
Basic operations in a CNN in typical computer
vision inference task (forward pass)

Convolutional Neural Networks (CNN)

From http://cs231n.github.io/convolutional-networks/

Forward Pass

http://cs231n.github.io/convolutional-networks/

Given a trained network (architecture, hyper-
parameters, parameters fixed)

• What mathematical operations are done during inference

• Sample c++ code for the operation (sequential
implementation)

 - from https://github.com/JC1DA/DeepSense

• Some intuition on why that operation is useful

Operations
- Convolution

- Rectified Linear Unit (ReLU)

- Max-pooling

- Fully connected

https://github.com/JC1DA/DeepSense
https://github.com/JC1DA/DeepSense
https://github.com/JC1DA/DeepSense
https://github.com/JC1DA/DeepSense
https://github.com/JC1DA/DeepSense

Convolution without padding

5x5 input. 3x3 filter/kernel/feature detector. 3x3 convolved feature/
activation map/feature map

Convolution with padding

Animation source: https://github.com/vdumoulin/conv_arithmetic

4x4 input. 3x3 filter. Stride = 1.
2x2 output.

5x5 input. 3x3 filter. Stride = 1.
5x5 output.

Multiple filters

Original image

Computations: #Multiplications and additions

For each filter

For each row in output

For each column in output

Over filter depth

For each row in filter

For each column in filter

Multiplications, additions

Additions

5x5 input.

3x3 filter

3x3 output

Storage: #Parameters

For each filter

Over filter depth

For each row in filter

For each column in filter

Weight parameters

Bias parameters

Hyper-parameters

• Number of filters

• Size of each filter (width, height)

• Padding

• Stride

Affects output size (which is next layer’s inputs):

output width = (input width + 2 * padding – filter width)/stride + 1

output height = (input height + 2 * padding – filter height)/stride + 1

output depth = number of filters

Affects #parameters network has to learn during training

Weight terms = number of filters * filter width * filter height * filter depth

Bias terms = number of filters

Knobs to trade-off train and inference latency (more computations and memory
reads), model size (storage) vs. accuracy…..

Projective field of an input

input neuron column

w=0 (k=0,z=0)
w=1 (k=1,z=0), (k=0,z=1)
w=2 (k=2,z=0),(k=1,z=1),(k=0,z=2)

input neuron row

How many outputs are affected by that input?

(Effective) Receptive field of an output

filter width * filter height * filter depth

How many (original) inputs affect that output?

More knobs to improve efficiency at same accuracy

• More number of smaller filters (VGG vs. Alexnet)
• Different order of looping (dataflow)
• Split computations (mobilenet)

• More number of smaller filters (VGG vs. Alexnet)
• Different order of looping (dataflow)
• Split computations (mobilenet)

Each filter searches for a particular feature at different
image locations (translation invariance)

Features at successive convolutional layers

Visualizing and Understanding Convolutional Networks,
 Matthew D. Zeiler and Rob Fergus, ECCV 2014

Corners and other edge color conjunctions in Layer 2

+/- 45 degree
edges in Layer 1

Visualizing and Understanding Convolutional Networks,
 Matthew D. Zeiler and Rob Fergus, ECCV 2014

More complex invariances than Layer 2. Similar textures e.g. mesh patterns (R1C1); Text (R2C4).

Features at successive convolutional layers

Visualizing and Understanding Convolutional Networks,
 Matthew D. Zeiler and Rob Fergus, ECCV 2014

Significant variation, more class specific.
Dog faces (R1C1); Bird legs (R4C2).

Entire objects with significant pose variation.
Keyboards (R1C1); dogs (R4).

Features at successive convolutional layers

Who decides these features?

Visualizing and Understanding Convolutional Networks,
 Matthew D. Zeiler and Rob Fergus, ECCV 2014

The network itself while training learns the filter weights and bias terms.

Evolution of randomly chosen subset of model features at training epochs 1,2,5,10,20,30,40,64.

Rectified Linear Unit (ReLU)

For all inputs

Rectified Linear Unit (ReLU)

• Simple function -> Fast to compute, no hyper-
parameter choice, no parameter learning

• Introduces sparsity when x <= 0. We will see
the benefits of sparsity in reducing model size
and increasing computation speed later.

• Faster to train, due to constant gradient of
ReLUs when x>0 (what has gradient got to do
with training speed?)

• Simple function -> Fast to compute, no hyper-
parameter choice, no parameter learning

• Introduces sparsity when x <= 0. We will see
the benefits of sparsity in reducing model size
and increasing computation speed later.

• Faster to train, due to constant gradient of
ReLUs when x>0 (what has gradient got to do
with training speed?)

ReLU is a non-linear activation, following each
linear convolution filter operation

Why is non-linearity needed?

Max pooling

For each output depth channel

For each output row

For each output column

For each maxpool layer column

For each maxpool layer row

• Reduces dimensionality of each feature map,
but retains the most important information

• Reduced number of parameters reduces
computation, memory reads, storage
requirements and over-fitting to training data

• Makes the network invariant to small
transformations in input image, as max pooled
value over local neighborhood won’t change on
small distortions

Max pooling

Fully Connected

For each output

For each input depth channel

For each input row

For each input column

Multiplications, additions

Additions

weight parameters =
number of outputs * number of inputs

#bias parameters = number of outputs

Let’s compute #parameters
Example from http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

Let’s compute #parameters
Example from http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

5x5x3x16+16 5x5x16x20+20 5x5x20x20+20 4x4x20x10+10

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

	Slide 1
	Convolutional Neural Networks (CNN)
	Slide 3
	Convolution without padding
	Convolution with padding
	Multiple filters
	Computations: #Multiplications and additions
	Storage: #Parameters
	Hyper-parameters
	Projective field of an input
	(Effective) Receptive field of an output
	More knobs to improve efficiency at same accuracy
	Slide 13
	Features at successive convolutional layers
	Features at successive convolutional layers
	Features at successive convolutional layers
	Who decides these features?
	Rectified Linear Unit (ReLU)
	Rectified Linear Unit (ReLU)
	Slide 20
	Max pooling
	Max pooling
	Fully Connected
	Let’s compute #parameters
	Let’s compute #parameters

