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Abstract
Machine learning (ML) applications have experienced remarkable
growth and integration into various domains. However, challenges
with cloud-based deployments, such as latency, privacy, reliability,
bandwidth and connectivity, have driven the popularity of deploy-
ing ML on edge devices. ML application deployment stack con-
sists of various components such as neural network models, input
frameworks, software runtime libraries and hardware architecture.
Understanding the impact of different components in the ML stack
on deployment effectiveness, particularly in terms of cost effective-
ness, remains a challenge. In this work, we systematically analyze
the diverse choices available for each component of the ML stack
and their influence on deployment performance. We empirically
evaluate eight heterogeneous edge platforms and eight software
runtime libraries, considering various hardware components like
CPUs, GPUs, NPUs, and VPUs for ML inference. Our findings con-
tribute to a better understanding of optimizing cost effectiveness
in ML deployments on edge platforms, aiding decision-making for
application developers and stakeholders.

CCS Concepts: • Computer systems organization→ Embed-
ded hardware; • Computingmethodologies→Machine learn-
ing; Computer vision.
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1 Introduction
Neural Networks have revolutionized the way society functions, in
recent years. While training of Neural Networks (NN) uses cloud
computing, real time NN inferences predominantly happen at the
"edge" i.e. inside a self driving car or on a traffic pole of a smart city
intersection, closer to where data to be processed is collected. The
rapid pace at which such edge intelligence is being adopted in vari-
ous application domains like smart homes, automotive, healthcare
etc. [1, 20], have fueled the interest in hardware vendors to design
and manufacture specialized hardware to accelerate ML workloads
on the edge devices [3]. In this work, we do a deep dive assessment
of NN inferences on edge platforms with such state-of-the-art ML
workload accelerators.

Heterogeneity in compute engine architecture is essential to
cater to diverse types of workloads and thus vendors include more
than one type of compute engine (namely CPU, GPU, VPU, NPU,
TPU) on the SoC. This variety is termed as accelerator heterogene-
ity. Additionally, most vendors usually provide bundled software
accelerated runtimes [4, 6, 14, 19] comprising of NN model con-
verter, optimizer, a library of computation kernels and support for
variety of input NN frameworks. Which edge platform to choose
for a target NN application? Do the platforms in similar price points
perform the same? If the chosen platform has more than one processor
or ML accelerator, where should the NN inferences be run? Are there
many software frameworks available for the chosen edge platform? Is
there any benefit of choosing one software framework over another?
Does it make sense to involve more than one processor concurrently in
NN inferencing? If yes, how should the workload be split among the
concurrently running co-processors? If my application metrics change
to include energy minimization or thermal safety, would my choice of
platform, processor and software stack that optimized for throughput
metrics earlier, become invalid? The landscape available for design-
ing an edge solution with NN inference, is very vast and complex.
We carefully navigate this design space exploration problem using
both theoretical analysis and empirical measurements in this paper.

While some measurement studies have been conducted in recent
past [22, 25, 27, 30, 39, 42, 44, 47] to understand ML performance
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at edge, there are significant limitations in their scale and compre-
hensiveness. We have used eight different hardware platforms in
this study. Some of these platforms have heterogeneous processors
and accelerators of similar compute capabilities, while in others
the capabilities vastly differ. Some platforms have all processors
co-located on the same chip, whereas in others, external accelera-
tors can be plugged in over USB. In addition to this rich variety of
hardware platforms and NN accelerators, we compare a wide range
of the state-of-the-art software runtimes like ARM NN, TensorRT,
OpenVINO™, KSNN, RKNN, TensorFlow Lite and AutoScheduler. We
also use realistic NNworkloads like more than 12 standard NNmod-
els from the Keras model zoo to run inferences on the ImageNet
dataset. We even present a real edge NN application of vehicle de-
tection, using a novel traffic intersection camera dataset from Delhi,
India. The sheer scale of edge hardware platforms, software frame-
works, NN models and datasets, allow us to do very interesting
analyses, unseen in prior benchmarking efforts.

In this work, we present some insightful findings with a broader
applicability across different hardware platforms❶ CPU Bottleneck-
High-end accelerators’ performance can be limited by underpow-
ered CPU cores as CPU handles the input/output for NN infer-
ences on the accelerator. Our studies reveal that most off-the-shelf
edge platforms often exhibit over-investment on accelerator perfor-
mance, with insufficient attention given to the commensurate en-
hancement of CPU cores responsible for driving these accelerators.
❷ The Energy-Delay-Cost-Product(EDCP) metric, introduced in
this study alongside accuracy metric, can serve as a robust tool for
evaluating available options and aiding in the selection of one plat-
form over another for practical application deployment.❸ It is often
expected that the vendor provided software frameworks always
perform better as hardware vendors possess intricate knowledge of
their manufactured chips. We empirically show that open-source
software frameworks often outperform vendor-provided software
for specific chips and insider knowledge of hardware details can
be eclipsed with better software implementation skills. ❹ Concur-
rent use of more than one accelerator need not boost inference
throughput compared to solo run on a single processor. Resource
contention during concurrency, compute speed mismatch among
processors, communication delays between processors, are some
root causes for performance degradation under concurrency. ❺

Data wise workload allocation works better with off-chip accelera-
tors than with the on-chip accelerators and layer wise workload
allocation suffers performance degradation due to inter-process
communication. In addition, we also show through our application
case study that even a slow CPU processor can be used extremely
effectively with faster accelerators in a heterogeneous platform, to
achieve delicate trade-offs among metrics. Our methods and results
should be of interest to hardware vendors, software framework
engineers, edgeML researchers and solution architects deploying
NN inferences at edge for various application domains.

2 Related Work
Benchmarking machine learning workload performance in edge de-
vices is an active field of research. The work in [48] provides a com-
prehensive catalog of existing research related to edge performance
benchmarking. These benchmarking efforts can be broadly clas-
sified under three categories, (1) ML algorithm benchmarking,
(2) performance benchmarking, (3) ML-system benchmarking.

ML algorithm benchmarking focuses on algorithmic innovations
and application utility metrics like accuracy [33] [28] [41] [34].
Performance benchmarks focus on hardware optimization and per-
formance metrics like power consumption, latency, and through-
put [32] [31] [21]. TheML-system benchmarks lie at an intersection,
focusing on both utility and performance [22, 25, 27, 30, 39, 42, 44,
47]. Our work lies in the third category, where we examine NN
inference accuracy as well as performance on edge platforms.

Two features distinguish this paper compared to prior works.
First is the scale of the study. We combine theoretical roofline
analysis with real empirical measurements on a wide variety of
edge devices (Table 2) with general purpose processors like CPU,
GPU and a wide range of NN accelerator chips from all major
hardware manufacturers like Nvidia, Intel, ARM, Verisilicon and
many more while prior works have compared a maximum of 2-3
platforms. Second distinctive feature is benchmarking workload
allocation across heterogeneous co-processors. With the
emergence of multiple processing elements on edge devices, their
optimal usage and workload allocation among them, are sought
after problems in the research community. Some of the existing stud-
ies [38] [46] [40] [51] investigate workload allocation, examining
it from diverse angles such as inference parallelization, optimizing
throughput, and enhancing resource utilization.

While many existing benchmarking efforts tend to focus primar-
ily on one of three key aspects: SW framework analysis, workload
allocation, or quantization support, it’s crucial to recognize the in-
terplay among these choices. Different software frameworks enable
diverse approaches to workload allocation and quantization. In this
study, we delve deep into these intricate dependencies, meticulously
examining the impact of various workload allocation strategies on
the execution of ML workloads across heterogeneous co-processors.
Furthermore, we conduct a comprehensive evaluation encompass-
ing a range of processor combinations, experimenting with various
workload allocation strategies across both vendor-specified and
open-source software frameworks that offer varying levels of quan-
tization support for optimal inference performance. We work with
all possible software frameworks on approximately 20 different
types of processing elements on 8 different hardware platforms,
that exceeds the scale of prior benchmarking efforts manifold. Fur-
thermore, to provide a robust assessment, we juxtapose our findings
from the roofline model with systematic empirical measurements
conducted on the target hardware platforms. The detailed compari-
son of prior work is summarized in the Appendix in Table 8, which
showcases the earlier NN system benchmarking efforts and lists
the evaluation criteria used in the study.

3 Navigating the imperatives
There is a huge surge in the adoption of Edge ML based solutions
in various industries like healthcare, manufacturing, retail etc [37].
However, the entire stack that makes up the Edge ML solution is
very complex in nature. This makes the process of picking the right
choices for deploying the solution, non-intuitive and a difficult task.
Do the highest priced platforms always perform better ? What are
the factors that dictate the performance of the deployed application
? In this section, we try to break down some of the most important
aspects to consider when evaluating an Edge ML solution for de-
ployment.
(a) Choice of the NN Model: The first decision to make is in
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terms of choosing the appropriate NN model for realising the objec-
tives. The application developer will need to carefully sift through
potential trade-offs between factors like model size, accuracy and
throughput of various models before converging on the NN model.
In this paper we have experimented with more than 12 standard DNN
models from Keras model zoo [11]. For brevity, we present our results
with four selected NN models for image classification, that have a
wide range of model size, layer numbers and parameters and YOLOv3
model for object detection (Table 1) .

NN Model #Parameters
(Millions)

Depth Model Size
(MB)

FP32 FP16 INT8

MobileNet-V2 [45] 3.5 105 14 1.33 1.63 1.93
ResNet101-V2 [35] 44.7 205 171 1.6 1.9 2.2
DenseNet-121 [36] 8.1 242 33 1.94 2.24 2.54

Xception [29] 22.9 81 88 1.96 2.26 2.56
Yolov3 [43] 62.2 106 246.6 2.42 2.72 3.02

Table 1. NN models for vision based tasks. Operational Intensity
(FLOPS/Byte) for different precisions. Model size denoted here is
for the unoptimized version.

(b) Choice of the Edge Platform: The next important decision
to make is the choice of the hardware platform on which the NN
model will be deployed for inferencing. This task is even more
complex than the previous one as there are many parameters like
the processing capability of the cores (CPU/GPU/NN Accelerator),
cost, energy consumption, support for different precisions etc that
needs to be carefully analyzed. In this work, we have chosen eight
different hardware platforms for our measurement study and the
details are provided in the Table 2.
(c) Choice of the software runtime libraries: The soft-
ware runtime libraries act as the interface between the target hard-
ware and the edge application. These libraries perform several opti-
mizations like weight clustering and pruning, layer fusion, quanti-
zation of weights, input and output on the pre-trained NN models.
They additionally perform hardware mapping to choose the right
set of library functions for extracting maximum performance from
the underlying hardware. Interaction between the software run-
times and the hardware has a direct impact on the effectiveness of
the application deployment. It is thus imperative to characterize its
behaviour and carefully examine the same. In this work, we exam-
ine several state-of-the-art vendor provided runtime frameworks like
ARM NN [4], PyARMNN [17], TensorRT [14], OpenVINO™ [6], Pyco-
ral [18], Acuity [2], KSNN [13], RKNN 2 [19] and perform a thorough
characterization study in Section 5.3.
(d) Choice of the evaluation metric: It is now very clear that
the final performance and the effectiveness of the deployed edge
application is determined by the full stack comprising of NN model,
SW runtime + OS and the hardware architecture. One of the impor-
tant steps to identify the best possible solution is to choose the right
metrics that can help in identifying the trade-offs available while
deploying the NN based solution on the target hardware. Most of
the existing benchmarking works in literature either focus only on
the inference time [23] or Top-1 accuracy or both [26]. Some also
consider power and energy consumption [24] as the metrics for
assessing the effectiveness of the application deployment. In this
work, we discuss the trade-offs among the various first order metrics
in Section 5.
(e) Choice of synergistic utilization of heterogeneous
components: As most of the hardware platforms available in the

market for employing NN inference contain one or more NN accel-
erators, the application developer is also tasked with identifying
the appropriate way to utilize the multiple hardware components
together. There are many pertinent questions to consider. For ex-
ample, will the individual hardware component’s performance get
degraded compared to its isolated execution? Will there actually
be any gain due to co-execution of NN models ? If no gains are
obtained, how can the available heterogeneity can still be used effec-
tively? In this work, we employ several techniques that can potentially
utilize the available heterogeneity effectively and perform efficient
NN inferencing. We perform a systematic exploration to understand
the effects of these techniques on first order metrics like throughput
and energy consumption. In the subsequent sections of this paper,
we delve deeper to understand the contribution of each of these
choices on the actual performance of the edge application.

4 Selection through Roofline Analysis
In the quest for finding the right choices for deployment, the first
step is to perform the roofline analysis for the candidate edge plat-
forms. Roofline modeling [50] is a widely accepted performance
analysis technique that combines the application characteristics
with the hardware capabilities to determine the maximum attain-
able performance of the application on the underlying hardware.
It helps in identifying whether the application’s performance is
limited by the compute capability or memory bandwidth of the
underlying hardware.
Construction of the roofline : It involves characterizing the
hardware in terms of its peak compute performance in GFLOPS
(floating point operations per second) and memory performance
in terms of peak sustainable bandwidth (measured in GB/s) and
characterizing the application in terms of Operational Intensity
(FLOPS/byte).
Operational Intensity (OI): It is an application specific pa-
rameter and is measured as the ratio of number of floating point
operations performed per byte of data obtained from the main
memory. Roofline bounds the maximum achievable performance of
the application (measured in GFLOPS/s) as the minimum of either
peak compute performance or the product of arithmetic intensity
and peak bandwidth. In this work, for constructing the theoretical
roofline, we made use of the hardware specifications from the data
sheets (refer to Table 2) to compute the peak performance and peak
bandwidth.
Peak compute capability : It is computed as a function of no.
of processor cores, operation width, SIMD width, SIMD units, no. of
floating point operations per clock cycle and the processor frequency.
Peak bandwidth: It is computed as a function ofmemory frequency,
number of channels and channel size.
OI computation: To compute the operational intensity of the
NN models mentioned in Section 3, we require the total number
of floating point operations and total bytes of data required for
computations. We made use of the inbuilt functions of tensorflow
profiler to obtain the total number of floating point operations of
the NN models and used the weight parameters of the NN model
(refer to Table 1) to estimate the bytes of data required from the
main memory in all the computations. Table 1 also provides the
computed arithmetic intensities of various NN models for three
different precisions.
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Hardware
Platform

CPU GPU NN-ACC Memory Storage Cost

❶ Jetson Xavier
AGX [7]

2.26GHz 8-core
Carmel ARM v8.2

1.37GHz 512-core
Volta

2x NVDLA v1 64GB 256-bit
LPDDR4x

32GB
eMMC

$999

❷ Jetson Xavier
NX [9]

1.4GHz 6-core
Carmel ARM v8.2

1.1GHz 384-core Volta 2x NVDLA v1 16GB 128-bit
LPDDR4x

64GB
MicroSD

$479

❸ Jetson TX2 [10] 2GHz 2-core Denver,
2GHz 4-core Cortex

A57

1.3GHz 256-core
Pascal

- 8GB 128-bit
LPDDR4

32GB
eMMC

$479

❹ Khadas VIM 3
[12]

2.2GHz 4-core
Cortex-A73, 1.8 GHz
2-core Cortex-A53

800MHz Mali-G52
MP4

5 TOPS Amlogic NPU 4GB LPDDR4 64GB
MicroSD

$159.90

❺ Jetson Nano [8] 1.43GHz 4-core
Cortex A57

950MHz 128-core
Maxwell

- 4GB 64-bit
LPDDR4

16GB
eMMC

$129

❻ Odorid H2 [15] 2.3GHz 4-core Intel
Celeron J4105

750MHz Intel UHD
Graphics 600

- 16GB DDR4 64GB
eMMC

$119

❼ Intel NCS2 [5] - - Myriad X VPU 500MB LPDDR - $110
❽ Odroid M1 [16] 2GHz 4-core

Cortex-A55
650MHz Mali-G52

MP2
0.8 TOPS Rockchip

NPU
8GB LPDDR4 64GB

MicroSD
$95.50

Table 2. Details of the target edge devices along with specifications used for employing NN inference

Observations and Analysis: Figure 1 provides the visual repre-
sentation of the constructed roofline.
Relative Ordering: In Figure 1(a), we observe that the Jetson
TX2 CPU ( 2 core Denver + 4 core Cortex A57) has a better per-
formance than 6 core Carmel CPU of Jetson NX. Similarly the, 4
core Cortex A73 of VIM3 has a better performance than the 4 core
Cortex A55 of Odroid M1. Closely observing Figure 1(b), we find
that for the case of FP16 precision, for workloads withOI ≤ 2.0, TX2
GPU performs better than NCS2 VPU while for workloads with OI
> 2.0, NCS2 gives ≈ 2.4x better performance. This is because the
peak compute performance of NCS2 is 3x > that of TX2 while the
memory bandwidth of NCS2 is only 0.21x of TX2. Among the GPU
and NPU present in the M1 board, the NPU is more powerful than
the GPU but the NPU supports only INT8 precision, thus M1 NPU
is used as a baseline for the INT8 while the M1 GPU is used as the
baseline for FP16.

Roofline based Performance Ordering:
CPU (FP32): AGX (2.27) > TX2 (1.5) > H2 (1.15) > VIM3_Big (1.1) >
NX (1.05) > M1 (1) > Nano( 0.715) > VIM3_little (0.45)
GPUs and Accelerators (FP16) : AGX (117.08) > NX (55.17) > NCS2
(23.84), TX2 (16.02) > Nano (5.69) > H2 (3.47) > NVDLA (3.03) > VIM3
(1.73) > M1 (1)
INT8: AGX (24.3) > NX (11.64) > VIM3_NPU (5.54) > TX2 (3.33) > Nano
(1.18) > M1_NPU (1) > VIM3_GPU (0.36) > M1_GPU (0.21).
The numbers in the brackets denote the relative performance improve-
ment obtained (averaged across workloads) in comparison to M1.

Cost based Ordering: AGX (10.46) > NX (5.01) > TX2 (5.01) > VIM3
(1.66) > Nano (1.35)> H2 (1.25) > NCS2( 1.15) > M1 (1). The numbers in
the brackets denote the relative cost in comparison to Odroid-M1.

5 Performance analysis through empirical
measurements

In the previous step, the NN model performance on a hardware
component was estimated purely based on the data provided in the

specifications. In actual application deployment, there are signif-
icant deviations from these estimates, due to several limitations
of the roofline model. ❶ Theoretical roofline doesn’t account the
effect of caches in its performance estimation. It is well known that
the caches improve the memory performance and thus there is a
deviation from the estimated value. ❷ Roofline gives per hardware
component wise (CPU/GPU/NPU/VPU) performance estimate. In
reality, GPU and NN accelerators require the support of CPUs for
the execution of the NN model and cannot work stand-alone. Thus
the end-end performance of the NN model depends on the compute
capability of the CPU as well. A more powerful NN accelerator
coupled with a very less powerful CPU may result in worse per-
formance than a moderately powerful NN accelerator with a more
powerful CPU. The performance coupling between the CPU and the
GPU/NN-accelerator cannot be directly captured using the roofline.
❸ In most hardware platforms it is observed that the actual sustain-
able component wise peak bandwidth is much lower than the peak
bandwidth specified in the datasheets[49]. ❹ Trade-offs between
various first order metrics like accuracy, energy consumption, end-
to-end latency cannot be obtained without actual execution of the
NN model on the hardware. ❺ The performance impact due to
the choice of software runtime cannot also be ascertained without
actual execution. We thus perform systematic practical measure-
ments on the target hardware platforms and compare the observed
results with the theoretical roofline observations and fine-tune
our choices. Below, we provide the details of the experimental setup
used in this work for making practical measurements on the target
hardware platforms.

5.1 Experimental Setup
Our input dataset consists of images from the Imagenet validation
dataset. Each image is of size 224 × 224 with 3 input channels
(RGB). For each of the hardware component mentioned in Table 2,
we executed all the DNN models listed in Table 1 with our input
dataset. Since Intel NCS2 neural stick cannot work standalone, we
have plugged NCS2 to Odroid-H2 and use NCS2 as an off-chip
neural network accelerator for the Odroid-H2 platform. We use
Linux based Ubuntu OS in all our hardware platforms.



Bang for the Buck: Evaluating the cost-effectiveness of Heterogeneous Edge Platforms for Neural Network Workloads
Conference acronym ’XX, December 06–09, 2023, Wilmington, DE

0.0 0.5 1.0 1.5 2.0 2.5

OI, log10(OPS/Byte)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

P
e
rf

o
rm

a
n

c
e
, 

lo
g

1
0

(G
F
L
O

P
S

/s
)

Mobv2
Res101v2
Xception
Yolov3

CPU FP32

AGX

NX

TX2

Vim3_Big

Vim3_Small

Nano

H2

M1

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

OI, log10(OPS/Byte)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Mobv2

Res101v2
Xception
Yolov3

FP16

AGX

NX

NVDLA

TX2

Vim3

Nano

H2

NCS2

M1

(b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

OI, log10(OPS/Byte)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Mobv2

Res101v2
Xception

Yolov3

INT8

AGX

NX

TX2

Vim3_NPU

Vim3_GPU

Nano

M1_NPU

M1_GPU

(c)

Figure 1. Roofline Model for CPU, GPU and NN accelerators

5.2 Hardware performance analysis with various metrics
We first start with the Inference Time metric. It denotes the time
taken for performing only the inference operation on a single input
image. Figure 2 shows the normalized inference time performance
obtained for the execution of NN models on various processing
elements of the target platforms. As mentioned earlier, Odroid-M1
is the lowest priced platform across all the target platforms and
is taken as the baseline. CPUs are ubiquitous and support FP32
precision while most GPUs and NN accelerators support FP16 or
INT8 precisions. Thus we use FP32 precision for the comparison of
the CPUs and FP16 and INT8 precisions for comparing the GPUs
and NN accelerators.

Figure 2(a) shows the relative performance of various CPUs (for
FP32 precision) while figures 2(b) and (c) shows the relative perfor-
mance of GPUs and NN accelerators (for FP16 and INT8 precisions)
available in the target platforms when executing the NN models
described in Table 1. The observations in figure 2 indicate that the

AGX NX TX2 VIM3 NANO H2 M1
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Figure 2. Normalized Inference Time performance for Xception,
MobileNet-V2, ResNet-101 and Yolov3 workloads on various target
platforms. Yolov3 with INT8 precision was not supported on Nvidia
AGX and NX platforms.

relative performance ordering of target platforms, as determined
through actual measurements, exhibits deviations from the perfor-
mance ordering obtained via roofline analysis. The ARM Carmel
CPU and 512-core Volta GPU present in the AGX platform is found to
be the best performing CPU and GPU in terms of throughput (consid-
ering only the inference time) with 10.69× increase in cost compared
to the baseline.

Inference time based Performance Ordering :

CPU (FP32): AGX (3.94) > H2 (2.08) > NX > (1.98) > TX2 (1.8) >
VIM3_Big (1.1) > M1 (1) > Nano( 0.98)
GPUs and Accelerators (FP16): AGX (24.61) > NX (14.74)>
AGX_DLA(8.45)> NX_DLA(7.62)> TX2 (5.64)> NANO (1.89)> H2 (1.74)
> NCS2 (1.64) > M1 (1)
INT8: AGX (12.61) > NX (7.81) > AGX_DLA(3.89) > NX_DLA(3.69 )>
VIM3_NPU (1.29) >M1_NPU (1) >M1_GPU (0.089) > VIM3_GPU (0.057)

Next, we analyse the Total Time metric. The total time met-
ric encapsulates the end-end latency, encompassing the sequen-
tial steps of image loading, pre-processing, inference, and post-
processing, required to classify an input image.

AGX NX TX2 VIM3 NANO H2 M10.0
1.0
2.0
3.0
4.0

(a) CPU (FP32)

Normalized Total Time Performance
Xception Mobilenetv2 Resnet101v2 Yolov3 Average
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0
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2
3
4 (c) GPU and NN_ACC (INT8)

Figure 3. Normalized Total Time performance for Xception,
MobileNet-V2, ResNet-101 and Yolov3 workloads on various target
platforms. Yolov3 with INT8 precision was not supported on Nvidia
AGX and NX platforms.

For the same set of GPUs and NN accelerators, when the met-
ric considered is end-to-end latency (Total time) instead of
inference time, the variation in the relative normalized perfor-
mance changes and is much lesser than the performance reported
through the inference time metric. As observed, the relative per-
formance improvement of AGX GPU drops down to 11.64× from
24.61× and similar trends can be be observed from figures 2 and 3
for other GPUs and accelerators as well. End-to-End latency encom-
passes the image loading time, pre processing and post processing
time in addition to the inference time. All the operations except
the inference operation are executed on the CPU. The significant
reduction in the relative performance degradation can be attrib-
uted to the fact that even though the GPU/accelerator performs the
inference operation very efficiently, the driving CPU becomes the
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bottleneck and thus there is a reduction in the final performance.
Another example is the VIM3 platform with big.Little asymmet-
ric CPU cores, the total time taken for a NN inference on GPU
with little core as the supporting CPU is 1.12× more than when
using big core as the supporting CPU. When using NPU accelerator,
this effect becomes more pronounced and increase in total time on
an average is 1.3× higher. Thus the impact of driving CPUs
potential should also be accounted for quantifying the
achieved performance and the end-to-end latency is an
appropriate metric to capture this impact.

Another factor that can affect the performance are the software
run time libraries. Suboptimal run time library implementa-
tions can hinder the performance improvement. Among the various
runtime libraries used in this study, ARMNNs GPU implementation
provides abysmal performance for INT8 quantization. Figure 3(c)
clearly depicts this impact. We observe that when compared to the
baseline, VIM3 and M1 GPUs are 12.5× and 7.8× slower.

Total time based Performance Ordering :

CPU (FP32): AGX (3.64) > NX (2.04) > H2 > (2.02) > TX2 (1.8) > NANO
(1.03) > VIM3_Big (1.01) > M1 (1)
GPUs and Accelerators (FP16): AGX (11.64) > NX (9.66)>
AGX_DLA(4.69)> TX2 (4.62) > NX_DLA (4.03)> NANO (1.76) > H2
(1.6) > NCS2 (1.56) > M1_NPU (1)
INT8: AGX (3.62) > NX (2.75) > AGX_DLA(2.38) > NX_DLA(2.08 )>
VIM3_NPU (1.78) > M1_NPU (1) > M1_GPU (0.13) > VIM3_GPU (0.08)

Next we analyze the Energy Consumption metric. Figure 4
shows the energy consumption of various workloads on the target
platforms. We observe that NX is the best performing platform
in terms of energy consumption when using GPU or NN accel-
erator to employ inference. Across all the target workloads, the
energy consumed on NX GPU is on average 35.5% lesser than the
baseline(M1_NPU). As mentioned earlier, due to poor INT8 GPU
implementations of the ARM NN framework used in VIM3 and
Odroid M1, the energy consumed by the GPUs of VIM3 and M1 on
an average is 22.84x and 9.54x higher than the baseline. Measure-
ment results indicate that across all the target platforms, employing
inference using multicore CPU always result in higher energy con-
sumption than using GPU or NN-accelerator except for the case
of inference using ARM NN framework with INT8 quantization,
the multicore CPU consumes less energy (1.6-2.7x) than its GPU
counterpart. The NVDLA accelerator present in the Nvidia’s AGX
and NX platforms is not capable of executing all the layers of the
NN model. It falls back to the GPU to execute the unsupported
layers. We observe that when we use NVDLA to employ inference
the energy consumed is ≈ 1.3x more than when using only GPU to
employ the inference on the same platform.

Energy consumption based Ordering :

CPU (FP32): AGX (0.78) < NX (0.91) < M1 (1) < TX2 < (1.14) < H2
(1.18) < NANO (1.2) < VIM3_Big (1.35)
GPUs and Accelerators (FP16): NX (0.36) < NX_DLA (0.45) < AGX
(0.64) < AGX_DLA(0.91)< TX2 (0.86) < NANO (0.89)< M1_NPU (1) <
NCS2 (1.16) < H2 (2.47)
INT8: NX (0.74) < NX_DLA (0.9) < M1_NPU (1) < AGX(1.39) <

AGX_DLA(1.9) < VIM3_NPU(1.18) < M1_GPU (9.54) < VIM3_GPU
(22.84)

AGX NX TX2 VIM3 NANO H2 M1
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Figure 4. Energy Consumption for Xception, MobileNet-V2,
ResNet-101 and Yolov3 workloads on various target platforms.
Yolov3 with INT8 precision was not supported on Nvidia AGX
and NX platforms.

Average Temperature is another closely related metric. Most
of the edge devices are small form factor devices with minimal
cooling capability and thus continuous usage can lead to rising
platform temperatures. Higher temperatures reduce the lifetime of
the device and thus it is essential to consider hardware platforms
having better thermal management solution. Figure 5 shows the the
relative average temperature of all the platforms comparison to the
average temperature of the baseline. We can clearly observe from
figure 5 that Odroid-H2-NCS platform performs poorly in terms of
thermal management and the average temperature can be as high
as 85 ◦C while for the same workload, AGX, NX, and Odorid-M1
perform well and are ≈ 35-40 ◦C lesser than that of H2-NCS. It can
also be seen that average temperature in general is less (1-2 ◦C)
when using NN-accelerator for employing inference.
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Figure 5. Relative Average Temperature averaged across work-
loads in comparison to the baseline(Odroid-M1) on various target
platforms.

Based on the above first order metrics, we derive and propose a
new metric called Energy-Delay-Cost Product (EDCP) to mea-
sure the cost-effectiveness. EDCP is computed as the product of
energy consumption, end-end latency and the cost of the target
platform. Lower the EDCP, better the cost-effectiveness of the tar-
get platform. We provide below the relative EDCP (averaged across
the workloads) ordering of the target platforms. For comparison,
we use the EDCP obtained with fastest processor available in the
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target platform. We observe that Odroid-M1 platform performs best
in terms of EDCP.

EDCP based Ordering :
M1 (1) < VIM3 (1.92) < NX (2.32) < NANO (4.93) < NCS2 (6.01) < AGX
(7.86) < TX2 (11.13) < H2 (15.38)

5.3 Software Stack performance analysis
There can be more than one software framework available to run
NN inferences on a given hardware platform. These software stacks
do (a) model compression: Fusion of neural network layers,
pruning of weights based on magnitude, quantization of 32 bit
floating point weights, are typically part of these optimization
pipelines. Table 3 shows the size of different NN models when a
framework compresses the original NN model from 32 bit floating
point precision, to 16 bit floating point or 8 bit integer. The stacks
also do (b) hardware mapping:Mapping of the optimized neural
network functions to efficient kernels for the accelerator hardware,
is also done by the software stack, e.g. using CuBlas or CuDNN
kernels for inferences on NVIDIA GPU running CUDA code, or
using Intel MKL linear algebra functions for faster inferences on
Intel processor based boards.

NN Models TensorRT (MB) Openvino (MB)
FP32 FP16 INT8 FP32 FP16

MobilenetV2 14.6 7.5 4.3 14.2 7
Resnet-101 280.4 90 46.6 178.5 89.1
Xception 93 47.1 25.8 91.5 45.7

Table 3. NN model size with vendor-provided SW framework

The software frameworks are generally of two kinds: (a) generic
frameworks: Software giants like Google offer TFLite for running
ML inferences on ARM based Android smartphones and other
edhe devices. AutoTVM and AutoScheduler are similar generic soft-
ware stacks from Apache supported Open Source community. The
other category is (b) hardware specific frameworks: Typically,
the hardware vendors provide a software stack for their product.
For example, ARM has developed the ARMNN C++ library, and
PyARMNN Python wrapper on ARMNN. TensorRT is the recom-
mended software stack from NVIDIA to run NN inferences on the
NVIDIA GPU cores. Acuity toolkit is a software given by NPU
processor vendor, for VIM3 board NPU. KSNN is another software
framework given by the hardware vendor building the VIM3 em-
bedded board itself, integrating NPU with CPU cores and other
peripherals.

Thus once an edge application developer chooses an embed-
ded platform to balance the cost-performance-energy-thermal
trade-offs, he might be left with a secondary choice in terms of
which software framework to use. We empirically examine this
secondary choice next, and its implications on the various metrics,
using different software stacks for a given platform.
Effect of SW framework choice on performance metrics for
a given hardware platform
(a) Throughput gap across software frameworks for a
given hardware platform: Figure 6 shows the throughput for
two NNs, Densenet and Xception, on a particular edge hardware
platform Odroid M1, which has both CPU and GPU cores from
ARM. As mentioned above, ARM offers a C++ inference library
ARMNN and a Python wrapper on top of it, namely PyARMNN,
as software frameworks for fast NN inferences. Google’s TFLite

framework can also be used on this platform, for running CPU in-
ferences, not GPU. ARMNN and TFLite can use one to four threads
on the four CPU cores, whereas PyARMNN supports only single
CPU thread.

ARMNN is thus the best among the three compared software
frameworks, in terms of supporting both CPU and GPU, and also
multi-threaded inferences on CPUs. The throughput achieved by
ARMNN and PyARMNN are the same, and higher than TfLite,
for both NN models. Thus different software stacks give different
throughputs on the same processor core for a given hardware plat-
form, and the hardware vendor’s stack outperforms the generic
software stack TfLite.
(b) Do vendor provided framework give highest throughput
for all platforms? We next examine whether this observa-
tion that hardware vendors give the most optimal software stack for
their platforms/processors, in terms of throughput, that held true for
ARMNN stack on Odroid M1 board above, is true in general. We
examine the same two NNmodels (DenseNet and Xception) and the
same three software frameworks (ARMNN, PyARMNN and TfLite)
now on the VIM3 board. VIM3 board also comprises ARM CPU
and GPU cores. The throughput values are shown in Figure 7. Here
ARMNN still has the advantage of supporting both CPU and GPU,
and also multi-threaded programs on CPU, as in Odroid. However,
on VIM3, TfLite gives much higher throughput for both NN models,
compared to both ARMNN and PyARMNN, which is in contrast to
what we observed in Odroid M1 earlier.

There is thus no generalizable observation that hardware ven-
dors such as ARM know their hardware platforms the best, and
therefore can extract maximal performance from the hardware.
Generic software stacks like TfLite offered by software companies
like Google can outperform hardware vendor stacks, as seen here
for VIM3 platform.

The Odroid M1 and VIM3 boards have less powerful processors,
that can give at most 6-7 FPS with any software framework. The
performance gap across software stacks on these less powerful
boards is therefore only of 1-2 FPS. More dramatic differences can
be seen in powerful edge platforms like NVIDIA AGX. Figure 8 first
plot shows Xception model throughput for NVIDIA stack TensorRT
and a generic stack AutoScheduler. The throughput gap is 400
FPS (AutoScheduler) vs. 150 FPS (TensorRT) for FP16, and 600 FPS
(AutoScheduler) vs. 200 FPS (TensorRT) for INT8. While TensorRT
is by default included in the software packages, when an application
developer buys an NVIDIA edge platform, he should really examine
open source software alternatives like AutoScheduler, to not miss
a possible throughput jump of several hundred FPS!
(c) Are frameworks from hardware vendors optimal for
thermal and energy constraints?A throughput jump of several
hundred FPS, as seen on NVIDIA AGX GPU using AutoScheduler
software stack instead of NVIDIA TensorRT, might be suspected
by some application developers to have significant trade-off in
terms of much higher temperature rise and energy usage. The
second and third plots in Figure 8 removes this suspicion, showing
AutoScheduler gives only slightly higher or the same temperature
as TensorRT, whereas using significantly less energy per frame.
AutoScheduler is really a very well implemented software library
for NNmodel optimization andmapping the NN operators to CUDA
kernel functions, and is significantly better than the software stacks
developed by hardware vendors for all performance metrics.
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Figure 6. ARMNN and PyARMNN gives higher throughput than TFLite on the Odroid M1 board’s CPU.
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Figure 7. ARMNN and PyARMNN gives lower throughput than TFLite on the VIM3 board’s CPU.
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Figure 8. TensorRT gives lower throughput, comparable temperature and higher energy than AutoScheduler on the NVIDIA AGX GPU.
Hardware vendor stack is worse than generic stack in both throughput and energy.

(d) How does various frameworks perform w.r.t Accuracy?
The TensorRT library that powers the NN execution on the Nvidia
GPUs provides ≈81.6% accuracy for the Xception model with FP16
precision while the Intel’s OpenVINO provides ≈80.92%. ARM NN
provides a close ≈79.17% accuracy for FP32.

Precision vs Accuracy: Across all the runtimes studied,
for Xception model, accuracy loss is insignificant (≈0.02-0.04%)
when using reduced precision (FP16) instead of FP32. While using
INT8 quantization, the drop in the accuracy is in the range of 2-
2.4% across most runtimes. However, for tflite models running on
Nvidia’s CPUs, the accuracy loss when moving from FP16 to INT8
is quite high (≈15%). The accuracy provided by accelerator run-
times like KSNN and RKNN is 2̃-3% lesser than the TensorRT and
OpenVINO™. Similar trends are observed for MobileNet-V2 and
ResNet-101 workloads as well. The accuracy values for MobileNet-
V2 are in the range of 69.8-74.2% (for FP16) and 63.8-72.7% (for
INT8). For ResNet-101, it is in range of 71.2-75.2% (for FP16) and
69.3-74.9%(for INT8).

6 Concurrent execution on Heterogeneous
Co-processors

Most of the current generation edge devices containmultiple generic
processors like CPU and GPU and one or more specialized NN
accelerators like DLA, VPU and NPU. Section 5 and Section 5.3
empirically measure the performance of each of these processing
elements in isolation (solo), i.e. running NN inference on single
processor/accelerator at a time. This leaves other processors under-
utilized. In this section, we examine concurrent execution of NN
inferences, using more than one processing element and analyse
how different target platforms support concurrent execution. The
purpose of this study is to understand how effectively the resources
in the platform can be leveraged under practical constraints.

6.1 Experimental setup for concurrency analyses
The GPU and DLA processing elements in Nvidia’s AGX and NX
are both provided by NVIDIA. Similarly, the CPU, GPU proces-
sors on Odroid-H2 as well as the NCS-2 accelerator are provided
by same vendor, Intel. These two boards are thus homogeneous
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vendor devices. In contrast, Khadas VIM3 with ARM big.LITTLE
CPU architecture and Mali GPU, have CPU and GPU from the same
vendor ARM, but its NPU accelerator is provided by a different ven-
dor VeriSilicon. It is thus a heterogeneous vendor device. The
software stacks usable on an edge platform depends on whether
the processor cores are from homogeneous vendor or heteroge-
neous vendor. Nvidia platforms (AGX and NX) can use the same
software framework TensorRT while Intel’s Odroid-H2 and NCS2
can use OpenVINO™ to run NN inferences on all the available
co-processors. VIM3, however, has to use ARMNN/PyARMNN for
NN inferences on the ARM CPU/GPU cores and Acuity/KSNN
framework for employing NN inferences on the NPU. For this con-
currency study, we choose (a) Intel Odroid-H2 along with Neural
Compute Stick2(NCS2) (connected via USB3.0) and (b) Khadas VIM3,
to have a mix of homogeneous and heterogeneous platforms and
are of similar price range.

6.2 NN performance through concurrent execution:
It is imperative that when more than one processor is employed
for NN inference, higher NN inference performance is expected
compared to solo runs. We now examine whether this expectation
of higher performance is met, using two different concurrency
strategies across the co-processors: (a) data parallel or data-wise
workload allocation and ((b) task parallel or NN layer-wise
workload allocation.

6.2.1 Concurrent NN inferences using Data-wise Workload
Allocation (DWA) An intuitive way of splitting input data among
the processors is as follows. If the processor A is 𝑥 times faster than
processor B in solo runs, the data is divided in the ratio of 𝑥 : 1 to A
and B respectively when used together. OpenVINO’s MULTI plugin
splits workload across the available co- processors in the platform
following this heuristic. E.g. ResNet-101 concurrent inferences us-
ing both CPU and GPU on H2 will have 5.17× more data for GPU,
while VPU-CPU concurrent inferences will have 3.99 × more data
for VPU. On the heterogeneous VIM3 board, due to unavailability
of unified framework, we manually perform this workload split
among the CPU, GPU and NPU, using a combination of ARMNN
and KSNN frameworks. We make the following observations:
(a) Odroid-H2 + NCS2 : DWA concurrency reduces inference
latency but increases energy consumption. Figure 9 shows
the results of DWA concurrency onOdroid-H2. All three NNmodels
show improvement in total run-time compared to best performer
in solo runs. Xception achieves 42.8% lower run-time on GPU-VPU
DWA compared to GPU solo (fastest solo). Using all the available
processors (CPU, GPU & VPU) the total run-time improvement is
35.14% while CPU-GPU and CPU-VPU do not achieve any improve-
ment (-0.1% and -4.7% ). On MobileNet-V2 similar trends can be
observed. On ResNet-101 also, VPU-GPU achieve 35.7% improve-
ment while combination using all the processors achieve 30.44%
improvement. Combinations involving CPU do not achieve any
notable improvement, instead CPU-GPU report a degradation of
79.6%.

DWA concurrency increases energy consumption on Odroid-H2
(Figure 9), as more processors working parallely draw more power.
The GPU-VPU has the best trade-off for all the models in-terms of
total run-time improvement and energy utilization. E.g., MobileNet-
V2 uses 35.2% more energy than VPU solo while achieving 44.5%
improvement in run-time. CPU-VPU also shows similar increase in
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Figure 9. Effect of DWA inference on Energy& run-time for Odroid-
H2. The values are plotted w.r.t most efficient inference in solo
run/model. The negative values indicate the % improvement and
positive values show degradation. x-axis represents the processors
involved in the split, i.e. CPU, GPU & VPU.

energy utilization, but improvement in run-time is very negligible.
For all other DWA combinations i.e. CPU-GPU and CPU-GPU-
VPU the improvement in run-time is overshadowed by increase in
energy utilization, thus making them less likely choice for DWA
execution. E.g in CPU-GPU-VPU the energy utilization for ResNet-
101 increases by 860.8% with only 30.44% improvement in total
run-time.
(b) VIM3: DWA concurrency increases both inference
latency and energy. In Figure 10a, we can observe that VIM3
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Figure 10. Inference latency and energy in Khadas-VIM3 under
DWA concurrency. Axes are similar to Figure 9. The number with
each processor are the threads used. B & L represent the Big and
Little CPU cores used.
does not show inference time improvement on any of the NNmodel
workloads compared to the solo best performance, in contrast to
Odroid. Xception & ResNet-101 show a meager run-time improve-
ment of 4.8% & 7.4% respectively on CPU (2 threads)-NPU DWA.
The remaining combinations show huge degradations in runtime.
E.g. for Xception using all the available processors, the run-time
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degrades by 58.4%. Similarly on MobileNet-V2, the degradation in
total run-time ranges from 1.8% to 205%, while as on ResNet-101
the degradation reaches up-to 497%. Energy numbers are also not
promising for DWA concurrency on VIM3 (Fig. 10b). ResNet-101
shows the degradation of 21.9% while Xception & MobileNet de-
grades at 10.8% and 6.9% respectively, w.r.t their solo performance
on NPU. Combinations involving NPU consume less energy, as NPU
is highly energy efficient and gets maximum share of input data
for inference as it is also the fastest among the three processors.
(c) Why does DWA concurrency degrade both latency and
energy on VIM3? DWA concurrency affects processor perfor-
mance, as shared resources like DRAM, cache and buses cause
contention among the different processors. On VIM3, all three pro-
cessing elements CPU, GPU and NPU are on the same chip, each
having very less internal memory and shared access to DRAM,
causing significant contention during concurrent processing.
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Figure 11. Degradation of individual processors in various DWA
schemes on VIM3. For every processor in any DWA scheme, values
are plotted w.r.t its performance in solo runs. x-axis represents
processors

In Figure 11a, the minimum degradation of execution time is
reported in CPU-NPU combination where CPU shows average
degradation of 3.7% and NPU 9.6%. In all other DWA schemes
involving CPU, the degradation ranges from 28% to 38%, making
CPU the least preferred choice to be used in co-processor execution.
NPU being the fastest processor in solo inference, still gets degraded
at similar rate as CPU. Figure 11b shows that NPU is also worst
effected in pre-processing time, being 87% to 138% slower than
NPU solo. This possibly results from the fast rate at which the
NPU accelerator requires pre-processed inputs, increasing resource
contention.
(d) But why does resource contention not degrade NN
inference latency on Odroid-H2? Individual processor perfor-
mance gets degraded compared to solo execution, also in Odroid-H2
concurrency (Table 4). In CPU-GPU DWA combination the GPU is
most penalized at 15% for MobileNet-V2, 25.34% for ResNet-101 and
19.5% for Xception. However, the maximum degradation of VPU

is just 0.7% in GPU-VPU combination for Xception. The negligible
degradation in VPU run-time performance is due to the fact that
VPU is off-chip and has its own internal memory that can hold a
fairly large NN model like ResNet-101 or Xception, thereby not
requiring frequent memory accesses like in case of CPU or GPU.

6.2.2 Concurrent NN inferences using Layer Wise Work-
load Allocation (LWA) In LWA, different layers of NN model are
executed on different co-processors such that workload division
takes place at NN layer level. We experiment with several schemes
to split NN layers among processors. ❶ LWA-default scheme,
where all layers supported on the fastest processor are run there,
and slower processors are used for unsupported layers. ❷ LWA-R
scheme, where the layer of NNmodel having lowest runtime on any
processor is mapped on that processor. ❸ LWA-P scheme, where the
top-n layers of the NN model having the highest number of param-
eters, or the compute subgraph with highest number of parameters
are mapped on to the fastest processor. ❹ LWA-C scheme, the top-n
layers of the NN model having the highest compute (GFlops) are
mapped on to the fastest processor.
(a) LWA is slower than solo inference on the fastest
processor Table 5 shows the average inference time (AIT) and end-
to-end time (E2E) for solo runs and LWA-R inference on Odroid-
H2. It must be noted that for MobileNet-V2 the LWA-R inference
performs worse than all solo runs, i.e. 52.8% lower than CPU (solo
worst). For ResNet and Xception the improvement in AIT can only
be seen with respect to CPU (slowest solo). It results in performance
degradation of 50.3% and 69.4% for ResNet-101 and Xception of AIT
when compared to the fastest solo device.
(b) Why does LWA degrade inference and end-to-end latencies?
Inter processor communication can be a major limiting factor in
LWA. As seen from Table 5, the inter processor communication
takes place 25 times in MobileNet-V2 i.e. 25 times the subsequent
layers are mapped on different processors. Similarly for Xception
and ResNet-101 the inter processor communication takes place 13
and 63 times respectively. In terms of run-time it acts as a limiting
factor as the intermediate layer outputs are to be transferred back
and forth between the processors. The overhead for this transfer is
non-trivial and amounts to about 2.5% to 25% of end to end time.
(c) Is subgraph based LWA, that reduces transfers across
processors, faster? Table 6 shows inference time for LWA-P
scheme on Odroid-H2. In this scheme the top-𝑛 layers with highest
parameters are mapped to the secondary device, and other layers of
the model are run on the primary device. E.g. if the LWA-P is used
with CPU-GPU, the top-𝑛 parameter layers will be mapped to GPU
(secondary device) while CPU (primary) will run all other layers. We
compare this with the sub-graph allocation of highest parameters on
secondary processor. A sub-graph is chosen as 𝑛 continuous layers
from the network having highest parameters or any other metric.
Table 6 shows values for 𝑛 = 5. In all cases, the mapping of top-1
sub-graph performs better than top-5 parameter layer mapping.
Top-5 parameters layers are random in NN compute graph, and
results in maximum of 𝑛 × 2 transfers between the primary and
secondary processors. But top-1 sub-graph only involves 2 transfers
between primary and secondary processors (for any n), and has
much lower latency.

As observed, an edge platform like VIM3 shows no performance
improvement in terms of NN inference throughput, whenmore than
one processor are used concurrently. We therefore ask the pertinent
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NN Models CPU[2] GPU[2] CPU[2] VPU[2] GPU[2] VPU[2] CPU[2] GPU[1] VPU[1]
CPU GPU CPU VPU GPU VPU CPU GPU VPU

MobileNet-V2 8.08 9.69 2.7 3.95 2.85 3.99 4.36 7.55 3.22
Resnet101 10.8 21.4 0.45 0.87 0.12 1.39 8.58 16.67 3.44
Xception 11.86 17.88 1.11 0.47 1.38 1.55 11.75 17.77 1.32

Table 4. Percentage degradation of inference time when run in split compared to solo run for Odroid-H2

NN Models CPU GPU VPU 𝐷𝑒𝑣𝑖𝑐𝑒𝑚𝑖𝑛

AIT (ms) E2E (s) AIT (ms) E2E (s) AIT (ms) E2E (s) AIT (ms) E2E (s) Transfers
MobileNet-V2 17.83 140.02 8 100.3 12.52 117.31 33.71 295.49 25
Resnet101 327.35 1689.23 86.82 517.22 48.99 298.9 97.32 612.64 63
Xception 398.13 2053 141.97 779.62 185.43 1019.02 214.3 1173.71 13

Table 5. Run-time analysis of LWA-R scheme. CPU, GPU and VPU represent the average inference time (AIT) in ms and End to End time
(E2E) in s for solo runs while as 𝑑𝑒𝑣𝑖𝑐𝑒𝑚𝑖𝑛 show the LWA-R execution.

NN Models
Top-5 parameter
layer CPU, GPU

Top-1 subgraph CPU,
GPU

Top-5 parameter
layer CPU, VPU

Top-1 subgraph CPU,
VPU

Top-5 parameter
layer GPU, VPU

Top-1 subgraph GPU,
VPU

AIT (ms) E2E (s) AIT (ms) E2E (s) AIT (ms) E2E (s) AIT (ms) E2E (s) AIT (ms) E2E (s) AIT (ms) E2E (s)
MobileNet-V2 31.28 215.04 29.27 204.91 30.9 219.04 28.5 206.4 15.6 133 13.9 125.6
Resnet101 354.4 1840.26 345.7 1792.61 355.5 1851.6 350.4 1812.5 128.6 723.3 120.1 679.5
Xception 410.14 2118.14 406.6 2098.71 412.14 2129.4 410.9 2115.4 190.64 1030.2 180.4 979.1

Table 6. Run-time analysis of LWA-P scheme. Top-5 parameter layers represent the layers with highest no. of parameters while as Top-1
sub-graph is the sub-graph of 5 layers with highest parameters. The processor combination in row-1 is in the form of primary, secondary.

question, Is there any benefit in having multiple processors in this
kind of edge platform, (increasing cost and programming complexity)
at no added performance improvement under concurrent execution ?
We answer this using a concrete application use case in the next
section, demonstrating that heterogeneous co-processors can be
useful to achieve other kind of metric trade-offs in real applications,
even if a particular metric like throughput cannot be boosted.

Observations: ❶ DWA works better with off-chip co-processors (e.g.
Odroid-H2+ NCS2), compared with device with all on-chip accelerators
(e.g. VIM3). All on-chip processors are likely to increase the contention,
thereby delaying the access to the inputs for every inference. ❷ If speed
disparity across processors of a particular board is high, it is unlikely that
the DWA scheme will achieve any notable benefit. This is seen in Odroid
H2’s slow CPU, which gave negligible improvement when combined
with much faster GPU or VPU. ❸ LWA performance suffers from inter-
processor communication, that degrades performance compared to solo
run on the fastest processor.

7 Application case study: Vehicle Detection on
Indian Traffic Dataset

This section demonstrates a concrete use case of vehicle detection
on Indian traffic dataset using intersection cameras, where heteroge-
neous co-processors on an edge platform, can be intelligently used
by an application developer, to achieve interesting accuracy-latency
trade-offs.
What is the application and associated NN task? What
are the important metrics? Traffic at intersection of develop-
ing country like India is chaotic and non-lane based. There are
multiple rule violations like jumping the red light, which traffic
police tries to catch with intersection cameras and fine the vehicle.
Detection of vehicles is the NN task, for which an object detection

NN like YOLO[43] needs to be used. Figure 12a shows sample im-
ages from a dataset we have collected in collaboration with Delhi
traffic authorities.

Metrics of importance depend on the traffic density, which varies
with time of the day – like low density during early morning time,
high density during peak office hours, and moderate density other-
wise. Vehicle detection should run at high FPS during low traffic
density, as vehicles are moving fast and the scene is changing
quickly. During high traffic density, it is acceptable if vehicle detec-
tion is slow, as the scene hardly changes. However, the detection
precision in high traffic should be high, as many objects stand in
close proximity. Thus target application metrics are high FPS in
low traffic density, and high precision with allowance for low FPS
in high traffic density.

(a)

(b)

Figure 12. Intersection camera dataset sample images from Delhi
India in (a) showing low, medium and high traffic densities. Appli-
cation workflow in an edge platform like VIM3 in (b). PE denotes
processing elements, e.g. NPU and GPU in VIM3.
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How can heterogeneous processors on an edge device
balance these metrics? Table 7 shows the execution time in
seconds to process 200 images per traffic density category, through-
put in frames/second and average precision, of running YOLO V3
object detection model on Khadas VIM 3 GPU and NPU processors.
We see that the NPU is almost 9 times faster than the GPU, with
lower execution time and higher throughput. But the GPU has very
high precision even on high traffic density frames, as it uses FP32,
whereas the NPU can only run INT8 quantized models. NPU INT8
model gives good precision in low traffic density, as vehicles are
sparse and easier to detect. GPU can therefore be used when high
precision is needed in high traffic, and NPU can be used when high
throughput is needed in low traffic.

Metrics GPU NPU
High Medium Low High Medium Low

Execution Time (s) 272.59 259.897 261.304 29.517 32.551 27.62
Throughput 0.73 0.77 0.77 6.78 6.14 7.24
AP @ 0.75 96.3 95.6 92.6 90.1 92.5 94.4

Table 7. Yolo-V3 performance for object detection on VIM3 plat-
form; Execution Time = Number of images * Total time(primary
metric) and AP refers to Average Precision. We use 200 images for
each traffic density.

Detecting traffic density at run-time is a computationally simple
task that can run on CPU, without using CNN, based on background
subtraction computer vision algorithm. Figure 12 shows the end-to-
end workflow for this application, where incoming frames are first
processed by CPU for traffic density estimation. If high density is
detected, the frame is passed to PE1 i.e. GPU in this case, which
will take time but give very precise output. If low traffic density is
detected, the frame is passed to PE2 i.e. NPU in this case, which
will give prompt output, with reasonable precision.

As shown, using the lowest performance processor CPU to mon-
itor application state (traffic density) and choosing between GPU
and NPU to balance precision-latency trade-off, all the three co-
processors on the VIM3 platform can be effectively leveraged for
end-to-end application management.

8 Summary
In this work, we perform empirical characterization of different
hardware platforms using a diverse set of NN models along with
different kinds of software runtime library frameworks. We show
in this article that it is important to consider the impact of driving
CPU’s potential for quantifying the true performance of the NN
accelerator. We introduce a new metric called EDCP to capture the
cost effectiveness of the heterogeneous platform. We also show that
hardware vendors might not be the best software runtime providers
for their own hardware platform . Finally we study how effectively
the co-processors in the platform can be leveraged and employ
different concurrency strategies for workload allocation across the
co-processors. In future, we plan to examine other workloads like
cryptographic workloads as platform security and data privacy are
also of paramount interest. Finally, we will continue to work with
field practitioners (like Traffic Police we collaborate with in Sec-
tion 7), so that these deep technical insights about edge platforms
and software stacks can be useful in practice.
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10 Appendices
Overview of prior NN Benchmark study
The detailed comparison of prior work w.r.t to the three aspects
(SW frameworks, quantization and workload allocation) along with
its evaluation objective is summarized below in Table 8.
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NN System
Benchmarks Evaluation criteria used

Quantization
Support

Workload
Allocation

SW frame-
work Anal-
ysis

DeepEdge
Bench [25] • Compares the performance of embedded devices like Raspberry

Pi, Coral Dev borad, Jetson Nano etc in-terms of inference time
and power consumption.

• Shows the effect of using dedicated AI processing units on
inference time versus CPU only inference.

✓ ✗ ✓limited

QuTiBench [27]
• Compare the variety of algorithmic optimization options par-
ticularly quantization.

• Help system level designers understand the limitations and
benefits of specific compute architecture.

✓ ✗ ✗

BenchIP [47]
• Micro bench-mark and macro bench-marks to evaluate single
layer networks and large industrial scale neural networks.

✗ ✗ ✗

Fathom [22]
• Benchmarks NNworkloads beyond CNNs and includes training
as well.

• Does not support heterogeneous hardware, advocates unified
software.

✗ ✗ ✗

MLPerf [42]
• Similar to Fathom, adds applications like sentiment analysis
and recommendation systems as target applications.

• Provides open models allowing algorithmic optimizations facil-
itating improvements for specific hardware architecture.

✗ ✗

DAWN
bench [30] • Evaluates time and cost (USD) of popular deep learning training

and inference workloads.
• Introduces a new metric time to accuracy (TTA).
• Exclusive ImageNet training and inference with very few eval-
uation metrics, like time required for the model to obtain Top-5
accuracy of 90% or above.

✓ ✗ ✗

Jongmin et
al [39] • Analysis of GPU accelerated edge devices comparing the per-

formance of Jetson Nano with Jetson TX2, GTX 1060 (Desktop
grade system) and Tesla V100 (server grade).

✗ ✗ ✗

Reuther et
al [44] • Comprehensive survey and benchmark of machine learning

accelerators in terms performance/power trade-off for wide
category of devices viz low power, embedded, autonomous,
data-center systems and cards.

✓ ✗ ✗

Table 8. Comparison w.r.t existing NN Benchmarks.


