Network Pruning

Papers

- Song Han, Jeff Pool, John Tran, William J. Dally: *Learning both Weights and Connections for Efficient Neural Network*. NIPS 2015
- Jiecao Yu, Andrew Lukefahr, David Palframa, Ganesh Dasika, Reetuparna Das, Scott Mahlke: Scalpel: Customizing DNN Pruning to the Underlying Hardware Parallelism. ISCA 2017
- Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu Liu, Yu Wang, William J. Dally: Exploring the Regularity of Sparse Structure in Convolutional Neural Networks. NIPS 2017
- T.-J. Yang, Y.-H. Chen, V. Sze: Designing Energy-Efficient Convolutional Neural Networks using Energy-Aware Pruning. CVPR 2017.

Song Han, Jeff Pool, John Tran, William J. Dally

Learning both Weights and Connections for Efficient Neural Network

NIPS 2015

Smaller models are better in terms of energy, as they reduce DRAM access

				1		6, 000	
Operation	Energy [pJ]	Relative Cost					
32 bit int ADD	0.1	1					
32 bit float ADD	0.9	9					
32 bit Register File	1	10					
32 bit int MULT	3.1	31					
32 bit float MULT	3.7	37					
32 bit SRAM Cache	5	50					
32 bit DRAM Memory	640	6400					
			1	10	100	1000	100

Additional good point about mobile app size (Playstore restrictions, communication costs)

Main intuition in reducing model size: **DNNs have redundancy.** So it is good to identify what connections are important and only retain those, to reduce model size.

Magnitude of weights that a connection gets after training, is taken as a proxy for importance. Connections with lower weights are removed. Removing connections is called "Pruning".

Magnitude based pruning

The first step of "Train Connectivity" do not need to run to network convergence. This is inspired by how strong and weak connections are developed in brain.

Effect of pruning (implemented in Caffe)

Network	Top-1 Error	Top-5 Error	Parameters	Compression Rate
LeNet-300-100 Ref	1.64%	-	267K	
LeNet-300-100 Pruned	1.59%	-	22K	12 imes
LeNet-5 Ref	0.80%	-	431K	
LeNet-5 Pruned	0.77%	-	36K	12 imes
AlexNet Ref	42.78%	19.73%	61M	
AlexNet Pruned	42.77%	19.67%	6.7M	9 imes
VGG-16 Ref	31.50%	11.32%	138M	
VGG-16 Pruned	31.34%	10.88%	10.3M	13 imes

Evidence of this main intuition in reducing model size: **DNNs have redundancy, as accuracy drop is minimal.**

What is retained?

Accuracy-pruning trade-off, effect of retraining and regularization

Learning connections, along with weights

- L2 regularization gives better accuracy for pruned networks
- Reduce dropouts, as some connections are already pruned

$$C_i = N_i N_{i-1} \tag{1} \qquad D_r = D_o \sqrt{\frac{C_{ir}}{C_{io}}} \tag{2}$$

- Start from learned weights of retained connections during retraining, instead of re-initializing them
- Iterative pruning better at minimizing connections than one step aggressive pruning
- Pruning connections followed up by pruning neurons, which retain zero connections

Layer type vs. sensitivity

Comparison with other methods

Network	Top-1 Error	Top-5 Error	Parameters	Compression Rate
Baseline Caffemodel [26]	42.78%	19.73%	61.0M	1×
Data-free pruning [28]	44.40%	-	39.6M	$1.5 \times$
Fastfood-32-AD [29]	41.93%	-	32.8M	$2\times$
Fastfood-16-AD [29]	42.90%	-	16.4M	$3.7 \times$
Collins & Kohli [30]	44.40%	-	15.2M	$4 \times$
Naive Cut	47.18%	23.23%	13.8M	$4.4 \times$
SVD [12]	44.02%	20.56%	11.9M	$5 \times$
Network Pruning	42.77%	19.67%	6.7M	$9 \times$

Jiecao Yu, Andrew Lukefahr, David Palframa, Ganesh Dasika, Reetuparna Das, Scott Mahlke Scalpel: Customizing DNN Pruning to the Underlying Hardware Parallelism

ISCA 2017

Effect of pruning on latency for existing hardware architecture

Effect of pruning on latency for existing hardware architecture

To see speedup, insane amount of sparsity is needed -> poor accuracy

Cache misses, the reason?

Hardware classes and Scalpel

		Parallelism					
	Low	Moderate	High				
Example	Micro-	CPU	GPU				
Example	controller	CIU					
Memory	No cache	Deep cache	High bandwidth /				
Hierarchy	NO cache	hierarchy	long latency				
Memory	$\sim 100 \text{KB}$	$\sim 8MB$	2 12GB DPAM				
Size	SRAM	SRAM	2-120D DRAM				

"SIMD aware" weight pruning

Effect of SIMD awareness on Cortex M4

Effect of SIMD awareness on Intel i7

Node pruning, for highly parallel hardware

One neuron in FC layer or one feature map in Conv layer is considered a node.

Shrinks the size of each layer, but keeps the dense structure.

Scalpel results for ARM Cortex M4

Scalpel results for Intel I7

Scalpel results for Nvidia GTX Titan X

Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu Liu, Yu Wang, William J. Dally Exploring the Regularity of Sparse Structure in Convolutional Neural Networks.

NIPS 2017

Irregular fine-grained vs. regular coarse grained pruning

Granularity levels

Weights = Array(C, K, R, S)

Case: Dimension-level granularity
Filter(3-Dim) = Weights[c, :, :, :]
Kernel(2-Dim) = Weights[c, k, :, :]
Vector(1-Dim) = Weights[c, k, r, :]
Fine-grain(0-Dim) = Weights[c, k, r, s]

Why coarse grained better suits hardware architecture

Output memory references for VGG-16 (convolutional layers only).						
Donsity	Fine-grained	Vector Pruning	Palativa # of mamory references			
Density	(0-D)	(1 - D)	Relative # of memory references			
40.1%	1.77B	1.23B	69.5%			
33.1%	1.53B	1.03B	67.2%			
27.5%	1.33B	0.87 B	65.3%			

What granularity is best for accuracy (Alexnet)?

What granularity is best for accuracy (many nets, at a **given sparsity point**)?

Comparison of accuracies with the same density/sparsity.					
Model	Density	Granularity	Top-5		
		Kernel Pruning (2-D)	79.20%		
AlexNet	24.8%	Vector Pruning (1-D)	79.94%		
		Fine-grained Pruning (0-D)	80.41%		
		Kernel Pruning (2-D)	89.70%		
VGG-16	23.5%	Vector Pruning (1-D)	90.48%		
		Fine-grained Pruning (0-D)	90.56%		
	38.4%	Kernel Pruning (2-D)	88.83%		
GoogLeNet		Vector Pruning (1-D)	89.11%		
		Fine-grained Pruning (0-D)	89.40%		
		Kernel Pruning (2-D)	92.07%		
ResNet-50	40.0%	Vector Pruning (1-D)	92.26%		
		Fine-grained Pruning (0-D)	92.34%		
		Kernel Pruning (2-D)	91.56%		
DenseNet-121	30.1%	Vector Pruning (1-D)	91.89%		
		Fine-grained Pruning (0-D)	92.21%		

What granularity is best for model size (Alexnet)?

What granularity is best for model size (many nets, at a given accuracy point)?

Model	Top-5 Accuracy	Granularity	Density	Storage Ratio
		Kernel Pruning (2-D)	37.8%	39.7%
AlexNet	80.3%	Vector Pruning (1-D)	29.9%	34.5%
		Fine-grained Pruning (0-D)	22.1%	33.0%
		Kernel Pruning (2-D)	44.4%	46.9%
VGG-16	90.6%	Vector Pruning (1-D)	30.7%	35.8%
		Fine-grained Pruning (0-D)	27.0%	40.6%
GoogLeNet		Kernel Pruning (2-D)	43.7%	51.6%
	89.0%	Vector Pruning (1-D)	36.9%	47.4%
		Fine-grained Pruning (0-D)	32.3%	48.5%
		Kernel Pruning (2-D)	61.3%	77.0%
ResNet-50	92.3%	Vector Pruning (1-D)	40.0%	52.7%
		Fine-grained Pruning (0-D)	37.1%	55.7%
		Kernel Pruning (2-D)	35.5%	48.9%
DenseNet-121	91.9%	Vector Pruning (1-D)	31.1%	43.8%
		Fine-grained Pruning (0-D)	26.6%	39.8%

T.-J. Yang, Y.-H. Chen, V. Sze

Designing Energy-Efficient Convolutional Neural Networks using Energy-Aware Pruning CVPR 2017

Explicitly consider energy consumption of different DNN layers

How to find energy consumption of layers and order them?

 $a \times EC(DRAM) + ab \times EC(global buffer) + abc \times EC(array) + abcd \times EC(RF),$

Effect of energy aware pruning, accuracylatency trade-offs

Model		Top-5 # of Non-zero		on-zero	# of Non-skipped		Normalized	
		Accuracy	Weights ($\times 10^6$)		MACs $(\times 10^8)^1$		Energy $(\times 10^9)^{1,2}$	
AlexNet	(Original)	80.43%	60.95	(100%)	3.71	(100%)	3.97	(100%)
AlexNet	([8])	80.37%	6.79	(11%)	1.79	(48%)	1.85	(47%)
AlexNet	(Energy-Aware Pruning)	79.56%	5.73	(9%)	0.56	(15%)	1.06	(27%)
GoogLeNet	(Original)	88.26%	6.99	(100%)	7.41	(100%)	7.63	(100%)
GoogLeNet	(Energy-Aware Pruning)	87.28%	2.37	(34%)	2.16	(29%)	4.76	(62%)
SqueezeNet	(Original)	80.61%	1.24	(100%)	4.51	(100%)	5.28	(100%)
SqueezeNet	([8])	81.47%	0.42	(33%)	3.30	(73%)	4.61	(87%)
SqueezeNet	(Energy-Aware Pruning)	80.47%	0.35	(28%)	1.93	(43%)	3.99	(76%)

Effect of energy aware pruning, accuracy-latency trade-offs

- Deeper CNNs with fewer weights do not necessarily consume less energy than shallower CNNs with more weights -> Squeeznet vs. Alexnet
- Reducing number of weights saves more energy than reducing bitwidth of weights ->BWN vs. pruned Alexnet

Papers: Summary

- Song Han, Jeff Pool, John Tran, William J. Dally: *Learning both Weights and Connections for Efficient Neural Network*. NIPS 2015
- Jiecao Yu, Andrew Lukefahr, David Palframa, Ganesh Dasika, Reetuparna Das, Scott Mahlke: Scalpel: Customizing DNN Pruning to the Underlying Hardware Parallelism. ISCA 2017
- Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu Liu, Yu Wang, William J. Dally: Exploring the Regularity of Sparse Structure in Convolutional Neural Networks. NIPS 2017
- T.-J. Yang, Y.-H. Chen, V. Sze: *Designing Energy-Efficient Convolutional Neural Networks using Energy-Aware Pruning*. CVPR 2017.

• Song Han, Huizi Mao, William J. Dally: *Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and Huffman Coding.* ICLR 2016

Pruning doesn't hurt quantization

Pruning helps quantization (unsupervised)

