
Repercussions of Using DNN Compilers on Edge GPUs for
Real Time and Safety Critical Systems: AQuantitative Audit
OMAIS SHAFI, Department of Computer Science and Engineering
Indian Institute of Technology, New Delhi, India
MOHAMMAD KHALID PANDIT, Department of Computer Science and Engineering
Indian Institute of Technology, New Delhi, India
AMARJEET SAINI, Department of Computer Science and Engineering
Indian Institute of Technology, Dharwad, Karnataka, India
GAYATHRI ANANTHANARAYANAN, Department of Computer Science and Engineering
Indian Institute of Technology, Dharwad, Karnataka, India
RIJUREKHA SEN, Department of Computer Science and Engineering
Indian Institute of Technology, New Delhi, India

Rapid advancements in edge devices has led to large deployment of deep neural network (DNN) based
workloads. To utilize the resources at the edge effectively, many DNN compilers are proposed that efficiently
map the high level DNN models developed in frameworks like PyTorch, Tensorflow, Caffe etc into minimum
deployable lightweight execution engines. For real time applications like ADAS, these compiler optimized
engines should give precise, reproducible and predictable inferences, both in-terms of runtime and output
consistency. This paper is the first effort in empirically auditing state of the art DNN compilers viz TensorRT,
AutoTVM and AutoScheduler. We characterize the NN compilers based on their performance predictability
w.r.t inference latency, output reproducibility, hardware utilization. etc and based on that provide various
recommendations. Our methodology and findings can potentially help the application developers, in making
informed decision about the choice of DNN compiler, in a real time safety critical setting.

CCS Concepts: • Computer systems organization→ Embedded systems; • Neural Networks→ Opti-
mizing inference.

Additional Key Words and Phrases: Deep neural network compilers, Performance predictability, Output
reproducibility

Authors’ addresses: Omais Shafi, Department of Computer Science and Engineering
Indian Institute of Technology, New Delhi, India, omais.shafi@cse.iitd.ac.in; Mohammad Khalid Pandit, Department of
Computer Science and Engineering
Indian Institute of Technology, New Delhi, India, khalid@cse.iitd.ac.in; Amarjeet Saini, Department of Computer Science
and Engineering
Indian Institute of Technology, Dharwad, Karnataka, India, amarjeets167@gmail.com; Gayathri Ananthanarayanan, Depart-
ment of Computer Science and Engineering
Indian Institute of Technology, Dharwad, Karnataka, India, gayathri@iitdh.ac.in; Rijurekha Sen, Department of Computer
Science and Engineering
Indian Institute of Technology, New Delhi, India, riju@cse.iitd.ac.in.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© Association for Computing Machinery.
XXXX-XXXX/2/-ART $15.00
https://doi.org/XXXXXXX.XXXXXXX

, Vol. , No. , Article . Publication date: 2.

https://doi.org/XXXXXXX.XXXXXXX

2 Omais Shafi, Mohammad Khalid Pandit, Amarjeet Saini, Gayathri Ananthanarayanan, and Rijurekha Sen

ACM Reference Format:
Omais Shafi, Mohammad Khalid Pandit, Amarjeet Saini, Gayathri Ananthanarayanan, and Rijurekha Sen.
2. Repercussions of Using DNN Compilers on Edge GPUs for Real Time and Safety Critical Systems: A
Quantitative Audit. , (2), 25 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Deep neural networks (DNNs) are increasingly becoming core components of safety critical appli-
cations such as advanced driver assistance systems (ADAS) [14, 24, 35], industrial control [8] etc.
Data streams from sensors like LiDAR, RADAR and multiple cameras are fed as inputs to various
DNNs that process the sensor inputs to orchestrate critical functionalities. For example, traffic
sign detection, lane departure warning etc. are important tasks performed by DNNs using camera
inputs, in an ADAS enabled car.

DNN models are trained offline, on powerful servers using large datasets, to execute certain tasks.
Typical DNN tasks comprise detecting multiple objects and creating bounding boxes around them
in an image (e.g. for locating pedestrians in front of a self driving car), or classifying the object
present in an image (e.g. for reading whether a road sign allows U turn in a self driving car). Such
a trained DNN model, after deployment in the application scenario, keeps performing the task it
is trained for, on unseen test data. This post-deployment continuous working of a DNN model is
called inference. We perform a quantitative audit of DNN inferences in this paper, as inferences
need to be fast, accurate and predictable, for appropriate functioning of the underlying real time
safety critical system.

DNN adoption in different cyber-physical systems has resulted in a tremendous spurt of hardware
accelerator production, for fast execution of these DNNs in constrained deployment scenarios
(within a self driving car, at an intelligent traffic intersection controller etc.). Emerging processors
and hardware accelerators, that can run DNN inferences, include CPU (Central Processing Unit),
GPU (Graphics Processing Unit), TPU (Tensor Processing Unit), NPU (Neural Processing Unit),
DPU (Data Processing Unit), FPGA (Field Programmable Gate Array), DSP (Digital Signal Processor)
etc. We specifically examine DNN inferences on embedded GPU platforms from Nvidia, which
due to their excellent performance per watt characteristic, are the dominant hardware platforms
adopted in automotive and other safety critical industries [7, 8].

Fig. 1. Hardware and software eco-system for DNN execution in real time applications like ADAS [14, 24, 35]
and industrial control [8].

Figure 1 visually depicts the hardware and software eco-system for DNN inferences in real time
applications like ADAS. The first row shows some sample tasks that DNNs are typically responsible
for. We use such tasks in this paper, as sample DNN tasks with real time requirements. The next
three rows show the components relevant for DNN training: row 3 shows many possible DNN

, Vol. , No. , Article . Publication date: 2.

https://doi.org/XXXXXXX.XXXXXXX

Repercussions of Using DNN Compilers on Edge GPUs for Real Time and Safety Critical Systems: AQuantitative Audit3

model architectures, that can be trained using one or more datasets listed in row 2, using one
of the DNN frameworks for model training listed in row 4. Row 5 shows intermediate compute
graph representations of a trained DNN model. The last row shows emerging hardware processors
and accelerators, for DNN inferences in constrained environments. GPU is highlighted, as the
experimental platform used in this paper. We run the Linux operating system on our Nvidia
embedded GPUs, and use highly optimized kernel functions from Nvidia’s extensive libraries
(CUDA, CuDNN, CuBLAS highlighted in row 7). These library functions perform linear algebra
and other mathematical operations like FFT, matrix multiplications and convolutions, for efficient
DNN inference execution using GPU cores.
The novelty of this paper lies in its unique characterization of row 6 in Figure 1, which lists

a variety of DNN compilers. This is a fast growing set of software tools, which ❶ takes as input
pre-trained DNN models in different formats like ONNX, ❷ optimizes the DNN model to maintain
accuracy at much lower execution time, and ❸ maps the operations of the optimized model to
hardware processor functions (with or without using existing libraries listed in row 7). This layer of
the software stack is becoming increasingly important with emergence of new hardware platforms,
and fast growth of new DNN models for an expanding set of real time applications. DNN compilers
seek to reduce the manual overhead of optimizing emerging DNN models for evolving hardware
platforms, by automating some of the optimization and hardware mapping steps.

Hardware vendors are aggressively working on commercializing DNN compilers for their specific
hardware platforms, so that adopting their processor or accelerator offering becomes easier for
application developers. Intel’s OpenVino™[4] and nGraph [18], Nvidia’s TensorRT™[9], ARM’s
Compute Library[1] and Qualcomm’s SNPE[10], are such hardware specific DNN compilers. Soft-
ware giants like Google and Facebook are also coming up with DNN compilers such as XLA [12],
TfLite [11] and Glow [3], that can optimize pre-trained DNN models for a variety of hardware plat-
forms. There are also open-source offerings in the field of DNN compilers, namely AutoTVM [17]
and AutoScheduler [38], which produce optimized DNN models for multiple hardware processors
and accelerators. While DNN compilers are increasingly being adopted by application developers,
there are surprisingly no prior quantitative audits of these software tools, in the context of safety
critical real time applications. We seek to bridge this important research gap in real time systems
literature, through careful experimentation and empirical analysis.
The optimized model created by the DNN compiler, is henceforth termed as DNN execution

engine. We frame a set of important metrics to characterize the DNN compilers and their compiled
engines — ❶ do the DNN engines perform accurate inferences? ❷ Given the same input, do the DNN
engines give same inference output, i.e. are the inference results reproducible? ❸ Do inferences
have low latency? ❹ Are inference latencies predictable? ❺ Do inferences optimally use hardware
resources, as promised by all DNN compiler vendors? ❻ Is the DNN engine building time using the
DNN compiler too long? We believe characterizing the DNN compilers based on these metrics, and
analyzing the trade-offs across these metrics, is vitally important, before inclusion of the compiled
engines in a safety critical system.

We make the following three important contributions in this paper.
❶ We identify the research gap in quantitative audit of DNN compilers, a fast growing software tool
adopted increasingly by application designers in safety critical domains. We define new metrics to
characterize and compare DNN compilers, before including their compiled engines in any cyber-
physical system.
❷ Using real hardware platforms with Nvidia edge GPU and server GPUs, a wide variety of DNN
models, and three state-of-the-art DNN compilers, we perform an extensive empirical analysis
of the compilers based on our defined metrics. To the best of our knowledge, this is the first

, Vol. , No. , Article . Publication date: 2.

4 Omais Shafi, Mohammad Khalid Pandit, Amarjeet Saini, Gayathri Ananthanarayanan, and Rijurekha Sen

work that does a in-depth analysis of all these DNN compilers with a lot of interesting insights
based on the various metrics. We make several novel observations such as: (a) DNN compiler from
hardware vendor manufacturing GPU, gives slower engines with worse resource utilization than
open source compilers, refuting the intuition that hardware vendors know their hardware best
and therefore can squeeze maximum performance from them. (b) None of the DNN compilers
are deterministic, i.e. the same DNN model compiled and optimized multiple times by the same
compiler, will generate different engines with varying execution times. (c) Not only does inference
latency vary across engines, the inference output can vary too i.e. two DNN engines compiled using
the same pre-trained model, can give different results on the same input image. We also analyze
the root causes behind these non-intuitive observations.
❸ We use the observations and results from the above experiments to quantify the impact of using
various DNN compilers on two real time safety critical applications, namely intelligent traffic
intersection control and ADAS, and also examine dependence of WCET for these applications on
DNN compiler choice. Our work will potentially help the application designers in the right choice
of DNN compilers that can be used in a safety critical scenario.

Organization of the paper: The rest of the article is organized as follows. Section 2 describes
the NN compilers examined by us. Section 3 discusses the hardware setup and NN models used
in our experiments. Section 4 examines DNN inference output correctness and reproducibility.
Section 5 analyzes the inference and compilation latencies along with the predictability of inference
latencies across different engines of NN models. Section 6 provides the impact of our findings on
real time applications, with WCET analysis. Section 7 illustrates the related work. We give final
recommendations and conclude the paper in Section 8.

2 Neural Network Compilers
In this Section, we describe the three Neural Network (NN) compilers which we have used for our
evaluation - namely TensorRT [9], AutoTVM [17] and Autoscheduler [38]. These take pre-trained
DNN models as input and generate highly optimized executables for the inference. Figure 2 shows
the overall steps of the three NN compilers used. We next discuss each one of them in detail.

Dead layer
 removal

Layer Fusion

Template based
mapping

Relay conversion

Relay Fusion pass

Search- Template
Based

Relay conversion

Relay Fusion pass

Runtime Automatic
generation

Pytorch Onnx Tensorflow Caffe

TensorRT AutoTVM AutoScheduler

Autotuning- ML
Based

Autotuning-ML
Based

 Quantization

Fig. 2. TensorRT, AutoTVM and AutoScheduler optimizations

, Vol. , No. , Article . Publication date: 2.

Repercussions of Using DNN Compilers on Edge GPUs for Real Time and Safety Critical Systems: AQuantitative Audit5

TensorRT: TensorRT [9] is an Nvidia tool used for DNN inference optimizations, specialized for
Nvidia GPUs. TensorRT performs the following steps on a given pre-trained model: ❶ Removing
unused layers ❷ Layer fusion, so that sequential operations are performed in a single kernel launch
thereby reducing the overhead of reading and writing tensor for individual kernel launch. TensorRT
identifies layers in the graph with common input data and filter size and merge them as single layer
such that it is launched as one kernel. ❸ Quantization where the 32 bit floats are quantized to 16
bit half floats or 8 bit integers, to make engines smaller and faster. ❹ Kernel mapping where
optimized NN layers are mapped to manually written highly optimized CUDA kernels.
AutoTVM: AutoTVM [17] optimizations can be leveraged on any hardware back-end like GPU
(Nvidia as well as others), CPU. FPGA etc. AutoTVM optimizations include ❶ Relay conversion

where the unoptimized model is converted to TVM’s internal high level graph format known as
Relay ❷ Relay Fusion Pass where TVM applies some high-level optimizations to the graph at the
Relay level, then lowers it into a low-level IR called Tensor Expressions (TE). At the TE level, the
computational graph is split into a set of subgraphs that the TVM engine determines are good
optimization targets ❸ Template based searching where TVM finds the order of operations for
computational tasks in the graph for fastest inference time ❹ ML based cost model guides the search
across pre-defined templates to be optimized for the chosen hardware platform. TVM constructs
a search space over candidate programs based on manual templates, and runs one of the meta-
heuristic based search algorithms (such as XGBoost, GA etc) with ML based cost model guiding the
search for a particular hardware back-end, to find the best schedule.
AutoScheduler: AutoTVM’s search approach improves optimization of the executable by a sig-
nificant amount. However developing templates requires substantial manual effort, and therefore
AutoTVM covers limited program structures as manually enumerating all optimization choices
for all operators as templates, is prohibitive. AutoScheduler based on Ansor [38], aims at fully
automating the scheduler for generating the high performance code for tensor computations with-
out manual templates. It is an improved version of AutoTVM which automatically generates the
search space for small sub graphs, eliminating the need to manually develop templates. It then
samples complete programs from the search space and performs fine-tuning on complete programs.
AutoScheduler avoids the significant manual effort required in adding the code for the templates.
For instance, the code repository of TVM already contains more than 15K lines of code for the given
set of templates. This number continues to grow as new operators and new hardware platforms
emerge.
NN compiler paramaters: We use FP16 quantization across all the compilers for our evaluation.
We set the number of iteration(𝑁) as 200 and the searching algorithm as Genetic Algorithm for
both AutoTVM and AutoScheduler. The number of iterations set is less than the recommended
value as these embedded boards are resource constrained devices and take a significant amount of
time if the number of iterations are set to a larger value. We show a representative execution by
increasing the number of iterations to 20,000 on V100 DGX, which is a server GPU. Increasing the
number of iterations improves the performance and will not impact our other observations based
on smaller values. Since TensorRT does not provide us knobs for the searching, we keep it with the
default setting.

There are some other NN compilers such as XLA [12], Glow [3], TC [31], nGraph [18]. However,
as examined by us, they have limited support either on the software side or the hardware which
they support. For instance, TC does not provide any quantization support and nGrpah support
only INT8 quantization. Further, nGraph supports only Intel GPU/CPU. XLA is integrated into
the Tensorflow framework that has a more intricate runtime compared to TVM. Therefore, in our
evaluation, we choose well known, widely used and supported NN compilers - TensorRT, AutoTVM
and AutoScheduler.

, Vol. , No. , Article . Publication date: 2.

6 Omais Shafi, Mohammad Khalid Pandit, Amarjeet Saini, Gayathri Ananthanarayanan, and Rijurekha Sen

3 Experimental Setup
In this Section, we enumerate the NN models and hardware platforms used in the experiments.
NN Models: We use multiple popular DNN models from the literature, regularly used in edge
inferences, for two classes of computer vision tasks - image classification models, object detection
models. We list these models1, along with their number of learned parameters (in millions) and
frameworks associated with training each network in Table 1. These wide variety of NN models
are needed to better characterize the optimized engines, as layer fusion, quantization and other
optimizations might affect the different NN model architectures in different ways.

NN Model Vision Task # Learned Parameters
Resnet-18 [37] Classification 11M
Resnet-50 [23] Classification 25.6M
Squeezenet [21] Classification 1.2M
Vgg-16 [29] Classification 138.4M

Inception_v3 [34] Classification 23.9M
Mobilenet_v2 [19] Classification 3.5M
Googlenet [30] Classification 7M
Densenet [20] Classification 8.1M
Yolov2 [36] Detection 8.85M

Retinanet [15] Detection 23.6M
Table 1. Neural network models used in the study

Hardware Setup: In a typical ADAS setup there are a number of cameras installed in a car capturing
input feeds from different angles. These data generators (typical edge devices) forward these frames
to edge GPUs installed in the car for inference. We evaluate the performance of NN models on
two such edge GPUs based on the Volta architecture - Jetson Xavier NXTM [6] and Jetson Xavier
AGXTM [5]. Such an architecture is common in any resource constrained cyber physical system
setup. We use a 384 core Xavier NX and 512 core Xavier AGX, with correspondingly larger numbers
of SMs and tensor cores, and RAM size in AGX (refer to Table 2) obtained using deviceQuery [2]
utility available on both the boards. It is worth noting that both of these embedded boards have
DLAs (Deep Learning Accelerators) onboard, which can be used to offload some jobs from the GPU.
However, because GPUs are more commonly available in edge devices than DLAs, we characterize
GPUs (excluding DLAs) for the execution of neural networks in this paper. On the systems software
part, we use an Ubuntu 18.04 Operating System, TVM v0.9, LLVM v13.0 along with cuda 10.1 for
our experimentation.

4 Are Inferences Accurate and Reproducible?
Real time applications are often safety critical. Using NN models for inferencing the object class in
an image or detecting bounding boxes for important objects in an image, should therefore be as
accurate as possible, for ensuring the reliability of the safety critical system. Accuracy depends
on the NN model architecture, the richness of the training dataset, the number of iterations or
epochs for which NN model training is conducted, and the similarity between the training data
and the unseen test data distributions. These factors affecting NN model accuracy during training
are beyond the scope of this paper, as we work with pre-trained models. Our focus instead is on
1https://pytorch.org/vision/stable/models.html

, Vol. , No. , Article . Publication date: 2.

Repercussions of Using DNN Compilers on Edge GPUs for Real Time and Safety Critical Systems: AQuantitative Audit7

Xavier NX Xavier AGX

CPU 6-core NVIDIA Carmel
ARM®v8.2 64-bit CPU
6MB L2 + 4MB L3

8-core ARM® v8.2 64-bit
CPU 8MB L2 + 4MB L3

GPU cores 384 (64 per SM) 512 (64 per SM)
SMs 6 8
Tensor
cores

48 (8 per SM) 64 (8 per SM)

L1 cache 128KB per SM 128KB per SM
L2 cache 512KB 512KB
Memory 8GB 128-bit LPDDR4x

51.2GB/s
32GB 256-bit LPDDR4x
137GB/s

GPU Clock 1.1 GHz 1.137 GHz
Table 2. Evaluation platforms with NVIDIA GPU

different NN compilers that optimize these pre-trained NN models. We examine whether the NN
compilers maintain the accuracy of the pre-trained models after optimization, and also whether
each inference result for a given input image is reproducible or deterministic for different optimized
engines.

4.1 Do optimizations retain the pre-trained model accuracy?
As discussed in Section 2, the NN compilers perform optimizations like quantization, pruning,
layer-fusion etc., which might lead to accuracy drop of the pre-trained unoptimized models. We
compare the accuracy of different optimized models obtained using the NN compilers, vs. the
accuracy of the unoptimized models, in Table 3. We use the Imagenet dataset [26] consisting of
1000 classes, for this inference accuracy and reproducibility analysis. To ensure fair comparison,
we use the same 16-bit quantization for all three compilers.

NN model Unoptimized TensorRT AutoTVM AutoScheduler
Resnet-18 71.96 71.96 70.46 70.46
Resnet-50 78.82 78.86 77.20 76.72
Squeezenet 61.32 61.24 58.26 58.26
Mobilenet_v2 73.60 73.56 71.68 71.68
Vgg-16 73.88 73.92 72.16 72.10
Googlenet 72.42 72.42 70.0 70.0
Densenet 79.70 79.74 77.90 77.90

Table 3. Top-1 Accuracy Comparison (in %) across different NN compiled models and unoptimized NNmodels.

We observe from the table that the unoptimized models have the highest accuracies, as expected.
However, the TensorRT optimized models are able to almost maintain the same accuracy as
unoptimized model. The other NN compilers, AutoTVM and AutoScheduler, have only a slight
accuracy drop of 1-3%, compared to the unoptimized models.

4.2 Do optimized engines give consistent output on same input?
We next discuss the consistency of the output labels across the different engines of the NN compilers.
We create three engines of the same model for each NN compiler. We then check the output

, Vol. , No. , Article . Publication date: 2.

8 Omais Shafi, Mohammad Khalid Pandit, Amarjeet Saini, Gayathri Ananthanarayanan, and Rijurekha Sen

mismatches across the three engines. While comparing mismatches across engine1-engine2, we
say there is a mismatch when engine 1 results in one predicted output for an image and engine 2
results in other predicted output for the same input image. We similarly count mismatches between
engine2-engine3 and engine3-engine1.
Top-1 accuracy reproducibility in TensorRT: We tabulate the results of output mismatches
across engines for TensorRT in Table 4. Though the pairwise mismatch values comprise only
0.1-0.8% of the total number of predictions, these results show that the TensorRT compiler does not
guarantee the same output compared to the original model, or across different TensorRT engines
for the same input image, even if all engines are built from the exact same pre-trained NN model
on the same hardware platform. Similar observations have been reported in our prior work [27].

NN Model Engines1-2 Engines2-3 Engines1-3
NX-Resnet-18 105 105 0
AGX-Vgg-16 269 0 269
AGX-Inception_v3 461 296 497
AGX-Resnet-18 243 224 183

Table 4. Top-1 mismatches across TensorRT engines

Top-5 accuracy reproducibility in TensorRT: Table 5 shows that there are no output mismatches
when we take top-5 accuracy across the engines. From this we infer, that an output prediction done
by engine 1 lies in top-5 output predictions done by engine 2.

NN Model Engines1-2 Engines2-3 Engines1-3
Resnet-18 0 0 0
Vgg-16 0 0 0
Inception_v3 0 0 0

Table 5. Top-5 consistency across TensorRT engines

To understand why top-1 accuracy is not perfectly reproducible between engine 1 and engine 2,
while top-5 accuracy is, we next check the probability values of output predictions generated by
engine 1 and engine 2. We compute the difference of probability values of engine 1 and engine 2 for
all the output mismatches for a representative execution of Resnet-18 and plot a histogram as shown
in Figure 3. We observe that the difference in the probability values of output predictions for engine
1 and engine 2 lies in the ballpark of only 0.001-0.007. This slight change in class probability values,
however, cause the engines to give different output labels for the same input image. The change in
output, with same input and same pre-trained model, might critically hamper the predictability
requirements of any safety critical real time system.
Is quantization responsible for output probability change?
The above results of top-1 output label mismatches in Table 4 use FP16 quantized TensorRT

engines. Table 6 additionally shows the same results for FP32 quantized TensorRT engines. We
observe that even with no quantization and the same FP32 precision as that of the pre-trained
model original weights, there are still significant output mismatches. Thus removing quantization
and using FP32 precision will not make TensorRT engines give reproducible outputs on a given
input. It will only significantly increase the runtime.
Caching Technique formaintaining output consistency in TensorRT:We present a technique
for reproducible TensorRT engines called caching, wherein exact same layer to kernel mapping

, Vol. , No. , Article . Publication date: 2.

Repercussions of Using DNN Compilers on Edge GPUs for Real Time and Safety Critical Systems: AQuantitative Audit9

0.001 0.002 0.003 0.004 0.005 0.006 0.007

Difference of probabilities
0

2

4

6

8

10

12

14

16

Co
un

t

Fig. 3. Small probability differences for output predictions for engine1 and engine2 in Resnet-18.

NN Model Engines1-2 Engines2-3 Engines1-3
NX-Resnet-18 87 85 89
AGX-Vgg-16 223 223 0
AGX-Inception_v3 275 161 347
AGX-Resnet-18 151 119 95

Table 6. Output mismatches for FP32 TensorRT engines

is maintained across engines. It helps mitigate the output inconsistency problem in TensorRT.
We dumped the layer to kernel mapping information into the file AlgorithmCache.txt. Upon
rebuilding the engine, instead of using the dynamic layer to kernel mapping (default in TensorRT),
we use mapping information from AlgorithmCache.txt file. This results in generation of repro-
ducible inference engines in TensorRT. Table 7 shows that the output mismatches do not arise if we
generate engines using the above method making the output determinism realizable in TensorRT
engines.

NN Model Engines1-2 Engines2-3 Engines1-3
NX-ResNet-18 0 0 0
AGX-Vgg-16 0 0 0
AGX-Inception_v3 0 0 0
AGX-ResNet-18 0 0 0

Table 7. Output mismatches across inference engines in TensorRT using caching technique

How AutoTVM/AutoScheduler ensures output consistency: We observed the output consis-
tency across the three engines for each model in AutoTVM/AutoScheduler and we found that there
are no output mismatches across the engines in either of them.

To illustrate why there are no output inconsistencies in AutoTVM/AutoScheduler, we present a
code snippet in Listing 1. The first line of the listing produces the output from the un-optimized
model and the second line is the output generated by the AutoTVM optimised model. The last
line of the listing actually is used as the correctness criteria by AutoTVM/AutoScheduler at each
step. It compares the output produced by unoptimised model with the optimised model and checks
whether the two outputs match within some precision (given by parameter rto1 in the Listing-1).

, Vol. , No. , Article . Publication date: 2.

10 Omais Shafi, Mohammad Khalid Pandit, Amarjeet Saini, Gayathri Ananthanarayanan, and Rijurekha Sen

Thus unlike TensorRT, AutoTVM and AutoScheduler explicitly handles the possibility of errors
introduced during kernel optimization, and rejects an optimized kernel if its computed value is
not within some acceptable threshold of the unoptimized kernel output. This keeps check on the
possible error accumulating in each optimization step, and keeps the end-to-end class probability
calculations within thresholds, so that output remains same.

Listing 1 TVM correctness check at each optimization step
/** Unoptimized output */
out_np = np.maximum(conv_np + bias_np, 0.0)
/** TVM output*/
out_tvm=tvm.nd.empty(out_np.shape,device=dev)
/** Check correctness */
np.testing.assert_allclose(out_np,
out_tvm.numpy(), rtol=1e-3)

Observation ❶ Inference accuracy: TensorRT maintains the same accuracy as unoptimized
NN engines. AutoTVM and AutoScheduler have a slight decrease of around 1-3%. Overall, the
accuracies of all three NN compilers are reasonable, given the runtime and model size improve-
ments.

Observation ❷ Inference reproducibility: Given the same input image, different TensorRT
engines of the same pre-trained NN model, can output different class labels. This is the default
behaviour of TensorRT. However with caching, the same compilation steps are maintained
giving reproducible output. AutoTVM and AutoScheduler do not cache the compilation steps
like in TensorRT caching, instead they maintain output reproducibility using precision checks on
intermediate outputs during compilation.

5 Are Inference Latencies Low and Predictable?
Safety critical real time systems need low execution times, and more importantly predictable
execution times. If DNN model based inferences form a core part of such systems, then examining
whether the associated latencies are low and predictable, is vitally important.

5.1 Comparison of Inference Latencies across NN compilers
In this Section, we compare the inference latencies of different NN compilers for different NN
models tabulated in Table 1. We present the inference latencies in Table 8 and observe that AutoTVM
and AutoScheduler latencies are significantly lower than TensorRT. TensorRT picks from a set of
fixed pre-written kernels, while AutoTVM and AutoScheduler generate optimal kernels, with and
without code templates respectively. In addition to increased search space compared to TensorRT,
AutoTVM/AutoScheduler also have a knob, namely the number of iterations to search for an
optimal kernel. TensorRT does not have any such tunable hyper-parameter, and runs a set of fixed
pre-written kernels to measure runtimes, and picks the fastest. We use 200 search iterations for
AutoTVM and AutoScheduler in Table 8. AutoScheduler inference times are the lowest among the
three NN compilers, as it has a wider search space than manually created templates in AutoTVM,
and can find the most optimal kernel implementation. These results in Table 8 are from the AGX
platform, but we observe similar trends in NX.

Since embedded boards take a significant amount of time for building AutoTVM/Autoscheduler
engines with large number of search iterations, we additionally provide the representative execution

, Vol. , No. , Article . Publication date: 2.

Repercussions of Using DNN Compilers on Edge GPUs for Real Time and Safety Critical Systems: AQuantitative Audit11

NN Model TensorRT AutoTVM AutoScheduler
Resnet-18 3.93 0.49 0.36
Resnet-50 8.96 0.66 0.60
Squeezenet 4.03 0.56 0.45
Mobilenet_v2 5.65 0.70 0.5
Inception_v3 15.45 1.20 1.10
Vgg-16 8.82 0.49 0.228
Googlenet 16.97 1.18 0.80
Densenet-161 14.65 3.32 2.54
Yolov2 4.97 0.89 0.51
Retinanet 9.13 2.76 2.23

Table 8. Inference Latency (ms) across NN compilers

for few NN models on Nvidia DGX (Tesla V100 GPU). This GPU server is much powerful than
embedded boards, where we can vary the number of iterations 𝑁 from 200 (used on the embedded
boards) to 20000 (impractical to run on embedded boards) for AutoScheduler.

Iteration count
NN Model 200 1000 5000 10000 20000
Resnet-50 0.54 0.51 0.49 0.39 0.28
Resnet-18 0.22 0.35 0.19 0.17 0.13
Squeezenet 0.19 0.17 0.18 0.17 0.15
Vgg-16 0.16 0.15 0.14 0.13 0.12

Table 9. Inference times (ms) for Auto-Scheduler engines on V100, with increasing search iterations.

Table 9 shows that as we increase the number of iterations, the inference latency keeps decreasing
till it saturates. Thus the comparison between TensorRT and AutoTVM/AutoScheduler is not fair
in Table 8, as the inference latencies can decrease further for AutoTVM and AutoScheduler, with
increased search iterations. However, we show that even for the less number of search iterations in
the order of few hundreds, which are practical on embedded platforms, AutoTVM andAutoScheduler
significantly outperform TensorRT in terms of inference latencies, for all NN models.

5.2 Effect of Compression for different NN Compilers
This sub-section deals with one of the most important aspects of DNN inference in edge GPUs, i.e.
network compression. We here show the ability of different NN compilers to take full precision
pre-trained model and compress that to half precision or INT8 with minimal loss of accuracy.
Table 10 shows the effect of compression to different quantization levels for NN compilers on the
model size and the inference latency. In all these experiments we used FP32 pre-trained model and
compressed those to FP16 and INT8. We observe that on going down in the quantization levels, the
model size reduces by half. In addition, we also observe from the table that the inference latencies
reduce significantly with negligible loss of accuracy (around 2% maximum dip) when we go from
FP32 to INT8 quantization primarily because the operations have to be performed on integers with
less bits. This trend is consistent for all the compilers used.

5.3 Inference Latency Predictability Across Compiled Engines
Table 11 shows the comparison of inference latency (in ms), along with standard deviations, for
three different engines built for the same NN model using AutoTVM on AGX. We observe that the

, Vol. , No. , Article . Publication date: 2.

12 Omais Shafi, Mohammad Khalid Pandit, Amarjeet Saini, Gayathri Ananthanarayanan, and Rijurekha Sen

Model Size(MB)/Inference time(ms)
Float32 Float16 Int8

NN Models TensorRT AutoTVM AutoSched TensorRT AutoTVM AutoSched TensorRT AutoTVM AutoSched
Resnet-18 69.0/3.90 72.3/0.49 71.9/0.36 24.3/1.7 24.3/0.42 21.8/0.33 12.1/1.34 14.2/0.35 12.7/0.29
Resnet-50 113.4/8.82 120.8/0.66 119.9/0.6 52.1/3.47 49.8/0.61 47.4/0.56 26.5/2.32 25.3/0.41 23.5/0.35
Inception_v3 108.1/13.8 125.6/1.2 124.4/1.1 49.1/5.16 46.6/0.92 44.3/0.85 25.3/3.42 24.2/0.59 21.6/0.52

Table 10. Model Size (in MBs) and Inference latencies (in ms) for different NN compilers with different levels
of quantization

Platform-NN Model Engine1 Engine2 Engine3
AGX-Resnet-18 0.49±0.38 0.49±0.25 0.47±0.26
AGX-Resnet-50 0.66±0.36 0.65±0.24 0.66±0.33
AGX-Squeezenet 0.56±0.27 0.52±0.33 0.83±0.27
AGX-Googlenet 1.18±0.60 1.12±0.55 1.46±0.58
AGX-Yolov2 0.89±0.20 1.23±0.28 1.38±0.42
AGX-Retinanet 2.76±0.72 3.22±0.62 3.45±0.86
NX-Resnet-18 3.65±0.46 4.98±0.73 5.78±1.36
NX-Resnet-50 4.56±0.23 5.67±0.66 5.20±0.34
NX-Squeezenet 3.61±0.53 4.32±0.40 4.97±0.22

Table 11. Inference latency (ms) across AutoTVM engines

NN Model Engine1 Engine2 Engine3
Resnet-18 3.93±0.87 5.34±1.56 6.21±1.48
Resnet-50 8.96±1.78 10.28±2.07 12.65±2.22
Squeezenet 4.03±0.62 4.09±0.61 4.16±0.68
Mobilenet_v2 5.65±0.98 7.34±1.13 8.54±1.54
Inception_v3 15.45±1.75 13.04±0.18 18.22±2.87
Vgg-16 8.82±1.23 11.12±2.21 13.87±2.98
Googlenet 16.97±2.29 18.79±2.67 19.36±2.96
Densenet-161 14.65±1.73 17.23±2.21 19.25±2.97
Yolov2 4.97±0.67 6.45±0.96 7.87±1.13
Retinanet 9.13±1.28 12.22±1.65 14.65±1.93

Table 12. Inference time (ms) across TensorRT engines on AGX

standard deviations in inference latencies for a given engine is low, which is a positive result for
real time systems requiring predictable execution times with low variance. However, the inference
latency varies significantly across the three engines. We observe similar behaviour for TensorRT
and AutoScheduler, Tables 12 and 13 show the inference latencies across engines for TensorRT and
AutoScheduler respectively.

During engine building process, each NN compiler picks different CUDA kernels based on their
runtime measurement. Table 14 shows the CUDA kernels picked by two TensorRT engines for a
particular NN layer, namely res2a_branch1 + res2a + res2a_relu, in a given NN model. A
complete list of layer to kernel mapping for resnet-18 is given in Appendix-1. We observe that the
candidate CUDA kernels (listed in Table 14) TensorRT considered for this particular NN layer, are
very close in runtime to each other. Therefore their ordering in terms of increasing runtimes can

, Vol. , No. , Article . Publication date: 2.

Repercussions of Using DNN Compilers on Edge GPUs for Real Time and Safety Critical Systems: AQuantitative Audit13

NN model Engine 1 Engine 2 Engine 3
Resnet-18 0.36±0.13 0.39±0.2 0.32±0.33
Resnet-50 0.6±0.27 0.66±0.336 0.61±0.391
MobileNet_v2 0.50±0.45 0.55±0.376 0.61±0.0.35
Vgg-16 0.228±0.19 0.197±0.24 0.32±0.32
Inception_v3 1.1±0.1 1.27±0.11 1.19±0.14
Yolov2 0.51±0.1 0.50±0.17 0.51±0.16
Retinanet 2.23±0.47 2.3±0.42 2.41±0.39
Densenet-161 2.54±0.29 2.4±0.366 2.55±0.317
Googlenet 0.8±0.1 0.89±0.18 0.95±0.12

Table 13. Inference time (ms) across AutoScheduler engines on AGX

Engine1 kernels Time Engine2 kernels Time
trt_volta_h884cudnn_256x64_ldg8_relu_exp_interior_nhwc_tn_v1 0.0432 trt_volta_h884cudnn_256x64_ldg8_relu_exp_interior_nhwc_tn_v1 0.0427
trt_volta_h884cudnn_128x128_ldg8_relu_exp_small_nhwc_tn_v1 0.0468 trt_volta_h884cudnn_128x128_ldg8_relu_exp_small_nhwc_tn_v1 0.0481
trt_volta_h884cudnn_128x128_ldg8_relu_exp_interior_nhwc_tn_v1 0.0482 trt_volta_h884cudnn_128x128_ldg8_relu_exp_interior_nhwc_tn_v1 0.0473
trt_volta_h884cudnn_256x128_ldg8_relu_exp_medium_nhwc_tn_v1 0.0521 trt_volta_h884cudnn_256x128_ldg8_relu_exp_medium_nhwc_tn_v1 0.0529
trt_volta_h884cudnn_256x64_sliced1x2_ldg8_relu_exp_medium_
nhwc_tn_v1

0.0498 trt_volta_h884cudnn_256x64_sliced1x2_ldg8_relu_exp_medium_
nhwc_tn_v1

0.0498

trt_volta_h884cudnn_256x64_ldg8_relu_exp_medium_nhwc_tn_v1 0.0480 trt_volta_h884cudnn_256x64_ldg8_relu_exp_medium_nhwc_tn_v1 0.0426
trt_volta_h884cudnn_256x64_sliced1x2_ldg8_relu_exp_small_
nhwc_tn_v1

0.0479 trt_volta_h884cudnn_256x64_sliced1x2_ldg8_relu_exp_small_
nhwc_tn_v1

0.0514

Table 14. Layer to Kernel mapping along with measurement time (`s) for each kernel during engine building
for TensorRT. Engine1 (highlighted in blue) and engine2 (highlighted in red) pick two different kernels for the
same layer.

change during each compilation. In this particular example, we observe the blue kernel is chosen
in engine-1, while the red kernel is chosen in engine-2, for the same NN layer. These two kernels
are very close in runtime and therefore have a toggled order when engine-1 is built (blue comes at
the top in terms of minimum runtime), vs. when engine-2 is built (red comes at the top in terms of
minimum runtime). If a different kernel is chosen in an engine, the way computation is mapped to
the hardware for a particular operation will change, leading to overall change in inference latencies
across engines. Note that in Section 4, we show a technique called caching in TensorRT that helps
to mitigate the non-determinism in outputs across different engines of TensorRT. We study the
effect of caching in TensorRT on the inference time also and we observe that across the multiple
engines, the inference time remains deterministic as shown in Table 15.

A similar example of same NN layer getting mapped to different kernels is shown for AutoSched-
uler in Table 16. The full list of kernel mapping for Resnet-18 is given in Appendix-1. The execution
time of the two kernels are different in the two engines. The kernels also take different percentages
of the total inference times, in the two engines. Such non-determinism of which kernel gets in-
cluded in the engine is even more intuitive for AutoTVM and AutoScheduler, than in TensorRT.
Unlike the fixed set of kernels TensorRT chooses from based on minimum runtime, AutoTVM
and AutoScheduler generates optimal kernels with and without manually defined code templates
respectively. Thus deterministic builds, which will give the exact same kernels every time an engine
is built, is not part of these compiler specifications. Every time an engine is built for a given NN
model, a different set of kernels are chosen, leading to differences in end-to-end inference latencies
across engines. Implications of this unpredictability in inference times on real time applications,

, Vol. , No. , Article . Publication date: 2.

14 Omais Shafi, Mohammad Khalid Pandit, Amarjeet Saini, Gayathri Ananthanarayanan, and Rijurekha Sen

NN Model Engine1 Engine2 Engine3
Resnet-18 3.93 3.93 3.94
Resnet-50 8.96 8.97 8.96
Squeezenet 4.03 4.029 4.03
Mobilenet_v2 5.65 5.65 5.65
Inception_v3 15.45 15.45 15.44
Vgg-16 8.82 8.82 8.8
Googlenet 16.97 16.97 16.98
Densenet-161 14.65 14.64 14.65
Yolov2 4.97 4.97 4.98
Retinanet 9.13 9.13 9.13

Table 15. Inference time (ms) across TensorRT engines on AGX using caching

Kernel name Time for execution (`s) % Time of total execution
Engine-1 Engine-2 Engine-1 Engine-2

tvmgen_default_fused_nn_conv2d_add_multiply_add_nn_relu_kernel0 511.0 164.26 20.16 6.54
tvmgen_default_fused_nn_conv2d_add_add_nn_relu_2_kernel0 442.4 163.94 17.45 6.53

Table 16. Sample kernels with execution times and % of total execution time spent in them, for two Au-
toScheduler engines.

whenever a new engine is built from the same pre-trained model, will be discussed in more detail
in Section 6.

5.4 Effect of Dynamic Voltage and Frequency Scaling (DVFS) on Inference Latency

NN Model TensorRT AutoTVM AutoScheduler
Resnet-18 2.75 0.62 0.45
Resnet-50 6.87 0.96 0.8
Squeezenet 3.65 0.72 0.64
Mobilenet_v2 4.30 0.84 0.69
Inception_v3 12.82 1.53 1.36
Vgg-16 7.43 0.64 0.39
Googlenet 9.96 1.48 1.1
Densenet-161 13.24 3.62 2.78
Yolov2 4.67 0.97 0.59
Retinanet 8.05 2.98 2.54

Table 17. Inference Latency (ms) across NN compilers when DVFS is disabled on AGX

In all the forementioned analysis, we keep theDVFS (Dynamic Voltage Frequency Scaling) enabled
and we observe that on the same hardware, for a given neural network model, AutoScheduler runs
at a higher frequency compared to TensorRT. However To nullify the effect of varying frequencies,
we set the minimum and maximum frequency to be same(1033 Mhz) and compare the inference
latencies among different compilers . We tabulate the inference latency numbers in Table 17. We
observe that even with the fixed frequency, AutoScheduler has the lowest inference time among all
the compilers while as TensorRT has higher inference numbers. This is because of the following

, Vol. , No. , Article . Publication date: 2.

Repercussions of Using DNN Compilers on Edge GPUs for Real Time and Safety Critical Systems: AQuantitative Audit15

reasons as mentioned in the forementioned section also: ❶ AutoScheduler and AutoTVM generates
kernels corresponding to layers at run time based on the tuning hyperparameter called as number

of iterations ❷ AutoScheduler has a wider search space compared to AutoTVM that generates
kernels based on template based matching. Thus, due to various NN optimizations possible in
AutoScheduler, we observe it has the lowest inference times even if we mitigate the effect of varying
frequencies.

G o o g l e N e t 1 0 3 3 M h z

G o o g l e N e t 1 0 3 3 M h z

R e s N e t - 1 8 1 0 3 3 M h z

R e s N e t - 1 8 1 0 3 3 M h z

G o o g l e N e t D V F S

G o o g l e N e t D V F S

R e s N e t - 1 8 D V F S

R e s N e t - 1 8 D V F S

0

2 0

4 0

6 0

8 0

1 0 0

GP
U u

tili
za

tio
n(%

)

 T e n s o r R T
 A u t o s c h e d u l e r

Fig. 4. GPU utilization for ResNet-18 and GoogleNet for DVFS enabled and fixed frequency on AGX

Upon further profiling, we calculated the GPU utilization for AutoScheduler and TensorRT in
both settings. Figure 4 shows the GPU utilization distribution on two widely used neural network
models (GoogleNet and ResNet-18) for DVFS enabled and fixed frequency settings. We observed
from the profiling results that AutoScheduler has similar or slightly better GPU utilization than
TensorRT in both the settings suggesting that AutoScheduler utilizes the underlying hardware much
better than the TensorRT. We want to mention here that at the similar or slightly better utilization
of hardware resources in AutoScheduler than TensorRT, the inference latency in AutoScheduler is
much lower for both DVFS enabled and disabled settings indicating that the overall efficiency of
AutoScheduler is higher.

We further calculate the energy per inference for TensorRT, AutoTVM and AutoScheduler in DVFS
enabled and fixed frequency settings. As can be seen from figure 5, for GoogleNet, the AutoScheduler,
AutoTVM and TensorRT uses 0.025J/image, 0.031J/image and 0.034J/image respectively in DVFS
enabled setting while as for fixed frequency they utilize 0.033J/image, 0.034J/image and 0.04J/image
respectively. Similar trend can be seen for ResNet-18 (figure 5) wherein TensorRT uses more energy
per inference than AutoTVM and AutoScheduler in both settings. Further enabling DVFS results in
lower energy utilization than fixing GPU frequency. Note that we show the observation for the
representative execution, we see the similar trends for other NN models.

5.5 Comparison of Compilation Latency across NN compilers
While inference times obtained with AutoTVM and AutoScheduler engines are lower, the time to
build an optimized NN engine for AutoTVM and AutoScheduler is significantly more compared to
TensorRT. Table 18 shows the execution engine building time across NN compilers for different
models on AGX. We observe that AutoTVM takes around 6.7× time for engine building than
TensorRT. AutoScheduler takes around 10.3× and 1.5× times more than TensorRT and AutoTVM

, Vol. , No. , Article . Publication date: 2.

16 Omais Shafi, Mohammad Khalid Pandit, Amarjeet Saini, Gayathri Ananthanarayanan, and Rijurekha Sen

G o o g l e N e t
(A u t o s c h e d u l e r)

G o o g l e N e t
(A u t o T V M)

G o o g l e N e t
(T e n s o r R T)

R e s N e t - 1 8
(A u t o s c h e d u l e r)

R e s N e t - 1 8
(A u t o T V M)

R e s N e t - 1 8
(T e n s o r R T)

0

0 . 0 0 5

0 . 0 1

0 . 0 1 5

0 . 0 2

0 . 0 2 5

0 . 0 3

0 . 0 3 5

0 . 0 4

0 . 0 4 5

jou
les

/im
ag

e

 D V F S e n a b l e d
 G P U f r e q u e n c y 1 0 3 3 M h z

Fig. 5. Energy utilization (joules/image) for ResNet-18 and GoogleNet for DVFS enabled and fixed frequency
on AGX

respectively. While the absolute compilation times vary, the same trends hold across the three NN
compilers on the embedded NX platform and DGX server.

NN Model TensorRT AutoTVM AutoScheduler
Resnet-18 50.87 846.19 1702.55
Resnet-50 118.58 1680.53 2482.70
Squeezenet 107.34 1457.70 2148.60
Mobilenet_v2 154.50 1414.66 2379.0
Inception_v3 218.96 2548.65 5032.0
Vgg-16 336.76 1460.70 1722.0
Googlenet 209.01 3565.05 5173.02
Densenet-161 1422.69 4753.43 6273.04

Table 18. Engine building time (secs) on AGX

There are more CUDA kernels to generate and choose from in AutoTVM, using the manually
defined code templates, compared to the fixed set of pre-written CUDA kernels that TensorRT
chooses from. AutoScheduler generates an even greater number of CUDA kernels, instead of taking
it from built-in templates as in AutoTVM. In addition to the larger search space to choose the
optimal kernel for each operation, the search times for AutoTVM and AutoScheduler can also
be increased, based on the tunable hyper-parameter of search iterations during the compilation
process. Table 18 gives the engine building times, when search iterations are set to 200 for AutoTVM
and AutoScheduler. Since there is no such hyper-parameter in TensorRT, it finishes engine building
in one go, picking from a fixed set of CUDA kernels for each operation based on minimum runtime.
TensorRT engines therefore have significantly less compilation time, compared to AutoTVM and
AutoScheduler.

While some real time application designers might need quick compilation and deployment
of the NN engines, we expect most safety critical applications to allow for higher compilation
and engine building times. Engine building would be done much less frequently than the real
time inferences by the deployed engine. Thus ensuring a very low inference time, as given by
AutoTVM and AutoScheduler, with a trade-off of higher compilation time than TensorRT, will

, Vol. , No. , Article . Publication date: 2.

Repercussions of Using DNN Compilers on Edge GPUs for Real Time and Safety Critical Systems: AQuantitative Audit17

possibly be appealing to most real time application designers. We discuss this choice of NN compiler
for minimizing inference times in more detail in Section 6, in the context of a concrete real time
application like ADAS.

5.6 Is Resource Utilization Optimal for NN Compilers?

TensorRT AutoTVM AutoScheduler
NN Model NX AGX NX AGX NX AGX
Resnet-18 2.56 2.75 1.12 0.62 0.89 0.45
Resnet-50 7.2 6.87 1.21 0.96 1.1 0.8
Squeezenet 3.47 3.65 0.96 0.72 0.83 0.64
Vgg-16 7.28 7.43 0.82 0.64 0.74 0.39

Table 19. Inference latencies (in ms) for NX vs AGX

One of the main selling points of the various NN compilers for edge GPUs has been: NN model
builders need not worry about mapping their computations to hardware, as it is difficult for an
ML practitioner to keep track of fast evolving hardware accelerators for edge DNN. The NN
compilers would solve this particular problem of mapping the NN computations effectively to a
given hardware platform. Our final experiment for inference times is to examine this claim of NN
compilers, whether the hardware specific engine generated by them optimally utilizes hardware
resources on a given platform. This evaluation is important for real time application designers,
for planning hardware budget. Will the worst case execution times for a safety critical real time
application improve, if he invests higher budget in an embedded platform with more hardware
resources? We examine our three NN compilers on the NX and AGX platforms, to explore this
important question of effective hardware utilization.
From Table 2, it is clear that the Xavier AGX has more resources compared to Xavier NX. We

tabulate the inference latencies for NX and AGX, for some of the NN models in Table 19, using our
three NN compilers. For AutoTVM and AutoScheduler, the performance in AGX is relatively better
compared to NX. The ML based cost model used by AutoTVM and AutoScheduler to predict runtime
of candidate CUDA kernels, seem to effectively capture characteristics of the underlying hardware
platform. These two compilers, therefore, utilize the hardware resources on AGX effectively for
faster inference than NX.

TensorRT engines for some NN models (Resnet-18, Squeezenet, Vgg-16), however, perform better
in NX compared to AGX. TensorRT does not use any ML based cost model to predict runtimes
of candidate CUDA kernels. Instead it directly measures a set of pre-written kernel runtimes.
Thus if manually written CUDA kernels are not available to TensorRT, that themselves utilize
hardware resources effectively, TensorRT will have poor candidate kernels to choose from, leading
to poor resource utilization. AutoTVM and AutoScheduler generates hardware specific kernels,
with and without manual templates, and is not limited by manually written and optimized kernels.
AutoTVM/AutoScheduler are therefore better NN compilers in terms of optimal hardware resource
utilization, compared to TensorRT.

Observation ❹ Inference latency mean: AutoScheduler, has minimum inference latency,
closely followed by AutoTVM. TensorRT engines have significantly higher inference latencies
for all NN models, compared to the the other two NN compilers.

, Vol. , No. , Article . Publication date: 2.

18 Omais Shafi, Mohammad Khalid Pandit, Amarjeet Saini, Gayathri Ananthanarayanan, and Rijurekha Sen

Observation ❺ Effect of compression to different quantization levels: For all the NN
compilers, we see the reduction in the model size as we go from FP32 to INT8 quantization. In
addition, the inference latencies also reduce significantly from FP32 to INT8 (with minimal loss
of accuracy) as the operations have to be performed on less bits.

Observation ❻ Inference latency variance: None of the three compilers are deterministic, i.e.
given the same input NN model, the execution engine output by the compiler will vary in terms
of the constituent kernels. This causes inference latencies to vary across engines for the same
NN model. For a particular engine, however, standard deviation in inference latency is very low.

Observation ❼DVFS vs Fixed frequency: The inference time and energy utilization is lower in
AutoScheduler than TensorRT for both DVFS enabled and fixed frequency settings. In addition, we
also observed from our experiments, for models optimized with AutoScheduler (DVFS enabled)
on 200 vs 1000 iterations, the inference latency and energy requirements get lowered with
frequency remaining the same which implies AutoScheduler performs more optimizations only
on increasing the number of iterations without changing the frequency.

Observation ❽ Engine building times: Increasing search iterations increases engine building
time for AutoTVM/AutoScheduler. TensorRT engine building time is constant and small.

Observation ❾ Resource utilization: AutoTVM/AutoScheduler give better hardware utiliza-
tion, giving lower inference latencies with more hardware resources on AGX than NX.

6 Impact Analysis on Real Time Applications
Embedded GPU platforms such as Xavier NX or AGX, as well as NN inference engines, are widely
used in the automotive, medical, agricultural, mining, industrial automation, last mile delivery,
construction, retail, and other application domains. We discuss two specific automotive applications
in this section, that extensively use these edge GPU devices for DNN inferences, namely intelligent
traffic intersection control [13] and advanced driving assistance systems (ADAS) [14, 24, 35]. We
examine the end-to-end response time components for these applications, analyze NN compiler
dependencies for those response time components, and also present a worst case response time or
execution time (WCET) analysis.

6.1 Safety Critical Real Time Application Instances
Traffic intersection control: These systems evaluate the length or density of traffic queues in the
incoming lanes at each intersection and adjust the green and red lights to maximise transportation
metrics such as intersection throughput or average/worst case vehicle waiting times. They can
additionally detect rule infractions such as over-speeding or jumping of red lights by the vehicles.
Detecting and reading number plates of violating vehicles into a vehicle number, enable these
systems to issue rule violation penalty fees. NN model inferences are extensively used for object
detection and tracking to detect rule violations and identify number plates. Image classification
DNN models are also needed to read the number plates.
Advanced Driver Assistance Systems (ADAS): These systems offer technological support to the
drivers. DNNs are the most important component of the analytical engine of any ADAS system,
performing critical tasks like ❶ lane detection ❷ obstacle detection ❸ pedestrian detection ❹ traffic
signal, and road sign detection and recognition etc. Both object detection and image classification
DNN models, as evaluated in this paper (Table 1), are important in ADAS, in order to gather

, Vol. , No. , Article . Publication date: 2.

Repercussions of Using DNN Compilers on Edge GPUs for Real Time and Safety Critical Systems: AQuantitative Audit19

the actionable information such that the actuators (steering, braking system etc.) are controlled
properly.
Both traffic intersection control and ADAS applications can feed multiple camera feeds to a

single edge GPU device for NN inferences. The intersection controller requires multiple cameras to
monitor the various incoming roads, and the ADAS instrumented car requires multiple cameras to
monitor its surroundings in all directions.

6.2 Response Time Components for Deployed DNN Models
A typical DNN execution engine has the following components in response time:
❶ 𝜏𝑟𝑒𝑎𝑑 : the image read time, where the image or video frame incoming from the camera is copied
into RAM, either from the disk where the camera saves the input frame, or directly from the camera
over PCI bus or ethernet.
❷ 𝜏𝑝𝑟𝑒 : the pre-processing time for image conversion to the required format needed by NN compiler
(NHWC for AutoTVM/Autoscheduler and NCHW for TensorRT), image resizing 224×224 for model
processing, normalization etc., typically executed on the CPU cores of the edge platform.
❸ 𝜏𝑖𝑛𝑓 : the inference time or time to run the DNN execution engine on the GPU cores of the edge
platform.
❹ 𝜏𝑝𝑜𝑠𝑡 : the post-processing time which includes time to search for maximum probability from
output distribution, matching corresponding class labels, computing co-ordinates for generating
object detection bounding boxes etc.
The total response time for a DNN execution engine can therefore be calculated as:

ℜ𝑇 = 𝜏𝑟𝑒𝑎𝑑 + 𝜏𝑝𝑟𝑒 + 𝜏𝑖𝑛𝑓 + 𝜏𝑝𝑜𝑠𝑡 (1)

6.3 Response Times vs. NN Compilers For Single Camera
We show a representative execution of Resnet-18 in Figure 7 and Figure 6, for one camera.

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 00
1
2
3
4
5
6

Inf
ere

nc
e T

im
e (

ms
)

 T e n s o r R T
 A u t o T V M
 A u t o S c h e d u l e r

I m a g e s
Fig. 6. Inference time(ms) for ResNet-18 on AGX

Table 20 shows the response times for 10 NN models on a single camera input, across the three
NN compilers. As seen from Figure 7, image read and post-processing times are insignificant (in
the order of 1 msec and 0.5 msecs respectively. Pre-processing time in the order of 15 msecs is
significant, but nonetheless it is constant across the NN compilers. The main difference in response
times across the three compilers come from the inference times, where TensorRT engines having the

, Vol. , No. , Article . Publication date: 2.

20 Omais Shafi, Mohammad Khalid Pandit, Amarjeet Saini, Gayathri Ananthanarayanan, and Rijurekha Sen

0 . 5
1 . 0
1 . 5
2 . 0

0 . 5
1 . 0
1 . 5
2 . 0

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 00 . 5
1 . 0
1 . 5
2 . 0

I m a g e R e a d T i m e (m s)

 T e n s o r R T

Tim
e (

ms
)

 A u t o T V M

Tim
e (

ms
)

Tim
e (

ms
)

I m a g e s

 A u t o S c h e d u l e r

(a) Image read time(ms)

1 2
1 6
2 0
2 4

1 2
1 6
2 0
2 4

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0
1 2
1 6
2 0
2 4

 P r e - P r o c e s s i n g T i m e (m s)

 T e n s o r R T

Tim
e (

ms
)

Tim
e (

ms
)

Tim
e (

ms
)

 A u t o T V M

 A u t o S c h e d u l e r

I m a g e s
(b) Pre-Processing time(ms)

0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 00 . 2
0 . 4
0 . 6
0 . 8
1 . 0

P o s t - P r o c e s s i n g T i m e (m s)

 T e n s o r R T

 A u t o T V M

I m a g e s

 A u t o S c h e d u l e r

Tim
e (

ms
)

Tim
e (

ms
)

Tim
e (

ms
)

(c) Post Processing time(ms)

Fig. 7. Response time components across NN compilers for 500 ImageNet samples (Resnet-18 on AGX)

slowest inference, gives the maximum response times. We present this dependency more formally
in Section 6.5.

NN Model TensorRT AutoTVM AutoScheduler
Resnet-18 21.91 18.95 18.78
Resnet-50 26.94 19.13 19.02
Squeezenet 22.01 18.96 18.87
Mobilenet_v2 23.63 19.11 18.97
Inception_v3 33.43 19.61 19.52
Vgg-16 26.80 18.90 18.71
Googlenet 34.95 19.56 19.22
Densenet-161 32.63 21.73 20.96
Yolov2 22.95 19.37 18.93
Retinanet 27.11 20.89 20.65

Table 20. Response latencies (ms) across NN compilers

6.4 Response Times vs. NN Compilers For Multiple Cameras
Multiple camera feeds cover different directions for ADAS and traffic intersection controller, and
DNN inferences need to run in parallel. We show a representative execution of Resnet-18 image
classification network in Figure 8 and Figure 9(a), for 1-16 concurrent CNNs on multiple cameras.
We additionally show the inference times across compilers for two object detection networks Yolo
and RetinaNet in Figure 9(b) and Figure 9(c) respectively. We start with a single input feed for our
analysis, and keep on increasing the number of input feeds from 1 to 16, using multiple processes.
We observe the following trends for the four response time components, in the multi camera

setting.❶ 𝜏𝑟𝑒𝑎𝑑 in Figure 8a increases as we increase the number of CNN instances from 1 to 16 (more

than 2×). Multiple CNN instances send bus requests to fetch the images, increasing bus contention
and image read time. ❷ 𝜏𝑝𝑟𝑒 in Figure 8b remains almost same even when we increase the number
of input camera feeds, while standard deviation slightly increases. This is due the presence of
non-trivial computational capabilities of modern edge CPUs, on which pre-processing runs. ❸
𝜏𝑖𝑛𝑓 in Figure 9 goes up, as CNN concurrency increases, while the standard deviations stay low.
Inference time increase is maximum in TensorRT followed by AutoTVM and then AutoScheduler,

, Vol. , No. , Article . Publication date: 2.

Repercussions of Using DNN Compilers on Edge GPUs for Real Time and Safety Critical Systems: AQuantitative Audit21

1 2 4 8 1 60 . 0

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5

Im
ag

e R
ea

d T
im

e (
ms

)

 # P r o c e s s e s

 T e n s o r R T
 A u t o T V M
 A u t o S c h e d u l e r

(a) Image read time(ms)

1 2 4 8 1 60

5

1 0

1 5

2 0

2 5 T e n s o r R T
 A u t o T V M
 A u t o S c h e d u l e r

 # P r o c e s s e s

Pr
e-P

roc
es

sin
g T

im
e (

ms
)

(b) Pre-Processing time(ms)

1 2 4 8 1 60 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0
 T e n s o r R T
 A u t o T V M
 A u t o S c h e d u l e r

Po
st-

Pr
oc

es
sin

g T
im

e (
ms

)

 # P r o c e s s e s

(c) Post Processing time(ms)

Fig. 8. Image read, pre-processing and post-processing times are similar for different NN compilers for 500
different images of ImageNet dataset, with increasing camera feeds. This is representative execution of
Resnet-18 on AGX platform.

1 2 4 8 1 60
1
2
3
4
5
6

 T e n s o r R T
 A u t o T V M
 A u t o S c h e d u l e r

 # P r o c e s s e s

Inf
ere

nc
e T

im
e (

ms
)

(a) Inference time(ms) in Resnet-18

1 2 4 8 1 60
2
4
6
8

1 0
1 2

Inf
ere

nc
e T

im
e (

ms
)

 # P r o c e s s e s

 T e n s o r R T
 A u t o T V M
 A u t o S c h e d u l e r

(b) Inference time(ms) in Yolov2

1 2 4 8 1 60
2
4
6
8

1 0
1 2
1 4

Inf
ere

nc
e T

im
e (

ms
)

 # P r o c e s s e s

 T e n s o r R T
 A u t o T V M
 A u t o S c h e d u l e r

(c) Inference time(ms) in Retinanet

Fig. 9. Inference time(in ms) in multiple camera feeds for image classification and object detection networks
used in ADAS

for classification as well as object detection. Also as in single camera setting, the inter-compiler
differences are highest for inference time, and thus will be important in WCET analysis with respect
to the choice of an appropriate NN compiler. ❹ 𝜏𝑝𝑜𝑠𝑡 in Figure 8c remains almost similar with
increasing CNNs, with slight increase in standard deviation. CPU cores on which post-processing
is run, is powerful enough to handle all the concurrent processes.

6.5 Worst Case Response or Execution Time (WCET) Analysis
We finally present the worst case response or execution time (WCET) analysis of the DNN models
running on edge GPUs. We consider the four time components of end-to-end response time (equa-
tion 1), i.e. 𝜏𝑟𝑒𝑎𝑑 , 𝜏𝑝𝑟𝑒 , 𝜏𝑖𝑛𝑓 and 𝜏𝑝𝑜𝑠𝑡 . and examine how they influence WCET.

Lemma-1: The overall response time ℜ𝑇 is bounded by the neural network model inference time 𝜏𝑖𝑛𝑓

Case-1: For single camera input feed As observed from Figure 6 and Figure 9, 𝜏𝑖𝑛𝑓 is dependent
on the choice of NN compiler. TensorRT engines are the slowest and the AutoScheduler engines
are the fastest for inference. Secondly, increasing the number of search iterations during model
optimization for AutoTVM and AutoScheduler, further reduces inference time (Table 9). Thirdly,
𝜏𝑖𝑛𝑓 also depends on which particular inference engine compiled by a given NN compiler, is used,
as every time an engine is compiled by the same NN compiler from the same pre-trained NN
model, the constituent kernels and the inference times change (Table 11). 𝜏𝑟𝑒𝑎𝑑 , 𝜏𝑝𝑟𝑒 and 𝜏𝑝𝑜𝑠𝑡 are
independent of the NN compiler as well as inference engine choice (Figure 7 and Figure 8). The

, Vol. , No. , Article . Publication date: 2.

22 Omais Shafi, Mohammad Khalid Pandit, Amarjeet Saini, Gayathri Ananthanarayanan, and Rijurekha Sen

DNN compiler desired behavior Implication of desired behavior for real time applications TensorRT AutoTVM AutoScheduler
Maintains accuracy Almost same or better accuracy can lead to better classification outputs

and accurate bounding box co-ordinates.
✓ ✓ ✓

Response time does not increase
with concurrent inputs

Increasing the number of simultaneous input camera feeds should not
significantly increase the response times, for timely decision making

✗ ✓ ✓

Deterministic outputs across differ-
ent inference engines

If the optimized inference engine is rebuilt for the same NN model, it
should always generate same output for a given input sample, to ensure
reliable decision making in safety critical systems.

✗ ✓ ✓

Deterministic inference times
across inference engines

When the NN engines are rebuilt, the same NN model on the same
edge GPU should have same inference latencies, else WCET analysis in
real-time applications will be difficult. The braking system may not get
the detection inference in ADAS in time.

✗ ✗ ✗

Optimal resource utilization NN compilers should optimize the DNN models in a way that takes
underlying hardware platform into account. Inference engines running
on better platforms (e.g Nvidia AGX) should have less inference time
than ones running on lower end boards (Nvidia NX)

✗ ✓ ✓

Energy utilization NN compilers should optimize the DNN models in a way that takes
lower energy per inference such that total energy requirement is mini-
mized. This is particularly important for battery operated devices.

✗ ✓ ✓

Table 21. Desirable behaviors of NN compilers and their impact on intersection control and ADAS applications.
✓represents that the NN compiler shows the desired behavior, ✗indicates it doesn’t. As TensorRT has more ✗,
AutoTVM/AutoScheduler can be recommended for real time application settings.

operations performed in image read, pre and post processing are hardware platform dependent and
image size dependent, hence cannot be optimized by the NN compiler or inference engine choice.
Therefore for a single camera setting, we can re-write equation 1 as:ℜ𝑇 = 𝐶1+𝐶2+𝜏𝑖𝑛𝑓 +𝐶3where
C1, C2 and C3 are the image read, pre-process and post-process constant times, independent of NN
compiler. Proper choice of NN compiler, appropriate choice of search iteration hyper-parameter if
present for the chosen compiler, and choice of the exact NN engine built by the chosen compiler,
affect 𝜏𝑖𝑛𝑓 and therefore are important in reducing WCET.

Case-2: For multiple camera input feed In case of taking feeds from multiple cameras, the time
required for image read increases as concurrent DNNs increase, due to memory contention on the
bus (Figure 8a). Pre-process and post-process times do not show any notable change with increasing
number of concurrent CNNs, due to significant processing capability of edge CPU on which these
steps run (Figure 8b and Figure 8c). As in single camera setting, none of these time components
depend on the NN compiler choice (Figure 8). Inference time varies across NN compilers in similar
way, as discussed for the single camera setting, with choice of NN compiler, choice of search
iteration hyper-parameter for a chosen NN compiler, and the particular execution engine built by
the chosen compiler. The growth of inference times with increasing concurrency, also varies across
the NN compilers. TensorRT shows a faster increase in inference time with increased concurrency
(Figure 9). Therefore for a multi-camera concurrent DNN setting, we can re-write equation 1 as:
ℜ𝑇 = (∑𝐹

𝑓 =1𝐶1𝑓) + (𝐶2 + Y) + (𝜏𝑖𝑛𝑓 + Δ𝑖𝑛𝑓) + (𝐶3 + Y) where F is the number of simultaneous
frames processed, Y signify the insignificant change & Δ𝑖𝑛𝑓 represents the increase in the inference
time. In case-1, 𝐹=1, therefore the term

∑𝐹
𝑓 =1𝐶1𝑓 equals to 𝐶1, is not subject to any optimization

given different NN compilers or different inference engines generated. The
∑𝐹

𝑓 =1𝐶1𝑓 also remains
constant at a given concurrency for a given NN compiler and computational platform. Thus the
inference time 𝜏𝑖𝑛𝑓 is the only variable, to bound the overall response time.

Observation ❿ DNN concurrency increases 𝜏𝑟𝑒𝑎𝑑 , while 𝜏𝑝𝑟𝑒 and 𝜏𝑝𝑜𝑠𝑡 remain constant. 𝜏𝑟𝑒𝑎𝑑 ,
𝜏𝑝𝑟𝑒 and 𝜏𝑝𝑜𝑠𝑡 are all independent of the NN compiler, in both single and multi camera settings.

, Vol. , No. , Article . Publication date: 2.

Repercussions of Using DNN Compilers on Edge GPUs for Real Time and Safety Critical Systems: AQuantitative Audit23

Observation Inference time 𝜏𝑖𝑛𝑓 changes across NN compilers and also across engines built
using the same NN compiler. WCET in a real time system, is therefore dependent on 𝜏𝑖𝑛𝑓 , decided
by NN compiler, compiler hyper-parameter and built engine choices.

7 Related Work
We evaluate DNN inference engines relevant for various ADAS application tasks, in this paper.
Restuccia et al. [25] examined the latency characteristics of DNN models employed in ADAS, using
FPGA accelerators. Other studies, such as Wurst et al [33], employed NVIDIA edge GPUs (TX2)
to examine DNN execution on heterogeneous platforms, again for ADAS performance analysis.
However, none of these prior works used DNN compilers to optimize and deploy their models
on FPGA or GPU. As DNN compilers are becoming increasingly predominant in an application
designer’s software stack, our examination of three state of the art DNN compilers, for the first
time to the best of our knowledge, bridges an important research gap in real time systems.
Mingzhen et al. [22] is an excellent qualitative survey on DNN compilers, describing both the

compiler frontend i.e. DNN model optimizations and backend i.e. mapping the optimized model to
hardware processor cores. It describes the inner workings of a comprehensive set of DNN compilers.
Verma et.al [32] does performance evaluation of Tensorflow-Lite and Tensorflow-TensorRT on
two NVIDIA GPUs - GeForce RTX 2080 and Tesla T4 using commonly employed DL models
for edge devices. This paper looks at the inference latencies and power drawn by the GPU to
perform an inference. However, they do not consider other metrics such as output accuracy and
predictability, compilation time or hardware resource utilization, characterized by us in this paper.
These works do not examine the causes of a compiler specific behavior and their performance
implications, that is studied in-depth in this paper. We focus on edge GPU platforms typically used
in real time applications, evaluating wide range of important compiler metrics. We also present a
comprehensive quantitative audit of different NN compilers, significantly extending the qualitative
survey presented in [22] with many more observations and recommendations that will help the
researchers for developing the solutions based on these software tools. In another line of work
based on NN compilers, [28] performs a comprehensive study of NN compiler bugs, focusing on
three compilers - Apache TVM, Facebook Glow and Intel nGraph. They examine the underlying
causes of the defects and asserts that a significant number of DL compiler bugs are connected
to Tensor types. On the similar lines, Cao.et.al [16] presents the first comprehensive study to
characterize performance problems in Deep learning systems written in TensorFLow and Keras.
However, as opposed to compiler testing and debugging, our work places a greater emphasis on the
characterization and analysis of various real-world metrics that are crucial for ADAS application
scenarios.

Omais et. al. [27] is a recent paper closest to our work. They examined Nvidia’s TensorRT engines
for a similar set of safety critical applications as us. However, the paper posed more questions than
answers, as some surprising behaviors were demonstrated for TensorRT engines, without any root
cause analysis of why such behaviors occurred. Our head-on comparison across multiple DNN
compilers, TensorRT and additionally AutoTVM and AutoScheduler, help us explain their quirks
and advantages. We also additionally do an end-to-end response time analysis for typical DNN
tasks, to comprehensively connect our empirical observations about DNN compilers to WCET
analysis in real time application settings.

8 Recommendations and Conclusion
Table 21 summarizes the possible implications of our findings in real time settings. We further list
some recommendations, based on our observations: ❶ In order to maintain determinism in the

, Vol. , No. , Article . Publication date: 2.

24 Omais Shafi, Mohammad Khalid Pandit, Amarjeet Saini, Gayathri Ananthanarayanan, and Rijurekha Sen

output generated, we suggest that AutoTVM or Autoscheduler should be preferred over TensorRT.
❷ For time critical tasks, Autoscheduler engines should be chosen as they have minimum inference
times. ❸ When considering an upgrade in hardware platforms, TensorRT does not guarantee
that better hardware results in better runtimes, while AutoTVM/ Autoscheduler does. ❹ When
considering migration to different vendor based hardware platform, TensorRT engines run only on
Nvidia GPUs. AutoTVM and Autoscheduler support optimizations on variety of hardware back-ends
like GPUs, CPUs, TPUs, FPGA etc. ❺ All compilers suffer from inconsistency in inference times
across different inference engines. We suggest using caching technique for reproducible engines
in TensorRT or generating a single inference engine and re-using the exact same binary to be
deployed on different hardware beckends. ❻ Advances in NN architecture and operators need
manual engineering effort in TensorRT and AutoTVM for optimized code translation. Autoscheduler
automatically generates machine code, and is therefore well suited to such upgrades.

This paper aims to provide the in-depth analysis of performance predictability of various state-
of-the-art DNN compilers and their optimization performance on Nvidia’s embedded GPUs Xavier
AGX and NX. All the experiments are conducted on modern DNN architectures typically used in
ADAS. We showed how a proper choice of DNN compiler can help lower the analytical bound on
overall response time in a real time setting. Further, we present a compendium of implications and
recommendations based on our findings, that will help the researchers and application developers
for developing solutions based on these software tools.

9 Acknowledgements
We thank our reviewers for their insightful feedback that helped us to improve our paper. This work
was partially supported by the Science and Engineering Research Board under grant SERB-POWER
(SPG/2021/000731).

References
[1] [n. d.]. ARM Compute Library. https://github.com/ARM-software/ComputeLibrary.
[2] [n. d.]. Device Query Utility for GPU platforms. https://docs.nvidia.com/cuda/cuda-samples/index.html.
[3] [n. d.]. Facebook Glow. https://ai.facebook.com/tools/glow/.
[4] [n. d.]. Intel® Distribution of OpenVINO™ Toolkit. https://github.com/openvinotoolkit/openvino.
[5] [n. d.]. Jetson Xavier AGX. https://www.nvidia.com/en-in/autonomous-machines/embedded-systems/jetson-agx-

xavier/.
[6] [n. d.]. Jetson Xavier NX. https://www.nvidia.com/en-in/autonomous-machines/embedded-systems/jetson-xavier-nx/.
[7] [n. d.]. Nvidia Drive Platform. https://developer.nvidia.com/drive.
[8] [n. d.]. Nvidia Industry Inspection. https://www.nvidia.com/en-us/industries/industrial/.
[9] [n. d.]. NVIDIA. TensorRT. https://developer.nvidia.com/tensorrt.
[10] [n. d.]. Qualcomm Neural Processing SDK for AI. https://developer.qualcomm.com/software/qualcomm-neural-

processing-sdk.
[11] [n. d.]. Tensorflow Lite. https://www.tensorflow.org/lite.
[12] [n. d.]. Tensorflow XLA. https://www.tensorflow.org/xla..
[13] Advantech. [n. d.]. Traffic Intersection Monitoring. https://www.advantech.com.co/resources/case-study/intelligent-

video-traffic-monitoring-for-self-adaptive-traffic-signal-control-system.
[14] Mohamed Aladem and Samir A Rawashdeh. 2020. A single-stream segmentation and depth prediction CNN for

autonomous driving. IEEE Intelligent Systems (2020).
[15] Laha Ale, Ning Zhang, and Longzhuang Li. 2018. Road damage detection using RetinaNet. In 2018 IEEE International

Conference on Big Data (Big Data). IEEE, 5197–5200.
[16] Junming Cao, Bihuan Chen, Chao Sun, Longjie Hu, Shuaihong Wu, and Xin Peng. 2022. Understanding Performance

Problems in Deep Learning Systems. In Proceedings of the 30th ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (ESEC/FSE 2022). Association for Computing Machinery,
New York, NY, USA, 357–369. https://doi.org/10.1145/3540250.3549123

[17] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan Cowan, Leyuan Wang,
Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-End Optimizing

, Vol. , No. , Article . Publication date: 2.

https://github.com/ARM-software/ComputeLibrary
https://docs.nvidia.com/cuda/cuda-samples/index.html
https://ai.facebook.com/tools/glow/
https://github.com/openvinotoolkit/openvino
https://www.nvidia.com/en-in/autonomous-machines/embedded-systems/jetson-agx-xavier/
https://www.nvidia.com/en-in/autonomous-machines/embedded-systems/jetson-agx-xavier/
https://www.nvidia.com/en-in/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://developer.nvidia.com/drive
https://www.nvidia.com/en-us/industries/industrial/
https://developer.nvidia.com/tensorrt
https://developer.qualcomm.com/software/qualcomm-neural-processing-sdk
https://developer.qualcomm.com/software/qualcomm-neural-processing-sdk
https://www.tensorflow.org/lite
https://www.tensorflow.org/xla.
 https://www.advantech.com.co/resources/case-study/intelligent-video-traffic-monitoring-for-self-adaptive-traffic-signal-control-system
 https://www.advantech.com.co/resources/case-study/intelligent-video-traffic-monitoring-for-self-adaptive-traffic-signal-control-system
https://doi.org/10.1145/3540250.3549123

Repercussions of Using DNN Compilers on Edge GPUs for Real Time and Safety Critical Systems: AQuantitative Audit25

Compiler for Deep Learning. In 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 18).
USENIX Association, Carlsbad, CA, 578–594. https://www.usenix.org/conference/osdi18/presentation/chen

[18] Scott Cyphers, Arjun K Bansal, Anahita Bhiwandiwalla, Jayaram Bobba, Matthew Brookhart, Avijit Chakraborty, Will
Constable, Christian Convey, Leona Cook, Omar Kanawi, et al. 2018. Intel ngraph: An intermediate representation,
compiler, and executor for deep learning. arXiv preprint arXiv:1801.08058 (2018).

[19] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto,
and Hartwig Adam. 2017. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017).

[20] Forrest Iandola, Matt Moskewicz, Sergey Karayev, Ross Girshick, Trevor Darrell, and Kurt Keutzer. 2014. Densenet:
Implementing efficient convnet descriptor pyramids. arXiv preprint arXiv:1404.1869 (2014).

[21] Hyo Jong Lee, Ihsan Ullah, Weiguo Wan, Yongbin Gao, and Zhijun Fang. 2019. Real-time vehicle make and model
recognition with the residual SqueezeNet architecture. Sensors 19, 5 (2019), 982.

[22] Mingzhen Li, Yi Liu, Xiaoyan Liu, Qingxiao Sun, Xin You, Hailong Yang, Zhongzhi Luan, Lin Gan, Guangwen Yang, and
Depei Qian. 2020. The deep learning compiler: A comprehensive survey. IEEE Transactions on Parallel and Distributed

Systems 32, 3 (2020), 708–727.
[23] Ishrat Zahan Mukti and Dipayan Biswas. 2019. Transfer learning based plant diseases detection using ResNet50. In

2019 4th International Conference on Electrical Information and Communication Technology (EICT). IEEE, 1–6.
[24] Nvidia. [n. d.]. Self Driving Cars. https://www.nvidia.com/en-us/self-driving-cars/partners/.
[25] Francesco Restuccia and Alessandro Biondi. 2021. Time-Predictable Acceleration of Deep Neural Networks on FPGA

SoC Platforms. In 2021 IEEE Real-Time Systems Symposium (RTSS). IEEE, 441–454.
[26] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recognition
Challenge. International Journal of Computer Vision (IJCV) 115, 3 (2015), 211–252. https://doi.org/10.1007/s11263-015-
0816-y

[27] Omais Shafi, Chinmay Rai, Rijurekha Sen, and Gayathri Ananthanarayanan. 2021. Demystifying TensorRT: Character-
izing Neural Network Inference Engine on Nvidia Edge Devices. In 2021 IEEE International Symposium on Workload

Characterization (IISWC). IEEE, 226–237.
[28] Qingchao Shen, HaoyangMa, Junjie Chen, Yongqiang Tian, Shing-Chi Cheung, and Xiang Chen. 2021. A Comprehensive

Study of Deep Learning Compiler Bugs. In Proceedings of the 29th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE 2021). Association for Computing
Machinery, New York, NY, USA, 968–980. https://doi.org/10.1145/3468264.3468591

[29] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556 (2014).

[30] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. 2015. Going deeper with convolutions. In Proceedings of the IEEE conference on

computer vision and pattern recognition. 1–9.
[31] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal, Zachary DeVito, William S Moses, Sven

Verdoolaege, Andrew Adams, and Albert Cohen. 2018. Tensor comprehensions: Framework-agnostic high-performance
machine learning abstractions. arXiv preprint arXiv:1802.04730 (2018).

[32] Gaurav Verma, Yashi Gupta, Abid M Malik, and Barbara Chapman. 2021. Performance evaluation of deep learning
compilers for edge inference. In 2021 IEEE International Parallel and Distributed Processing Symposium Workshops

(IPDPSW). IEEE, 858–865.
[33] Falk Wurst, Dakshina Dasari, Arne Hamann, Dirk Ziegenbein, Ignacio Sanudo, Nicola Capodieci, Marko Bertogna,

and Paolo Burgio. 2019. System performance modelling of heterogeneous hw platforms: An automated driving case
study. In 2019 22nd Euromicro Conference on Digital System Design (DSD). IEEE, 365–372.

[34] Xiaoling Xia, Cui Xu, and Bing Nan. 2017. Inception-v3 for flower classification. In 2017 2nd International Conference

on Image, Vision and Computing (ICIVC). IEEE, 783–787.
[35] Robail Yasrab, Naijie Gu, and Xiaoci Zhang. 2017. An encoder-decoder based convolution neural network (CNN) for

future advanced driver assistance system (ADAS). Applied Sciences 7, 4 (2017), 312.
[36] Zhang Yi, Shen Yongliang, and Zhang Jun. 2019. An improved tiny-yolov3 pedestrian detection algorithm. Optik 183

(2019), 17–23.
[37] Xiang Yu and Shui-Hua Wang. 2019. Abnormality diagnosis in mammograms by transfer learning based on ResNet18.

Fundamenta Informaticae 168, 2-4 (2019), 219–230.
[38] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun Yang, Danyang

Zhuo, Koushik Sen, et al. 2020. Ansor: Generating {High-Performance} Tensor Programs for Deep Learning. In 14th

USENIX Symposium on Operating Systems Design and Implementation (OSDI 20). 863–879.

, Vol. , No. , Article . Publication date: 2.

https://www.usenix.org/conference/osdi18/presentation/chen
 https://www.nvidia.com/en-us/self-driving-cars/partners/
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1145/3468264.3468591

	Abstract
	1 Introduction
	2 Neural Network Compilers
	3 Experimental Setup
	4 Are Inferences Accurate and Reproducible?
	4.1 Do optimizations retain the pre-trained model accuracy?
	4.2 Do optimized engines give consistent output on same input?

	5 Are Inference Latencies Low and Predictable?
	5.1 Comparison of Inference Latencies across NN compilers
	5.2 Effect of Compression for different NN Compilers
	5.3 Inference Latency Predictability Across Compiled Engines
	5.4 Effect of Dynamic Voltage and Frequency Scaling (DVFS) on Inference Latency
	5.5 Comparison of Compilation Latency across NN compilers
	5.6 Is Resource Utilization Optimal for NN Compilers?

	6 Impact Analysis on Real Time Applications
	6.1 Safety Critical Real Time Application Instances
	6.2 Response Time Components for Deployed DNN Models
	6.3 Response Times vs. NN Compilers For Single Camera
	6.4 Response Times vs. NN Compilers For Multiple Cameras
	6.5 Worst Case Response or Execution Time (WCET) Analysis

	7 Related Work
	8 Recommendations and Conclusion
	9 Acknowledgements
	References

