Network Pruning

Papers

Song Han, Jeff Pool, John Tran, William J. Dally: Learning both
Weights and Connections for Efficient Neural Network. NIPS 2015

Jiecao Yu, Andrew Lukefahr, David Palframa, Ganesh Dasika,
Reetuparna Das, Scott Mahlke: Scalpel: Customizing DNN Pruning
to the Underlying Hardware Parallelism. ISCA 2017

Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu Liu, Yu Wang,
William J. Dally: Exploring the Regularity of Sparse Structure in
Convolutional Neural Networks. NIPS 2017

T.-J. Yang, Y.-H. Chen, V. Sze: Designing Energy-Efficient
Convolutional Neural Networks using Energy-Aware Pruning.
CVPR 2017.

Song Han, Jeff Pool, John Tran, William J. Dally
Learning both Weights and Connections for Efficient Neural Network
NIPS 2015

Smaller models are better in terms of energy,
as they reduce DRAM access

Relative Energy Cost

Operation Energy [pJ] Relative Cost
32 bit int ADD 0.1 1

32 bit float ADD 0.9 9

32 bit Register File 1 10

32 bit int MULT 3.1 31

32 bit float MULT 3.7 37

32 bit SRAM Cache 5 50

32 bit DRAM Memory 640 6400

1 10 100 1000 10000

E— . . .

Main intuition in reducing model size: DNNs have redundancy. So it
is good to identify what connections are important and only retain
those, to reduce model size.

Magnitude of weights that a connection gets after training, is taken
as a proxy for importance. Connections with lower weights are
removed. Removing connections is called “Pruning”.

Magnitude based pruning

-

L

Train Connectivity

L

7~

\.

Prune Connections

A

-

Train Weights

before pruning after pruning

pruning
synapses

-

pruning
neurons

The first step of “Train Connectivity” do not need to run to network convergence.
This is inspired by how strong and weak connections are developed in brain.

Effect of pruning (implemented in Caffe)

Network Top-1 Error Top-5 Error | Parameters gg{g pression
LeNet-300-100 Ref 1.64% - 267K

LeNet-300-100 Pruned | 1.59% - 22K 12x
[LeNet-5 Ref 0.80% - 431K

[LeNet-5 Pruned 0.77% - 36K 12x
AlexNet Ref 42.78% 19.73% 61M

AlexNet Pruned 42.77% 19.67% 6.7M 9 x

VGG-16 Ref 31.50% 11.32% 138M

VGG-16 Pruned 31.34% 10.88% 10.3M 13 x

Evidence of this main intuition in reducing model size:
DNNSs have redundancy, as accuracy drop is minimal.

Count

50

100

200

250

300

What is retained?

0 28 RA A4 112 140 168 196 224 2RZ 280 308 336 364 392 420 448 476 ADd 532 K60 H88 616 Bd4d 672 700 728 7hHB 74

x10° Weight distribution before pruning <10 Weight distribution after pruning and retraining

11— T T T T T T T T 1" T T T T T T T T T
10 10 b
9 ar B
8 8

7 7

6 T 6

3

5 o 5

4 4

3 3

2 2

1 1

0—0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

Weight Value Weight Value

Accuracy-pruning trade-off, effect of
retraining and regularization

-O-L2 regularization w/o retrain L1 regularization w/o retrain
L1 regularization w/ retrain L2 regularization w/ retrain
~®-2 regularization w/ iterative prune and retrain

0.5%
0.0%
-0.5%
-1.0% "o,

-1.5% ~

-2.0% ‘5
-2.5% .
-3.0% .
-3.5% ;
-4.0% 5

-4.5% *
40% 50% 60% 70% 80% 90% 100%
Parametes Pruned Away

=
.
-
-
- -
-
s
-

Accuracy Loss

Learning connections, along with weights

* |2 regularization gives better accuracy for pruned networks
* Reduce dropouts, as some connections are already pruned

C?L 5
C?Lo

=1V IN: 4 (1) Lo = B (2)

* Start from learned weights of retained connections during
retraining, instead of re-initializing them

* |terative pruning better at minimizing connections than one
step aggressive pruning

* Pruning connections followed up by pruning neurons, which
retain zero connections

Accuracy Loss

Layer type vs. sensitivity

convi conv2 TFconv3 convd ~X-convb
0% JK—E_X‘E—XE—X%XE_XT‘R*
-5%
-10%
-15%
-20%
0% 25% 50% 75%
#Parameters
0%
-5%
]
(o]
. |
3 .100
8 -10%
5
8
<

-15%

-20%

100%

0% 25% 50% 75% 100%
#Parameters

Comparison with other methods

Network Top-1 Error Top-5 Error | Parameters Eg{gpressmn
Baseline Caffemodel [26] | 42.78% 19.73% 61.0M 1x

Data-free pruning [28] 44.40% - 39.6M 1.5%
Fastfood-32-AD [29] 41.93% - 32.8M 2 X
Fastfood-16-AD [29] 42.90% - 16.4M 3.7X

Collins & Kohli [30] 44.40% - 15.2M 4

Naive Cut 47.18% 23.23% 13.8M 4.4 x

SVD [12] 44.02% 20.56% 11.9M 5 X

Network Pruning 42.77 % 19.67 % 6.7"M 9 x

Jiecao Yu, Andrew Lukefahr, David Palframa, Ganesh Dasika, Reetuparna Das, Scott Mahlke
Scalpel: Customizing DNN Pruning to the Underlying Hardware Parallelism

ISCA 2017

Effect of pruning on latency for existing hardware
architecture

1 Time Micro. I Time GPU EE MAC Op.
[Time CPU I Model Size

P

)

[

Relative Exec. Time / Size /
MAC Operations
J

0
LeNet-300-100 LeNet-5 ConvNet NIN AlexNet

Effect of pruning on latency for existing hardware
architecture

To see speedup, insane amount of sparsity is
needed -> poor accuracy

2.5
) —y 'Dense
E 2.0 o NG ®—® Sparse| |
= .
O
D LD o NG
X
L
Q10— Yy
3 1.0F ¥ E E
bt : :
L 5 .
Q O 5 Rl N
o g 5

00 i i i i

0.90 0.92 0.94 0.96 0.98 1.00

Pruning Rate

Num of Cache Access / Miss

Cache misses, the reason?

1 L1 D-Cache Load I L1 D-Cache Store
1 L1 D-Cache Load Miss [L1 D-Cache Store Miss

Dense Sparse-0.80 Sparse-0.60

Hardware classes and Scalpel

Parallelism
Low Moderate High
Example | T | cpy GPU
controller
M.emory No cache Deep cache | High bandwidth /
Hierarchy hierarchy long latency
Memory | ~100KB | ~8MB
Size SRAM | SRAM 2-12GB DRAM
(Trained DNN)
:Scalpel Y
, Low Hardware High

Parallelism

Moderate

Layer Type
FC Yo YRS Eony

v A 4
SIMD-Aware

:| Weight Pruning l

Node Pruning |:

(Pruned DNN)

“SIMD aware” weight pruning

DNN
.} sIMD-Aware |
Weights Grouping | Weight Pruning
Vv |
Prune Weight Retrain
Groups DNN
I)

'Pruned DNN ==

o|5/2]|5[0f0 2|5
oloj1]7]ofo 7
2|3]ojo[4f2
g|4]|ojofofo
ojoj1[1[8]3
3|2[0fo]o0]o0

(A) (B)

e |
A :E.[SIEZ 5, 7, 2’ 3’ 4 Q
©2,8,4,83,3,2 _Tof
V ---------------------- > :rﬁ'-:
¢JA:[1;21 3, 3,0’ 1;4, x
5,0,1,4,5,0, 1] l
M:[0,3,4,8’10’ .
e 1) Input
(© Vector

Group size equal to SIMD width = 2 for Cortex M4

0|5/2(5]|0]0 2|5
ojof1{7]o]0 1
2(3/0/0]4]2
8/410/0[0]0
0{0]1[1]8]3
3/2]0]0]0]0

(A) (B)

e
1(23)(8,2)(8,4) g
: :
y 8362l >Te
¢JA’ = [0, 2, 2Jr O’ 41 0' X 1
4,0] 4
IA’=[0,4,6,10, 12, :
14,16] =
(C) Vector

Effect of SIMD awareness on Cortex M4

2-5 | | |
o | 5 5 &—-® MV-Sparse
S 2.0 A— S S MV-SIMD Sparse |
[| ¢—¢ MM-Sparse
3 1.5 S N A ¥—¥ MM-SIMD Sparse |
L2>j : : : :
g
-
O
@ 0.5
o :
: : : I \
0 % | | | | A
3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Pruning Rate

Effect of SIMD awareness on Intel i7

2.5 : :

O ¥—¥ MKL-Dense

£ 2.0 ®—® MKL-Sparse

= : : ¢—4 Simple-Sparse
§ LS o S U A—A SIMD-Sparse |
L 5 : : :

.GEJ 1.0

et

©

I S Nt S—_— s e —
ad

0.2 0.4 0.6 0.8 1.0
Pruning Rate

o
=)
o

Node pruning, for highly parallel hardware

(onn)
poecceoees SRR
: [Add Mask L Node
' ask Layers Pruning . .
i‘ | runing One neuron in FC layer or one feature map
: . Increase
+ | Train Mask Layers Weight Decay |
‘]
y
' | Remove Masked Nodes / .
| Mask Layers + Retrain :

(Pruned DNN)

Mask
*3=0A Layer A’

A3 A

x1=1

A-1

Scalpel results for ARM Cortex M4

Relative Model Size

[Orignal B Optimized Pruning

@ Traditional Pruning El Scalpel
03 Ta o O o

— | Lo | Lo |

O 4 | [
0.3 [[- [
02 t——AA
0.1F |- 1 rrr

0 LeNet-300-100 LeNet-5 ConvNet geomean

[Original I Optimized Pruning
2 Traditional Pruning El Scalpel

a9 ‘ | ‘

3 8

o 7

& 6

g 5

< 4

£ 3

S 2

=

ol

o

0

LeNet-300-100 LeNet-5 ConvNet geomean

Relative Model Size

1.2
1.0
0.8
0.6
0.4
0.2
0.0

Scalpel results for Intel 17

[Orignal
[Traditional Pruning

I Optimized Pruning

Bl Scalpel

LeNet- LeNet-5 ConvNet

NIN AlexNet geomean

I

w

Performance Speedup
N

o

=

1 Original B Traditional Pruning
@ Optimized Pruning HEl Scalpel

LeNet- LeNet-5 ConvNet NIN AlexNet geomean
300-100

Scalpel results for Nvidia GTX Titan X

[Original B Optimized Pruning
@ Traditional Pruning Bl Scalpel

=
N

=
=)
I

0.2} |

Relative Model Size
(e] o o
B ()] [o0]

o©
o

LeNet- LeNet-5 ConvNet NIN AlexNe
300-100

1 Original B Optimized Pruning
[Traditional Pruning Bl Scalpel

LeNet- LeNet-5 ConvNet NIN AlexNet geomean
300-100

Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu Liu, Yu Wang, William J. Dally

Exploring the Regularity of Sparse Structure in Convolutional Neural Networks.

NIPS 2017

Irregular fine-grained vs.
regular coarse grained pruning

Irregular » Regular

e = [

%

o bl

Fine-grained Vector-level Kernel-level Filter-level
Sparsity(0-D) Sparsity(1-D) Sparsity(2-D) Sparsity(3-D)

Granularity levels

Weights = Array(C, K, R, S)

Case: Dimension-level granularity
Filter(3-Dim) = Weights[c, :, :, :]

_f???ﬁ. Kernel(2-Dim) = Weights[c, k, :, :]
Vector(1-Dim) = Weights[c, k, r, :]
Sub-kernel Kemnel Filter Fi . . : .
Vector ine-grain(0-Dim) = Weights[c, k, r, s]

Why coarse grained better suits hardware

architecture
Weight Weight
Index Weight
Weight Weight
Index Index
Weight : |
! Saving! |
Index ! !

Fine-grained

Coarse-grained

Output memory references for VGG-16 (convolutional layers only).

Fine-grained Vector Pruning

Density (0-D) (1-D) Relative # of memory references
40.1% 1.77B 1.23B 69.5 %
33.1% 1.53B 1.03B 67.2%
27.5% 1.33B 0.87B 65.3%

What granularity is best for accuracy

(Alexnet)?

- - - Baseline
—+— Pruning Kernels (2D)

—— Fine-grained Pruning (OD)

—=&— Pruning Filters (3D)

Pruning Vectors (1D)

81.0

8] 8]

e

o ol
I]

Top-5 Accuracy
~J
(e
o

~N N
© ©
o1 o
| |

78.0

ISCA 2017 I

I NIPS 201

0.0

0.2

0.4
Sparsity

0.6

0.8

1.0

What granularity is best for accuracy (many
nets, at a given sparsity point)?

Comparison of accuracies with the same density/sparsity.

Model Density Granularity Top-5
Kernel Pruning (2-D) 79.20%
AlexNet 24.8% Vector Pruning (1-D) 79.94%

Fine-grained Pruning (0-D) 80.41%

Kernel Pruning (2-D) 89.70%
VGG-16 23.5% Vector Pruning (1-D) 90.48%
Fine-grained Pruning (0-D) 90.56 %

Kernel Pruning (2-D) 88.83%
GoogleNet 38.4% Vector Pruning (1-D) 89.11%
Fine-grained Pruning (0-D) 89.40%

Kernel Pruning (2-D) 92.07%
ResNet-50 40.0% Vector Pruning (1-D) 92.26%
Fine-grained Pruning (0-D) 92.34%

Kernel Pruning (2-D) 91.56%
DenseNet-121 | 30.1% Vector Pruning (1-D) 91.89%
Fine-grained Pruning (0-D) 92.21%

What granularity is best for model size
(Alexnet)?

- - - Baseline —¥— Fine-grained Pruning (0D) Pruning Vectors (1D)
—+— Pruning Kernels (2D) —=— Pruning Filters (3D)

81.'0]]]]

| e

ISCA 2017 I

Top-5 Accuracy
~ ~ ~l 0 0
© © © o O
] o (&) o o
| |] | |

780 I I I I
1.0 0.8 0.6 0.4 0.2 0.0

Storage Ratio

What granularity is best for model size (many nets,
at a given accuracy point)?

Top-5

Model A Granularity Density Storage Ratio
ccuracy

Kernel Pruning (2-D) 37.8% 39.7%
AlexNet 80.3% Vector Pruning (1-D) 29.9% 34.5%
Fine-grained Pruning (0-D) 22.1% 33.0%
Kernel Pruning (2-D) 44.4% 46.9%
VGG-16 90.6% Vector Pruning (1-D) 30.7% 35.8%
Fine-grained Pruning (0-D) 27.0% 40.6%
Kernel Pruning (2-D) 43.7% 51.6%
GoogleNet 89.0% | Vector Pruning (1-D) 36.9% 47.4 %
Fine-grained Pruning (0-D) 32.3% 48.5%
Kernel Pruning (2-D) 61.3% 77.0%
ResNet-50 92.3% Vector Pruning (1-D) 40.0% 52.7%
Fine-grained Pruning (0-D) 37.1% 55.7%
Kernel Pruning (2-D) 35.5% 48.9%
DenseNet-121 91.9% Vector Pruning (1-D) 31.1% 43.8%
Fine-grained Pruning (0-D) 26.6% 39.8 %

T.-J. Yang, Y.-H. Chen, V. Sze
Designing Energy-Efficient Convolutional Neural Networks using Energy-Aware Pruning

CVPR 2017

Explicitly consider energy consumption of
different DNN layers

Input Model

(D) Determine Order of Layers Based on Energy

pr— (@) Remove Weights Based on Magnitude

]

(3) Restore Weights to Reduce Output Error

¥

(@) Locally Fine-tune Weights

Other Unpruned
Layers?

Yes
(Prune Next Layer)

+ No

() Globally Fine-tune Weights

Accuracy Below
Threshold? No

Start Next Iteration
Yes ()

Output Model

How to find energy consumption of layers
and order them?

iFIFO / oFIFO

PE Array

DRAM

Global
Buffer

+MemoryLével———Li—L——:———:——;———i———:—T;——'r—ﬂ
Iy < = ‘Buffer Level1i= =T === 7T=-=r==rF=i=="9-1
I [o [I 1 1 I II
— ey b i b ool - AmayLevel |
I I —_—T==y, | =
I i I I i ==
I I |I’_!_I)§ Y e |1, |I
L I g l—>_ | T-—F RFlLevel | o
I: data I: hhhhhh | - - —— |I
:i m““e“"f"t Processing Other Data ... :I
I 1 S N S SR S S S I I__I_‘II
; :!_)Ir —d-—r--< ’:-__il : ;__:frlll:
ly I | ==y I] [TR
! ! |E_E-|":ﬁ: I : J | I |---:-!|II
g o i JE=22 e 4 _d-1 Llll
(1)) T B B e e e i S e S

A ' 1] i [r I |

| orRam | Buffer | Array | RF

Reuses | a=1 | b=2 | c=3 | d=4

a x EC(DRAM) +ab x EC(global buffer)+
abc x EC(array) +abcd x EC(RF),

Effect of energy aware pruning, accuracy-
latency trade-offs

Model Top-5 # of Non-zero | # of Non-skipped Normalized
Accuracy | Weights (x 10%) MACs (x10%)! Energy (x 10712
AlexNet (Original) 80.43% 60.95 (100%) | 3.71 (100%) | 3.97 (100%)
AlexNet ([8]) 80.37% 6.79 (11%) | 1.79 (48%) | 1.85 (47%)
AlexNet (Energy-Aware Pruning) 79.56% 5.73 (9%) | 0.56 (15%) | 1.06 (27%)
GoogleNet (Original) 88.26% 6.99 (100%) | 7.41 (100%) | 7.63 (100%)
GoogleNet (Energy-Aware Pruning) 87.28% 2.37 (34%) | 2.16 (29%) | 4.76 (62%)
SqueezeNet (Original) 80.61% 1.24 (100%) | 4.51 (100%) | 5.28 (100%)
SqueezeNet ([8]) 81.47% 0.42 (33%) | 3.30 (73%) | 4.61 (87%)
SqueezeNet (Energy-Aware Pruning) 80.47% 0.35 (28%) | 1.93 (43%) | 3.99 (76%)

Effect of energy aware pruning, accuracy-latency trade-offs

93%
91% ResNet-50 ©
899% GoogleNet VGg-lG
>
® 87% GoogleNet
3
< 85%
'? a20
§- 83% SqueezeNet
81% AlexNet AlexNet @ © SqueezeNet
0 AlexNet * @ SqueezeNet
79% .
BWN (1-bit)
77%
5E+08 5E+09 5E+10
Normalized Energy Consumption
@ Original CNN Magnitude-based Pruning [8] % Energy-aware Pruning (This Work)

* Deeper CNNs with fewer weights do not necessarily consume less energy
than shallower CNNs with more weights -> Squeeznet vs. Alexnet

* Reducing number of weights saves more energy than reducing bitwidth of
weights ->BWN vs. pruned Alexnet

Papers: Summary

Song Han, Jeff Pool, John Tran, William J. Dally: Learning both Weights and
Connections for Efficient Neural Network. NIPS 2015

Jiecao Yu, Andrew Lukefahr, David Palframa, Ganesh Dasika, Reetuparna Das, Scott
Mabhlke: Scalpel: Customizing DNN Pruning to the Underlying Hardware Parallelism.
ISCA 2017

Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu Liu, Yu Wang, William J. Dally:
Exploring the Regularity of Sparse Structure in Convolutional Neural Networks. NIPS
2017

T.-J. Yang, Y.-H. Chen, V. Sze: Designing Energy-Efficient Convolutional Neural
Networks using Energy-Aware Pruning. CVPR 2017.

Song Han, Huizi Mao, William J. Dally: Deep Compression: Compressing Deep
Neural Network with Pruning, Trained Quantization and Huffman Coding. ICLR 2016

85%

68%

51%

34%

Accuracy

17%

0% &
1bit 2bts 3bits 4bits 5bits 6bits 7bits 8bits

Pruning doesn’t hurt quantization

top5, quantized only < top5, pruned + quantized
top1, quantized only © topi, pruned + quantized

g

/
i

|
i
i

A

Number of bits per effective weight in all

FC layers

Pruning helps quantization (unsupervised)

Accuracy Loss

0.5%

0.0%
-0.5%
-1.0%
-1.5%
-2.0%
-2.5%
-3.0%
-3.5%
-4.0%
-4.5%

top5, quantized only < top5, pruned + quantized top5, quantized only top5, pruned + quantized
top1, quantized only © top1, pruned + quantized - top1, quantized only © top1, pruned + quantized
85% S 85% P
66% 4 68% /
= P S U S o R
S 51% S 51% e
3 = * A
S 34% o 3% LA
< < [A
17% 17% /
0% ¢ i T —
1bit 2bits 3bits 4bits Sbits 6bits 7bits 8bits 1bit 2bits 3bits 4bits 5bits 6bits 7bits 8bits
Number of bits per effective weight in all Number of bits per effective weight in
Conv layers all layers

O Pruning + Quantization 4 Pruning Only Quantization Only SVD

2%

5% 8% 11% 14% 17% 20%

Model Size Ratio after Compression

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

