Basic operations in a CNN in typical computer vision inference task (forward pass)

Convolutional Neural Networks (CNN)

Forward Pass

From http://cs231n.github.io/convolutional-networks/

Given a trained network (architecture, hyperparameters, parameters fixed)

- What mathematical operations are done during inference
- Sample c++ code for the operation (sequential implementation)
 - from <u>https://github.com/JC1DA/DeepSense</u>
- Some intuition on why that operation is useful

Operations

- Convolution
- Rectified Linear Unit (ReLU)
- Max-pooling
- Fully connected

Convolution without padding

5x5 input.

3x3 filter/kernel/feature detector.

3x3 convolved feature/ activation map/feature map

Convolution with padding

4x4 input. 3x3 filter. Stride = 1. 2x2 output.

5x5 input. 3x3 filter. Stride = 1. 5x5 output.

Animation source: https://github.com/vdumoulin/conv_arithmetic

Multiple filters

Original image

Operation	Filter	Convolved Image
Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	
	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	
Edge detection	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	
Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	

Computations: #Multiplications and additions

Storage: #Parameters

18	<pre>int i, j, k, x, y, z;</pre>
19	<pre>for(i = 0 ; i < output->c; i++) { For each filter</pre>
20	<pre>for(j = 0 ; j < output->h ; j++) {</pre>
21	<pre>for(k = 0 ; k < output->w ; k++) {</pre>
22	<pre>float result = 0.0f;</pre>
23	<pre>for(x = 0 ; x < conv_layer->c; x++) { Over filter depth</pre>
24	<pre>for(y = 0 ; y < conv_layer->h; y++) { For each row in filter</pre>
25	<pre>for(z = 0 ; z < conv_layer->w ; z++) { For each column in filter</pre>
26	<pre>int w = k * conv_layer->stride[0] - conv_layer->pad[0] + z;</pre>
27	<pre>int h = j * conv_layer->stride[1] - conv_layer->pad[2] + y;</pre>
28	$if(w < 0 \mid w >= frame -> w)$
29	continue;
30	if (h < 0 h >= frame->h)
31	continue;
32	
33	<pre>float tmp1 = getDataFrom3D(frame->data, frame->h, frame->w, frame->c, h, w, x);</pre>
34	<pre>float tmp2 = getDataFrom4D(conv_layer->W, conv_layer->n, conv_layer->h, conv_layer->w, conv_layer->c, i, y, z, x);</pre>
35	result += tmp1 * tmp2; Weight parameters
36	}
37	}
38	}
39	
40	result += conv_layer->bias[i]; Bias parameters
41	<pre>output->data[getIndexFrom3D(output->c, output->h, output->w, i, j, k)] = result;</pre>
42	}
43	}
44	}
45	

Hyper-parameters

- Number of filters
- Size of each filter (width, height)
- Padding
- Stride

Affects output size (which is next layer's inputs):

output width = (input width + 2 * padding – filter width)/stride + 1 output height = (input height + 2 * padding – filter height)/stride + 1 output depth = number of filters

Affects #parameters network has to learn during training

Weight terms = number of filters * filter width * filter height * filter depth Bias terms = number of filters

Knobs to trade-off train and inference latency (more computations and memory reads), model size (storage) vs. accuracy.....

Projective field of an input

How many outputs are affected by that input?

(Effective) Receptive field of an output

18

19

20 21

22

23

24

25

26

27

28

30

31 32

34

38 39

40

41 42

43

44

45

```
How many (original) inputs affect that output?
int i, j, k, x, y, z;
for(i = 0 ; i < output->c; i++) {
   for(j = 0 ; j < output->h ; j++) {
       for (k = 0; k < output ->w; k++) {
           float result = 0.0f;
           for(x = 0; x < conv layer->c; x++) {
               for(y = 0 ; y < conv_layer->h; y++) {
                   for(z = 0 ; z < conv_layer->w ; z++) {
                       int w = k * conv layer->stride[0] - conv layer->pad[0] + z;
                       int h = j * conv_layer->stride[1] - conv_layer->pad[2] + y;
                       if(w < 0 || w >= frame -> w)
                           continue:
                       if(h < 0 || h >= frame ->h)
                           continue;
                       float tmp1 = getDataFrom3D(frame->data, frame->h, frame->w, frame->c, h, w, x);
                       float tmp2 = getDataFrom4D(conv layer->W, conv layer->n, conv layer->h, conv layer->w, conv layer->c, i, y, z, x);
                       result += tmp1 * tmp2;
                   }
               }
           }
           result += conv layer->bias[i];
                                                                                             filter width * filter height * filter depth
           output->data[getIndexFrom3D(output->c, output->h, output->w, i, j, k)] = result;
       }
    }
}
```

More knobs to improve efficiency at same accuracy

18 int i, j, k, x, y, z;

```
for(i = 0 ; i < output->c; i++) {
19
                                                                   More number of smaller filters (VGG vs. Alexnet)
                                                               •
            for(j = 0 ; j < output->h ; j++) {
20
                                                                   Different order of looping (dataflow)
21
               for (k = 0; k < output ->w; k++) {
                                                               ullet
                   float result = 0.0f;
22
                                                                   Split computations (mobilenet)
                                                               for(x = 0 ; x < conv_layer->c; x++) {
23
24
                       for(y = 0 ; y < conv_layer->h; y++) {
                           for(z = 0 ; z < conv_layer->w ; z++) {
25
                               int w = k * conv layer->stride[0] - conv layer->pad[0] + z;
26
                               int h = j * conv_layer->stride[1] - conv_layer->pad[2] + y;
27
                               if(w < 0 || w >= frame -> w)
28
                                   continue;
29
                               if(h < 0 || h >= frame ->h)
30
                                   continue;
31
32
                               float tmp1 = getDataFrom3D(frame->data, frame->h, frame->w, frame->c, h, w, x);
                               float tmp2 = getDataFrom4D(conv layer->W, conv layer->n, conv layer->h, conv layer->w, conv layer->c, i, y, z, x);
34
                               result += tmp1 * tmp2;
                       }
                    }
38
39
                   result += conv layer->bias[i];
40
                   output->data[getIndexFrom3D(output->c, output->h, output->w, i, j, k)] = result;
41
42
                }
43
44
        }
45
```

Each filter searches for a particular feature at different image locations (translation invariance)

Features at successive convolutional layers

Corners and other edge color conjunctions in Layer 2

Features at successive convolutional layers

More complex invariances than Layer 2. Similar textures e.g. mesh patterns (R1C1); Text (R2C4).

Features at successive convolutional layers

Significant variation, more class specific. Dog faces (R1C1); Bird legs (R4C2).

Entire objects with significant pose variation. Keyboards (R1C1); dogs (R4).

Who decides these features?

The network itself while **training** learns the filter weights and bias terms.

Evolution of randomly chosen subset of model features at training epochs 1,2,5,10,20,30,40,64.

Rectified Linear Unit (ReLU) 10 8 6 4 2 -10-5 5 10 cnn_frame *activate_RELU(cnn_frame *frame) { 52 int i; 53 For all inputs for(i = 0; i < frame->c * frame->h * frame->w ; i++) { 54 float x = frame->data[i]; 55 frame->data[i] =(x > 0) ? x : 0; 56 } 57 return frame; 58 59

Rectified Linear Unit (ReLU)

- Simple function -> Fast to compute, no hyperparameter choice, no parameter learning
- Introduces sparsity when x <= 0. We will see the benefits of sparsity in reducing model size and increasing computation speed later.
- Faster to train, due to constant gradient of ReLUs when x>0 (what has gradient got to do with training speed?)

ReLU is a non-linear activation, following each linear convolution filter operation

Why is non-linearity needed?

One hidden layer Neural Network

deeplearning.ai

Why do you need non-linear activation functions?

Max pooling

Max pooling

- Reduces dimensionality of each feature map, but retains the most important information
- Reduced number of parameters reduces computation, memory reads, storage requirements and over-fitting to training data
- Makes the network invariant to small transformations in input image, as max pooled value over local neighborhood won't change on small distortions

Fully Connected

weight parameters =
number of outputs * number of inputs

Let's compute #parameters

Example from http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

layer_defs.push({type:'input', out_sx:32, out_sy:32, out_depth:3}); layer_defs.push({type:'conv', sx:5, filters:16, stride:1, pad:2, activation:'relu'}); layer_defs.push({type:'pool', sx:2, stride:2}); layer_defs.push({type:'conv', sx:5, filters:20, stride:1, pad:2, activation:'relu'}); layer_defs.push({type:'pool', sx:2, stride:2}); layer_defs.push({type:'conv', sx:5, filters:20, stride:1, pad:2, activation:'relu'}); layer_defs.push({type:'conv', sx:5, filters:20, stride:1, pad:2, activation:'relu'}); layer_defs.push({type:'conv', sx:5, filters:20, stride:1, pad:2, activation:'relu'}); layer_defs.push({type:'conv', sx:2, stride:2}); layer_defs.push({type:'softmax', num_classes:10});

Let's compute #parameters

Example from http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

layer_defs.push({type:'input', out_sx:32, out_sy:32, out_depth:3}); layer_defs.push({type:'conv', sx:5, filters:16, stride:1, pad:2, activation:'relu'}); layer_defs.push({type:'pool', sx:2, stride:2}); layer_defs.push({type:'conv', sx:5, filters:20, stride:1, pad:2, activation:'relu'}); layer_defs.push({type:'pool', sx:2, stride:2}); layer_defs.push({type:'conv', sx:5, filters:20, stride:1, pad:2, activation:'relu'}); layer_defs.push({type:'pool', sx:2, stride:2});

layer_defs.push({type:'softmax', num_classes:10});

input (32x32x3)	conv (32x32x16)	relu (32x32x16)	pool (16x16x16)	conv (16x16x20)	relu (16x16x20)	pool (8x8x20)		conv (8x8x20)	relu (8x8x20)	pool (4x4x20)		fc (1×1×10)
5x5x3x16+16		5x5x16x2	0+20	5	x5x2	20x20+	-20		4>	(4x20x1	0+10	