10.1109/HST.2018.8383885

Sachin Chauhan, Kashish Bansal, and Rijurekha Sen. 2020. EcoLight: Intersection

Control in Developing Regions Under Extreme Budget and Network Constraints.

Advances in Neural Information Processing Systems 33 (2020).

Edmund Clarke, Daniel Kroening, and Flavio Lerda. 2004. A Tool for Checking

ANSI-C Programs. In Tools and Algorithms for the Construction and Analysis of

Systems (TACAS 2004) (Lecture Notes in Computer Science, Vol. 2988), Kurt Jensen

and Andreas Podelski (Eds.). Springer, 168-176.

Lucas Cordeiro, Pascal Kesseli, Daniel Kroening, Peter Schrammel, and Marek

Trtik. 2018. JBMC: A Bounded Model Checking Tool for Verifying Java Bytecode.

In 30th International Conference on Computer Aided Verification.

Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptol.

ePrint Arch. 2016, 86 (2016), 1-118.

Nandini Dasgupta. 2015. Tall Blunder. Retrieved Apr 12, 2019 from https:

//www.downtoearth.org.in/coverage/tall-blunder-22419

Dorothy E Denning. 1976. A lattice model of secure information flow. Commun.

ACM 19, 5 (1976), 236-243.

Don Kurian Dennis, Yash Gaurkar, Sridhar Gopinath, Chirag Gupta, Moksh Jain,

Ashish Kumar, Aditya Kusupati, Chris Lovett, Shishir G Patil, and Harsha Vard-

han Simhadri. 2020. EdgeML: Machine Learning for resource-constrained edge

devices. URL https://github.com/Microsoft/EdgeML (2020).

Ghada Dessouky, Tigist Abera, Ahmad Ibrahim, and Ahmad-Reza Sadeghi. 2018.

Litehax: lightweight hardware-assisted attestation of program execution. In

IEEE/ACM International Conference on Computer-Aided Design (ICCAD). 1-8.

Ghada Dessouky, Shaza Zeitouni, Thomas Nyman, Andrew Paverd, Lucas Davi,

Patrick Koeberl, N Asokan, and Ahmad-Reza Sadeghi. 2017. Lo-fat: Low-overhead

control flow attestation in hardware. In Proceedings of the 54th Annual Design

Automation Conference. ACM, 24.

Jian Ding and Ranveer Chandra. 2019. Towards low cost soil sensing using Wi-Fi.

In The 25th Annual International Conference on Mobile Computing and Networking.

1-16.

Down To Earth. 2018. Crop burning: Haryana farmers to launch a state-wide

protest. Retrieved Apr 12, 2019 from https://www.downtoearth.org.in/news/air/

crop-burning-haryana-farmers-to-launch-a- state-wide- protest- 61889

Down To Earth. 2018. Crop burning: Why are Punjab farmers defying government

ban. Retrieved Apr 12, 2019 from https://www.downtoearth.org.in/news/air/

crop-burning-why-are-punjab-farmers- defying- government-ban- 61869

[10

[11

[12

=
&

jpry
)

[19]

[20]

[21

[23

https://www.bloomberg.com/news/articles/2021-03-09/hackers-expose-tesla-jails-in-breach-of-150-000-security-cams
https://www.bloomberg.com/news/articles/2021-03-09/hackers-expose-tesla-jails-in-breach-of-150-000-security-cams
https://www.bloomberg.com/news/articles/2021-03-09/hackers-expose-tesla-jails-in-breach-of-150-000-security-cams
https://doi.org/10.1109/HST.2018.8383885
https://www.downtoearth.org.in/coverage/tall-blunder-22419
https://www.downtoearth.org.in/coverage/tall-blunder-22419
https://www.downtoearth.org.in/news/air/crop-burning-haryana-farmers-to-launch-a-state-wide-protest-61889
https://www.downtoearth.org.in/news/air/crop-burning-haryana-farmers-to-launch-a-state-wide-protest-61889
https://www.downtoearth.org.in/news/air/crop-burning-why-are-punjab-farmers-defying-government-ban-61869
https://www.downtoearth.org.in/news/air/crop-burning-why-are-punjab-farmers-defying-government-ban-61869

ACSAC °21, Dec 6-10, 2021, Virtual Event, USA

[24

[25]

[26

[27

[28

[29]

[30

[31]

[32]

[33

[34

[35]

[38]

[39

[40]

[41]

[42

[43

[44]

[45]

[46

[47]

[48

Ecotech. 2016. Odd-Even Policy, Delhi, Explained. Retrieved Apr 12, 2019 from
https://www.ecotech.com/odd-even-policy-delhi-explained

Marco Eilers and Peter Miiller. 2018. Nagini: a static verifier for Python. In
International Conference on Computer Aided Verification. Springer, 596—603.
The Indian Express. 2018. 14,000 of 21,000 trees to be axed for redevelopment
of south Delhi colonies: Govt. Retrieved Apr 12, 2019 from http://tinyurl.com/
ybys6zro

US Food and Drug Administration. 2017. Firmware Update to Address
Cybersecurity Vulnerabilities Identified in Abbott’s (formerly St. Jude
Medical’s) Implantable Cardiac Pacemakers: FDA Safety Communication.
Retrieved Feb 26, 2021 from https://www.fda.gov/medical-devices/safety-
communications/firmware-update-address-cybersecurity-vulnerabilities-
identified-abbotts-formerly- st-jude- medicals

Carnegie Council for Ethics in International Affairs. 2004. Workers’ Rights
and Pollution Control in Delhi. Retrieved Apr 12, 2019 from https://www.
carnegiecouncil.org/publications/archive/dialogue/2_11/section_2/4451

Jiahao Gao, Zhiwen Hu, Kaigui Bian, Xinyu Mao, and Lingyang Song. 2020.
AQ360: UAV-aided air quality monitoring by 360-degree aerial panoramic images
in urban areas. IEEE Internet of Things Journal 8, 1 (2020), 428-44z2.

Dennis Giffhorn. 2012. Slicing of Concurrent Programs and its Application to
Information Flow Control. Ph.D. Dissertation. Karlsruher Institut fiir Technologie,
Fakultat fiir Informatik.

Tiago Gomes, Sandro Pinto, Adriano Tavares, and Jorge Cabral. 2015. Towards
an FPGA-based edge device for the Internet of Things. In IEEE Conference on
Emerging Technologies & Factory Automation (ETFA). 1-4.

Google. 2019. PHA Family Highlights: Triada. Retrieved Feb 26, 2021 from
https://security.googleblog.com/2019/06/pha-family-highlights- triada.html
Jirgen Graf, Martin Hecker, and Martin Mohr. 2013. Using JOANA for Informa-
tion Flow Control in Java Programs - A Practical Guide. In Proceedings of the
6th Working Conference on Programming Languages (ATPS’13) (Lecture Notes in
Informatics (LNI) 215). Springer Berlin / Heidelberg, 123-138.

Le Guan, Peng Liu, Xinyu Xing, Xinyang Ge, Shengzhi Zhang, Meng Yu, and
Trent Jaeger. 2017. Trustshadow: Secure execution of unmodified applications
with arm trustzone. In Proceedings of the 15th Annual International Conference on
Mobile Systems, Applications, and Services. 488-501.

Seunghun Han, Junghwan Kang, Wook Shin, HyoungChun Kim, and Eungki
Park. 2018. Shadow-BoxV2: The Practical and Omnipotent Sandbox for ARM.
Blackhat-ASIA (2018).

Deccan Herald. 2016. Delhi’s odd-even scheme has no impact: study. Retrieved
Apr 12, 2019 from https://www.deccanherald.com/content/666902/delhis-odd-
even-scheme-has.html

Ahmad Ibrahim, Ahmad-Reza Sadeghi, and Gene Tsudik. 2018. Us-aid: Unat-
tended scalable attestation of iot devices. In 2018 IEEE 37th Symposium on Reliable
Distributed Systems (SRDS). IEEE, 21-30.

Aditya Nigam in Revolutionary Democracy. 2001. Industrial Closures in Delhi.
Retrieved Apr 12, 2019 from http://www.revolutionarydemocracy.org/rdv7n2/
industclos.htm

Trent Jaeger, Reiner Sailer, and Umesh Shankar. 2006. PRIMA: policy-reduced in-
tegrity measurement architecture. In Proceedings of the eleventh ACM symposium
on Access control models and technologies. ACM, 19-28.

Jongmin Jo, Sucheol Jeong, and Pilsung Kang. 2020. Benchmarking GPU-
Accelerated Edge Devices. In IEEE International Conference on Big Data and
Smart Computing (BigComp). 117-120.

Jair Ferreira Junior, Eduardo Carvalho, Bruno V Ferreira, Cleidson de Souza,
Yoshihiko Suhara, Alex Pentland, and Gustavo Pessin. 2017. Driver behavior pro-
filing: An investigation with different smartphone sensors and machine learning.
PLoS one 12, 4 (2017), e0174959.

Ashish Kumar, Saurabh Goyal, and Manik Varma. 2017. Resource-efficient ma-
chine learning in 2 KB RAM for the Internet of Things. In International Conference
on Machine Learning (ICML). 1935-1944.

Ralf Kiisters, Tomasz Truderung, Bernhard Beckert, Daniel Bruns, Michael
Kirsten, and Martin Mohr. 2015. A hybrid approach for proving noninterference
of Java programs. In 2015 IEEE 28th Computer Security Foundations Symposium.
IEEE, 305-319.

Aditya Kusupati, Manish Singh, Kush Bhatia, Ashish Kumar, Prateek Jain, and
Manik Varma. 2018. FastGRNN: A fast, accurate, stable and tiny kilobyte sized
gated recurrent neural network. In Proceedings of the 32nd International Conference
on Neural Information Processing Systems (NIPS). 9031-9042.

Shuvendu K Lahiri, Chris Hawblitzel, Ming Kawaguchi, and Henrique Rebélo.
2012. Symdiff: A language-agnostic semantic diff tool for imperative programs.
In International Conference on Computer Aided Verification. Springer, 712-717.
Matthew Leon. 2020. The Dark Side of Unikernels for Machine Learning. arXiv
preprint arXiv:2004.13081 (2020).

En Li, Liekang Zeng, Zhi Zhou, and Xu Chen. 2019. Edge Al: On-demand accel-
erating deep neural network inference via edge computing. IEEE Transactions on
Wireless Communications 19, 1 (2019), 447-457.

Fu Li, Hai Zhang, Huan Che, and Xiaochen Qiu. 2016. Dangerous driving behavior
detection using smartphone sensors. In 2016 IEEE 19th International Conference

12

[49

[50

[51

[53

[54

[55

[56]

[58

[59

[60

[61

o
&,

(63

[64

[65

[66

o
=

(68

[69

[70

[73

Ismi Abidi, Vireshwar Kumar, and Rijurekha Sen

on Intelligent Transportation Systems (ITSC). IEEE, 1902-1907.

Pieter Maene, Johannes Gotzfried, Ruan De Clercq, Tilo Miiller, Felix Freiling,
and Ingrid Verbauwhede. 2017. Hardware-based trusted computing architectures
for isolation and attestation. IEEE Trans. Comput. 67, 3 (2017), 361-374.

Larry W McVoy, Carl Staelin, et al. 1996. Imbench: Portable Tools for Performance
Analysis.. In USENIX annual technical conference. San Diego, CA, USA, 279-294.
Francesca Meneghello, Matteo Calore, Daniel Zucchetto, Michele Polese, and
Andrea Zanella. 2019. IoT: Internet of threats? A survey of practical security
vulnerabilities in real IoT devices. IEEE Internet of Things Journal 6, 5 (2019),
8182-8201.

Andrew C. Myers, Lantian Zheng, Steve Zdancewic, Stephen Chong, and
Nathaniel Nystrom. 2006. Jif 3.0: Java information flow. http://www.cs.cornell.
edu/jif

Ivan De Oliveira Nunes, Sashidhar Jakkamsetti, Norrathep Rattanavipanon, and
Gene Tsudik. 2020. On the TOCTOU problem in remote attestation. arXiv preprint
arXiv:2005.03873 (to appear in CCS 2021) (2020).

Amitangshu Pal and Krishna Kant. 2019. Water flow driven sensor networks for
leakage and contamination monitoring in distribution pipelines. ACM Transac-
tions on Sensor Networks (TOSN) 15, 4 (2019), 1-43.

Sandro Pinto and Nuno Santos. 2019. Demystifying Arm TrustZone: A compre-
hensive survey. ACM Computing Surveys (CSUR) 51, 6 (2019), 1-36.

The Pioneer. 2017. Farmers protest Punjab Government’s orders. Retrieved
Apr 12, 2019 from https://www.dailypioneer.com/2017/state-editions/farmers-
protest-punjab-governments-orders.html

Davide Quarta, Marcello Pogliani, Mario Polino, Federico Maggi, Andrea Maria
Zanchettin, and Stefano Zanero. 2017. An experimental security analysis of an
industrial robot controller. In IEEE Symposium on Security and Privacy (S&P).
IEEE, 268-286.

Saeed Saadatnejad, Mohammadhosein Oveisi, and Matin Hashemi. 2019. LSTM-
based ECG classification for continuous monitoring on personal wearable devices.
IEEE journal of biomedical and health informatics 24, 2 (2019), 515-523.

Andrei Sabelfeld and Andrew C Myers. 2003. Language-based information-flow
security. IEEE Journal on selected areas in communications 21, 1 (2003), 5-19.
Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and Leendert Van Doorn. 2004. Design
and Implementation of a TCG-based Integrity Measurement Architecture.. In
USENIX Security symposium, Vol. 13. 223-238.

Khaled Saleh, Mohammed Hossny, and Saeid Nahavandi. 2017. Driving behavior
classification based on sensor data fusion using LSTM recurrent neural networks.
In 2017 IEEE 20th International Conference on Intelligent Transportation Systems
(ITSC). IEEE, 1-6.

Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. 2016. Edge
computing: Vision and challenges. IEEE Internet of Things Journal 3, 5 (2016),
637-646.

Zhichuang Sun, Bo Feng, Long Lu, and Somesh Jha. 2020. OAT: Attesting oper-
ation integrity of embedded devices. In 2020 IEEE Symposium on Security and
Privacy (SP). IEEE, 1433-1449.

Hindusthan Times. 2016. Air cleaner this April than last year, says body studying
odd-even. Retrieved Apr 12, 2019 from https://tinyurl.com/y4uk9u47
Hindustan Times. 2018. 16,500 trees: A huge price for south Delhi’s redevelop-
ment projects. Retrieved Apr 12, 2019 from https://tinyurl.com/y73te44m
Hindustan Times. 2018. One tree cut every hour over last 13 years, says Delhi
govt data. Retrieved Apr 12, 2019 from https://www.hindustantimes.com/delhi-
news/one-tree-cut-every-hour-over-last-13-years-says-delhi-govt-
data/story-uJBiGcLemQIOCVIfP7rwpN.html

TrustedFirmware.org. 2020. Retrieved Sep 21 ,2020 from https://optee.
readthedocs.io/_/downloads/en/3.9.0/pdf/

Rohit Verma, Gyanesha Prajjwal, Bivas Mitra, and Sandip Chakraborty. 2018.
Mining spatio-temporal data for computing driver stress and observing its effects
on driving behavior. In Proceedings of the 26th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems. ACM, 452-455.
Xiaofei Wang, Yiwen Han, Victor CM Leung, Dusit Niyato, Xueqiang Yan, and Xu
Chen. 2020. Convergence of edge computing and deep learning: A comprehensive
survey. IEEE Communications Surveys & Tutorials 22, 2 (2020), 869-904.
Jianliang Wu, Yuhong Nan, Vireshwar Kumar, Dave Jing Tian, Antonio Bianchi,
Mathias Payer, and Dongyan Xu. 2020. {BLESA}: Spoofing Attacks against
Reconnections in Bluetooth Low Energy. In 14th {USENIX} Workshop on Offensive
Technologies ({ WOOT} 20).

Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. 2017. Designing energy-efficient
convolutional neural networks using energy-aware pruning. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 5687-5695.
Yuzhe Yang, Zhiwen Hu, Kaigui Bian, and Lingyang Song. 2019. ImgSensingNet:
UAV vision guided aerial-ground air quality sensing system. In IEEE Conference
on Computer Communications (INFOCOM). 1207-1215.

Shuochao Yao, Yiran Zhao, Aston Zhang, Lu Su, and Tarek Abdelzaher. 2017.
DeeploT: Compressing deep neural network structures for sensing systems with
a compressor-critic framework. In Proceedings of the 15th ACM Conference on
Embedded Network Sensor Systems. 1-14.

https://www.ecotech.com/odd-even-policy-delhi-explained
http://tinyurl.com/ybys6zro
http://tinyurl.com/ybys6zro
https://www.fda.gov/medical-devices/safety-communications/firmware-update-address-cybersecurity-vulnerabilities-identified-abbotts-formerly-st-jude-medicals
https://www.fda.gov/medical-devices/safety-communications/firmware-update-address-cybersecurity-vulnerabilities-identified-abbotts-formerly-st-jude-medicals
https://www.fda.gov/medical-devices/safety-communications/firmware-update-address-cybersecurity-vulnerabilities-identified-abbotts-formerly-st-jude-medicals
https://www.carnegiecouncil.org/publications/archive/dialogue/2_11/section_2/4451
https://www.carnegiecouncil.org/publications/archive/dialogue/2_11/section_2/4451
https://security.googleblog.com/2019/06/pha-family-highlights-triada.html
https://www.deccanherald.com/content/666902/delhis-odd-even-scheme-has.html
https://www.deccanherald.com/content/666902/delhis-odd-even-scheme-has.html
http://www.revolutionarydemocracy.org/rdv7n2/industclos.htm
http://www.revolutionarydemocracy.org/rdv7n2/industclos.htm
http://www.cs.cornell.edu/jif
http://www.cs.cornell.edu/jif
https://www.dailypioneer.com/2017/state-editions/farmers-protest-punjab-governments-orders.html
https://www.dailypioneer.com/2017/state-editions/farmers-protest-punjab-governments-orders.html
https://tinyurl.com/y4uk9u47
https://tinyurl.com/y73te44m
https://www.hindustantimes.com/delhi-news/one-tree-cut-every-hour-over-last-13-years-says-delhi-govt-data/story-uJBiGcLemQIOCvIfP7rwpN.html
https://www.hindustantimes.com/delhi-news/one-tree-cut-every-hour-over-last-13-years-says-delhi-govt-data/story-uJBiGcLemQIOCvIfP7rwpN.html
https://www.hindustantimes.com/delhi-news/one-tree-cut-every-hour-over-last-13-years-says-delhi-govt-data/story-uJBiGcLemQIOCvIfP7rwpN.html
https://optee.readthedocs.io/_/downloads/en/3.9.0/pdf/
https://optee.readthedocs.io/_/downloads/en/3.9.0/pdf/

Practical Attestation for Edge Devices Running Compute Heavy Machine Learning Applications

A PolloT VERIFICATION RESULTS

Since PolloT uses concurrent threads as shown in Table 3, we run
JOANA’s object sensitive, simple may-happen-in-parallel analy-
sis [33]. It allows the Program Dependence Graph (PDG) to have
a small number of the spurious interference dependence. Table 5
presents the different statistics of the generated PDG and the run-
ning time of IFC.

Table 5: Statistics of the PolloT software verification.

Program Dependence Graph (PDG)
Number of nodes 9783
Number of edges 58014

Build time 12701 ms
IFC analysis time 20 ms

Are violations correctly caught? Here, we evaluate the soundness of
our JOANA-based verification implementation, by explicitly adding
the code which violates the non-interference and privacy policy.
Privacy Violation: To guarantee the privacy requirement of the
partner agency, let us analyze the sample code shown in Listing 2.
Here, we annotate the partner agency’s server URL as the high
source (line 2-3), the attacker’s URL as the low sink (line 4-5), and
the function call to open the URL connection to be the high sink
(line 10-11). This leaks the sensitive information to the unautho-
rized sink. Removing the line 7 and then constructing the URL as
“new URL(requestUrl)” result in a secure flow.

Listing 2: Privacy requirement annotation sample.

1 public class SERVER{

2 @source (LEVEL.HIGH)

3 static String requestUrl=<Server URL>;
4 @sink (LEVEL.LOW)

5static String atckerUrl= <Attacker URL>;

6 public void file_send(){

7 atckUrl=atckerUrl+"?"+requestUrl;

8 Url url = new URL(atckUrl);

9 HttpURLConnection httpURLCon = (HttpURLCon);
10 @sink (LEVEL.HIGH)

11 url.openConnection();

12

13 }

14}

Non-Interference Violation: We consider the sample code shown
in Listing 3 for analyzing the non-interference violation. Here, the
GPS is annotated as the GPS source (line 2-3) and the PM is anno-
tated as the PM sink (line 4-5). There is a deliberate control flow
between the GPS and PM (line 11-12). It is added in the code to test
if JOANA can catch this violation.

13

ACSAC 21, Dec 6-10, 2021, Virtual Event, USA

Listing 3: Code snippet showing implicit flow.
1 public class PGB{

2 @source (LEVEL.GPS)

3 static String gps;

4 @sink (LEVEL .PM)

5 static String pm;//@Sink

6 public void bme_gps_pm_process (){
7

8 gps=getgpsval ();//@Source
9 pm=getpmval ();//@Sink

10

11 if(gps.equals("...")){

12 pm=...;

13 }

14

15 ¥

16 }

bmp_gps_pm_process()
[1]

—> Control Dependence
,,,,, » Data Dependence

- — aps
‘pm=getpmval()\ [v6]
\ @B

if(gps.equals("."))
[4]

pm=nt;
[71

Figure 10: Simplified program dependence graph corre-
sponding to Listing 3.

W gps=getgpsval()
[?]

Figure 10 shows a simplified PDG for the Listing 3. We observe
that there is a path from gps node 6 (yellow color) to node 7 and also
a path from pm node 2 (blue color) to node 7. The node 7 should
be of type GPS. But due to the propagation of security levels along
the path 6-4-7 and 2-7, there is a conflict of security levels at node 7
(mixed color). This illegal flow is flagged by JOANA. Removing the
line 11-13 from the Listing 3 will remove the generated violation.
All the policies specified as the lattice shown in Figure 5 can be
similarly verified in JOANA, as tested by us, by creating all possible
violation examples. JOANA gives no false negatives.

Are false alarms easy to analyze? As JOANA is based on PDG,; it
conservatively finds explicit and implicit flows. Thus, it gives false
alarms/positives [30, 43], which need to be manually analyzed to
see if there is any real cause of concern.

ACSAC °21, Dec 6-10, 2021, Virtual Event, USA

Ismi Abidi, Vireshwar Kumar, and Rijurekha Sen

Table 6: Results demonstrating that the number of false positives start decreasing once we identify the cause.

Sources | Number of file writes
A (all file writes enabled) B (BME file writes removed) C (BME, GPS file writes removed)
Sinks— PM | GPS | BME | IMU | Camera PM | GPS | BME | IMU | Camera || PM | GPS | BME | IMU Camera
PM X 96 96 136 160 X 94 92 136 160 X 90 90 136 160
GPS 96 X 96 136 160 94 X 92 136 160 0 X 0 0 0
BME 96 96 X 136 160 0 0 X 0 0 0 0 X 0 0
MU 144 | 144 144 X 240 147 147 144 X 240 138 135 135 X 240
Camera 96 96 96 136 X 94 94 92 136 X 92 90 90 136 X
Sources| || D (BME, GPS, PM file writes removed) E (all file writes removed) F (all filewrites and two timestamps removed)
Sinks— PM | GPS | BME | IMU | Camera PM | GPS | BME | IMU | Camera || PM | GPS | BME | IMU Camera
PM X 0 0 0 0 X 0 0 0 X 0 0 0 0
GPS 0 X 0 0 0 0 0 0 0 0 X 0 0 0
BME 0 0 X 0 0 0 0 0 0 0 X 0 0
MU 132 132 132 240 129 | 129 129 117 0 0 0 X 0
Camera 88 88 88 136 X 86 86 86 92 X 0 0 0 0 X

Listing 4: Code snippet showing a false positive.
1 public class PGB({

2 @source(Level.GPS)

3 static String gps;

4 @sink (Level.BME)

5 static String bme;

6 public void bme_gps_pm_process (){
7

8 while(true){

9 gps=getgpsval ();//@Source
10 bme=getbmeval ();//@Sink
11

12 fr.write(gps);

13

14 3

15 }

16 }

Listing 4 shows an example where JOANA raises a false alarm.
A violation is flagged, citing the information flow from the GPS
label to the BME (while there is no such implicit or explicit flow in
the code). We inspected the PDG to find the reason for this false
alarm. We observed that this leak occurs due to possible exceptions
from the file write operation. These exceptions are added when
the Java byte code is converted to PDG for the analysis by JOANA.
The execution of the line 10 in Listing 4 depends on whether the
file write is executed successfully or not. If it throws an exception,
the program will terminate. Therefore, JOANA shows a flow from
GPS to BME, i.e., no BME data is obtained if the file write of GPS
is unsuccessful. Similar false positives have also been reported in
the existing literature [30]. This violation is not dangerous for our
non-interference policy as sensors are still not affecting each others’
values and, therefore, safe to ignore.

Table 6 shows the number of violations detected by JOANA at
the PDG level for the entire PolloT software in six scenarios labeled
A-F. We find that although the number of violations are high but
they emanated from just a few lines in the code. It can be seen from
Table 6 that once we start decreasing the number of file writes, the
number of violation also decreases. This validates that the file write
exceptions are the primary cause of the encountered false alarms.

There is a second kind of false alarm raised by JOANA for PolloT.
As shown in the scenario E in Table 6, the number of violation does

14

not become zero in spite of having no file writes. Our Java program
has three classes: IMU, Camera and PGB (for PM, GPS and BME)
running concurrently. They invoke the same class for getting the
timestamps of the sensor readings. The timestamp is returned in a
local variable which is not shared between the threads. However,
JOANA still reports an illicit flow from the source in the IMU class
to the sinks in the PGB and Camera classes. Similarly, the source
in Camera class shows illicit flows to the sinks in the other two
classes. JOANA merges the three invocations of the timestamp class
in different threads. We observe that if the timestamp is present in
just one of the threads, we get the last case (scenario F) in Table 6
with zero violations. Therefore, it is safe to ignore this false alarm.

In essence, IoT developers have to iteratively go through the
alarms raised by JOANA while fixing the true alarms and analyzing
the false alarms to see if they can be safely ignored. As JOANA
catches all violations and has few, easy to analyze false positives, we
believe that this one-time manual process brings forth a significant
security impact at an acceptable overhead.

	Abstract
	1 Introduction
	2 Related Work
	3 System and Threat Model
	3.1 Threat Model
	3.2 System Architecture

	4 PracAttest Design
	4.1 Selecting Kernel Segment
	4.2 Determining Inter-Attestation Time

	5 Verified EdgeML Benchmarks
	5.1 Benchmark Applications
	5.2 Benchmark Verification

	6 Evaluation
	6.1 Experimental Setup
	6.2 Evaluation Metrics
	6.3 Number of Kernel Segments To Be Attested
	6.4 Inter-Attestation Time Distribution
	6.5 PracAttest Performance-Security Trade-off

	7 Conclusion and Future Work
	References
	A PolIoT Verification Results

