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Smaller models are better in terms of energy,
as they reduce DRAM access

Relative Energy Cost

Operation Energy [pJ] Relative Cost
32 bit int ADD 0.1 1

32 bit float ADD 0.9 9

32 bit Register File 1 10

32 bit int MULT 3.1 31

32 bit float MULT 3.7 37

32 bit SRAM Cache 5 50

32 bit DRAM Memory 640 6400

1 10 100 1000 10000
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Main intuition in reducing model size: DNNs have redundancy. So it
is good to identify what connections are important and only retain
those, to reduce model size.

Magnitude of weights that a connection gets after training, is taken
as a proxy for importance. Connections with lower weights are
removed. Removing connections is called “Pruning”.




Magnitude based pruning
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The first step of “Train Connectivity” do not need to run to network convergence.
This is inspired by how strong and weak connections are developed in brain.



Effect of pruning (implemented in Caffe)

Network Top-1 Error  Top-5 Error | Parameters gg{g pression
LeNet-300-100 Ref 1.64% - 267K

LeNet-300-100 Pruned | 1.59% - 22K 12x
[LeNet-5 Ref 0.80% - 431K

[LeNet-5 Pruned 0.77% - 36K 12x
AlexNet Ref 42.78% 19.73% 61M

AlexNet Pruned 42.77% 19.67% 6.7M 9 x

VGG-16 Ref 31.50% 11.32% 138M

VGG-16 Pruned 31.34% 10.88% 10.3M 13 x

Evidence of this main intuition in reducing model size:
DNNSs have redundancy, as accuracy drop is minimal.
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Accuracy-pruning trade-off, effect of
retraining and regularization

-O-L2 regularization w/o retrain L1 regularization w/o retrain
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Learning connections, along with weights

* |2 regularization gives better accuracy for pruned networks
* Reduce dropouts, as some connections are already pruned

C?L 5
C?Lo

=1V IN: 4 (1) Lo = B (2)

* Start from learned weights of retained connections during
retraining, instead of re-initializing them

* |terative pruning better at minimizing connections than one
step aggressive pruning

* Pruning connections followed up by pruning neurons, which
retain zero connections



Accuracy Loss

Layer type vs. sensitivity
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Comparison with other methods

Network Top-1 Error  Top-5 Error | Parameters Eg{gpressmn
Baseline Caffemodel [26] | 42.78% 19.73% 61.0M 1x

Data-free pruning [28] 44.40% - 39.6M 1.5%
Fastfood-32-AD [29] 41.93% - 32.8M 2 X
Fastfood-16-AD [29] 42.90% - 16.4M 3.7X

Collins & Kohli [30] 44.40% - 15.2M 4

Naive Cut 47.18% 23.23% 13.8M 4.4 x

SVD [12] 44.02% 20.56% 11.9M 5 X

Network Pruning 42.77 % 19.67 % 6.7"M 9 x
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Effect of pruning on latency for existing hardware
architecture

1 Time Micro. I Time GPU EE MAC Op.
[ Time CPU I Model Size

P

)

[

Relative Exec. Time / Size /
MAC Operations
J

0
LeNet-300-100 LeNet-5 ConvNet NIN AlexNet



Effect of pruning on latency for existing hardware
architecture




To see speedup, insane amount of sparsity is
needed -> poor accuracy
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Num of Cache Access / Miss

Cache misses, the reason?

1 L1 D-Cache Load I L1 D-Cache Store
1 L1 D-Cache Load Miss [ L1 D-Cache Store Miss

Dense Sparse-0.80 Sparse-0.60



Hardware classes and Scalpel

Parallelism
Low Moderate High
Example | T | cpy GPU
controller
M.emory No cache Deep cache | High bandwidth /
Hierarchy hierarchy long latency
Memory | ~100KB | ~8MB
Size SRAM | SRAM 2-12GB DRAM
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“SIMD aware” weight pruning
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Effect of SIMD awareness on Cortex M4
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Effect of SIMD awareness on Intel i7
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Node pruning, for highly parallel hardware
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Scalpel results for ARM Cortex M4

Relative Model Size
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Relative Model Size
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Scalpel results for Nvidia GTX Titan X
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Irregular fine-grained vs.
regular coarse grained pruning

Irregular » Regular
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Granularity levels

Weights = Array(C, K, R, S)

# Case: Dimension-level granularity
Filter(3-Dim) = Weights[c, :, :, :]

_f???ﬁ. Kernel(2-Dim) = Weights[c, k, :, :]
Vector(1-Dim) = Weights[c, k, r, :]
Sub-kernel Kemnel Filter Fi . . : .
Vector ine-grain(0-Dim) = Weights[c, k, r, s]



Why coarse grained better suits hardware

architecture
Weight Weight
Index Weight
Weight Weight
Index Index
Weight : |
! Saving! |
Index ! !

Fine-grained

Coarse-grained

Output memory references for VGG-16 (convolutional layers only).

Fine-grained  Vector Pruning

Density (0-D) (1-D) Relative # of memory references
40.1% 1.77B 1.23B 69.5 %
33.1% 1.53B 1.03B 67.2%
27.5% 1.33B 0.87B 65.3%




What granularity is best for accuracy

(Alexnet)?
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What granularity is best for accuracy (many
nets, at a given sparsity point)?

Comparison of accuracies with the same density/sparsity.

Model Density Granularity Top-5
Kernel Pruning (2-D) 79.20%
AlexNet 24.8% Vector Pruning (1-D) 79.94%

Fine-grained Pruning (0-D) 80.41%

Kernel Pruning (2-D) 89.70%
VGG-16 23.5% Vector Pruning (1-D) 90.48%
Fine-grained Pruning (0-D) 90.56 %

Kernel Pruning (2-D) 88.83%
GoogleNet 38.4% Vector Pruning (1-D) 89.11%
Fine-grained Pruning (0-D) 89.40%

Kernel Pruning (2-D) 92.07%
ResNet-50 40.0% Vector Pruning (1-D) 92.26%
Fine-grained Pruning (0-D) 92.34%

Kernel Pruning (2-D) 91.56%
DenseNet-121 | 30.1% Vector Pruning (1-D) 91.89%
Fine-grained Pruning (0-D) 92.21%




What granularity is best for model size
(Alexnet)?
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What granularity is best for model size (many nets,
at a given accuracy point)?

Top-5

Model A Granularity Density Storage Ratio
ccuracy

Kernel Pruning (2-D) 37.8% 39.7%
AlexNet 80.3% Vector Pruning (1-D) 29.9% 34.5%
Fine-grained Pruning (0-D) 22.1% 33.0%
Kernel Pruning (2-D) 44.4% 46.9%
VGG-16 90.6% Vector Pruning (1-D) 30.7% 35.8%
Fine-grained Pruning (0-D) 27.0% 40.6%
Kernel Pruning (2-D) 43.7% 51.6%
GoogleNet 89.0% | Vector Pruning (1-D) 36.9% 47.4 %
Fine-grained Pruning (0-D) 32.3% 48.5%
Kernel Pruning (2-D) 61.3% 77.0%
ResNet-50 92.3% Vector Pruning (1-D) 40.0% 52.7%
Fine-grained Pruning (0-D) 37.1% 55.7%
Kernel Pruning (2-D) 35.5% 48.9%
DenseNet-121 91.9% Vector Pruning (1-D) 31.1% 43.8%
Fine-grained Pruning (0-D) 26.6% 39.8 %
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Explicitly consider energy consumption of
different DNN layers

Input Model

(D) Determine Order of Layers Based on Energy

pr— (@) Remove Weights Based on Magnitude

]

(3) Restore Weights to Reduce Output Error
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How to find energy consumption of layers
and order them?
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Effect of energy aware pruning, accuracy-
latency trade-offs

Model Top-5 # of Non-zero | # of Non-skipped Normalized
Accuracy | Weights (x 10%) MACs (x10%)! Energy (x 10712
AlexNet  (Original) 80.43% 60.95 (100%) | 3.71 (100%) | 3.97 (100%)
AlexNet  ([8]) 80.37% 6.79 (11%) | 1.79 (48%) | 1.85 (47%)
AlexNet  (Energy-Aware Pruning) 79.56% 5.73 (9%) | 0.56 (15%) | 1.06 (27%)
GoogleNet  (Original) 88.26% 6.99 (100%) | 7.41 (100%) | 7.63  (100%)
GoogleNet  (Energy-Aware Pruning) 87.28% 2.37 (34%) | 2.16 (29%) | 4.76 (62%)
SqueezeNet  (Original) 80.61% 1.24  (100%) | 4.51 (100%) | 5.28  (100%)
SqueezeNet  ([8]) 81.47% 0.42 (33%) | 3.30 (73%) | 4.61 (87%)
SqueezeNet  (Energy-Aware Pruning) 80.47% 0.35 (28%) | 1.93 (43%) | 3.99 (76%)



Effect of energy aware pruning, accuracy-latency trade-offs

93%
91% ResNet-50 ©
899% GoogleNet VGg-lG
>
® 87% GoogleNet
3
< 85%
'? a20
§- 83% SqueezeNet
81% AlexNet AlexNet @ © SqueezeNet
0 AlexNet * @ SqueezeNet
79% .
BWN (1-bit)
77%
5E+08 5E+09 5E+10
Normalized Energy Consumption
@ Original CNN Magnitude-based Pruning [8] % Energy-aware Pruning (This Work)

* Deeper CNNs with fewer weights do not necessarily consume less energy
than shallower CNNs with more weights -> Squeeznet vs. Alexnet

* Reducing number of weights saves more energy than reducing bitwidth of
weights ->BWN vs. pruned Alexnet
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