

Linux Scheduling

Linux Kernel Development by Robert Love Chapter 4

Process Types or Scheduler Classes

● Real time
https://github.com/torvalds/linux/blob/master/ker
nel/sched/rt.c
Should never be blocked by a lower priority task

● Normal processes (SCHED_NORMAL)
https://github.com/torvalds/linux/blob/master/ker
nel/sched/fair.c
I/O bound (interactive), Processor bound (batch)

P
ic

k
ne

xt
 ta

sk
 o

ve
ra

ll
ht

tp
s:

//g
i th

ub
.c

om
/to

rv
al

d s
/li

nu
x/

b l
ob

/m
as

te
r/

ke
rn

el
/s

ch
ed

/c
or

e.
c

Process Priority

● A common type of scheduling algorithm is
priority-based scheduling.

● The goal is to rank processes based on their
worth and need for processor time.

● The Linux kernel implements two separate
priority ranges.
– Real time priority

– Nice value

Real Time Priority

● Range from 0 to 99, inclusive.
● Opposite from nice values, higher real-time

priority values correspond to a greater priority.
● All real-time processes are at a higher priority

than normal processes; that is, the real-time
priority and nice value are in disjoint value
spaces.

Nice value

● A number from –20 to +19 with a default of 0. Corresponding
priority values are 100 (highest priority) to 139 (lowest priority),
as the default base priority is 120.

● Larger nice values correspond to a lower priority—you are
being “nice” to the other processes on the system.

● Nice values are the standard priority range used in all Unix
systems, although different Unix systems apply them in different
ways, reflective of their individual scheduling algorithms.
– In Mac OS X, the nice value is a control over the absolute timeslice

allotted to a process (true earlier for Linux O(1) scheduler)

– In Linux, it is a control over the proportion of timeslice in CFS.

I/O bound or interactive processes

● Characterized as a process that spends much of its time submitting
and waiting on I/O requests.

● By I/O, we mean any type of blockable resource, such as keyboard
input or network I/O, and not just disk I/O.)

● Most graphical user interface (GUI) applications, for example, are
I/O-bound, even if they never read from or write to the disk, because
they spend most of their time waiting on user interaction via the
keyboard and mouse.

● Runnable for only short durations, because it eventually blocks
waiting on more I/O.

● If scheduled at minimum latency once runnable, then I/O will be
utilized better.

Processor bound or batch processes

● Spend much of their time executing code.
● Tend to run until they are preempted because they do not

block on I/O requests very often.
● The ultimate example of a processor-bound process is one

executing an infinite loop.
● More palatable examples include programs that perform a lot

of mathematical calculations, such as ssh-keygen or MATLAB.
● A scheduler policy for processor-bound processes, therefore,

tends to run such processes less frequently but for longer
durations.

Not mutually exclusive

● Processes can exhibit both behaviors
simultaneously

● Processes can be I/O-bound but dive into
periods of intense processor action.

● E.g. word processor, which normally sits waiting
for key presses but at any moment might peg
the processor in a rabid fit of spell checking or
macro calculation.

Unix favors I/O bound processes

● The scheduler policy in Unix systems tends to
explicitly favor I/O-bound processes, thus
providing good response time.

● Linux, aiming to provide good interactive response
and desktop performance, optimizes for process
response (low latency), thus favoring I/O-bound
processes over processor-bound processes.

● As we will see, this is done in a creative manner
that does not neglect processor-bound processes.

Policy is decided. Needs to create mechanisms to support this policy.

Priority: decides which task is picked next. Timeslice: decides how long a picked task is run.

Using static priority O(N) scheduler

● At every context switch
– Scan the list of runnable processes

– Compute priorities

– Select the best process to run

● O(n) where n is the number of processes to run
● Scalability issues observed when Java was

introduced (JVM spawns many tasks)

Using dynamic priority O(1) scheduler

● Two ready queues in each CPU
– Two queues needed to prevent starvation

– Each queue has 40 priority classes

– 100 has highest priority, 139 has lowest priority

– Bitmap to get lowest numbered queue with at least one task in O(1).

– Dequeue is O(1)

Dynamic Priority
● Max(100, min(static priority – bonus +5), 139)
● To distinguish between processor bound (batch)

and I/O bound (interactive) processes
● Based on average sleep time

– An I/O bound process will sleep more, and
therefore should get a higher priority

– A CPU bound process will sleep less, and therefore
will get a lower priority.

Timeslice: how long task is run

Interactive processes have high priorities
– But likely to not complete their timeslice

– Give it the largest timeslice to ensure it completes
its burst without being preempted

Priority Static Niceness Quantum

Highest 100 -20 800 ms

High 110 -10 600 ms

Normal 120 0 100 ms

Low 130 10 50 ms

Lowest 139 19 5 ms

Timeslice Issue

● Represents how long a task can run until it is pre-empted.
● Interactive processes have high priorities

– But likely to not complete their timeslice

– Give it the largest timeslice to ensure it completes its burst without
being preempted

Priority Static Niceness Quantum

Highest 100 -20 800 ms

High 110 -10 600 ms

Normal 120 0 100 ms

Low 130 10 50 ms

Lowest 139 19 5 ms

Disproportionate timeslice increase

More issues with fixed timeslice
● Can lead to suboptimal switching behavior. E.g.

– processes of the default nice value (zero) a timeslice of 100 ms

– processes at the highest nice value (+20, the lowest priority) a timeslice of 5 ms

– default priority process thus receives 20⁄21 (100 out of 105 milliseconds) of the processor

– low priority process receives 1/21 (5 out of 105 milliseconds) of the processor

● Exactly two low priority processes?
– each receives 50% of the processor (matches expectation)

– But they each enjoy the processor for only 5 ms at a time (5 out of 10 milliseconds each)!

– That is, instead of context switching twice every 105 milliseconds, we now context switch
twice every 5 ms.

● Exactly two normal priority processes?
– the correct 50% of the processor (matches expectation)

– but in 100 millisecond increments

● Neither of these timeslice allotments are necessarily ideal; each is simply a
byproduct of a given nice value to timeslice mapping coupled with a specific
runnable process priority mix.

Non-trivial to set the timeslice?

● Too long a timeslice causes the system to have poor
interactive performance

● Too short a timeslice causes significant context switching
overhead

● I/O-bound processes like to run often, but do not need longer
timeslices

● Processor-bound processes crave long timeslices to keep
their caches hot

● As long timeslice would result in poor interactive
performance, many OS have low default timeslice e.g. 10 ms.

Linux’s CFS scheduler, does not directly assign timeslices to processes.
CFS assigns processes a proportion of the processor.

Two sample tasks
● I/O-bound because it spends nearly all

its time waiting for user key presses.

● No matter how fast the user types, it is
not that fast.

● Despite this, when the text editor does
receive a key press, the user expects
the editor to respond immediately.

● First, we want it to have a large amount
of processor time available to it; not
because it needs a lot of processor (it
does not) but because we want it to
always have processor time available
the moment it needs it.

● Second, we want the text editor to
preempt the video encoder the moment
it wakes up (say, when the user
presses a key).

● Processor-bound.
● Aside from reading the raw data

stream from the disk and later
writing the resulting video, the
encoder spends all its time
applying the video codec to the raw
data, easily consuming 100% of
the processor.

● Does not have any strong time
constraints on when it runs—if it
started running now or in half a
second, the user could not tell and
would not care.

● Of course, the sooner it finishes the
better, but latency is not a primary
concern.

Text Editor Video Encoder

CFS intuition
● If these are the only running processes and both are at the same nice

level, this proportion would be 50%.
● Because the text editor spends most of its time blocked, waiting for

user key presses, it does not use anywhere near 50% of the processor.
● Conversely, the video encoder is free to use more than its allotted 50%,

enabling it to finish the encoding quickly.
● When the editor wakes up, CFS notes that it is allotted 50% of the

processor but has used considerably less. Specifically, CFS determines
that the text editor has run for less time than the video encoder.

● Attempting to give all processes a fair share of the processor, it then
preempts the video encoder and enables the text editor to run.The text
editor runs, quickly processes the user’s key press, and again sleeps,
waiting for more input.

● As the text editor has not consumed its allotted 50%, we continue in
this manner, with CFS always enabling the text editor to run when it
wants and the video encoder to run the rest of the time.

Virtual Runtimes

● With each runnable process is included a virtual
runtime vruntime

● At every scheduling point, if process has run for
t ms, then vruntime += t

● vruntime for a process therefore monotonically
increases

CFS uses vruntime to pick task

● When the timer interrupt occurs
– Choose the task with lowest vruntime min_vruntime

– Compute its dynamic timeslice

– Program the high resolution timer with this timeslice

● The process begins to execute in the CPU
● When interrupt occurs again, context switch if

there is another task with a smaller vruntime

Compute the dynamic timeslice

● Each process runs for a “timeslice” proportional to its weight divided by the total weight
of all runnable threads.

● To calculate the actual timeslice, CFS sets a target for its approximation of the “infinitely
small” scheduling duration in perfect multitasking. This target is called the targeted
latency.

● Smaller targets yield better interactivity and a closer approximation to perfect
multitasking, at the expense of higher switching costs and thus worse overall
throughput.

● Let’s assume the targeted latency is 20 milliseconds and
– 2 runnable tasks at the same priority, each will run for 10 ms.

– 4 runnable tasks at the same priority, each will run for 5 ms.

– 20 runnable tasks at the same priority, each will run for 1 millisecond.

– As the number of runnable tasks approaches infinity, the proportion of allotted processor and the
assigned timeslice approaches zero. This will eventually result in unacceptable switching costs.

● CFS imposes a floor on the timeslice assigned to each process.This floor is called the
minimum granularity. By default it is 1 millisecond.

● Thus even as the number of runnable processes approaches infinity, each will run for at
least 1 ms, to ensure there is a ceiling on the incurred switching costs.

Nice values in CFS

● Affect both which task is picked next and dynamic timeslice allotted.
● If a process has run for t ms, then

vruntime += t * (weight based on nice value)
● Higher nice value i.e. lower priority implies time moves at a faster rate

compared to a higher priority task and moves quicker to the right of the
rb-tree.

● Assigned proportion is affected by each process’s nice value. The nice
value acts as a weight, changing processor proportion.
– Two runnable processes, one with the default nice value 0 and one with a nice

value of 5.

– These nice values have dissimilar weights and thus our two processes receive
different proportions of the processor’s time.

– The weights work out to about a 1⁄3 penalty for the nice-5 process.

– If our target latency is again 20 milliseconds, our two processes will receive 15
milliseconds and 5 milliseconds each of processor time, respectively.

Picking the next task to run

● CFS uses a red black tree
– Each node represents a runnable task

– Nodes ordered according to their vruntime

– Nodes on the left have lower vruntime than nodes
on the right (since rb tree is a binary search tree)

– The leftmost node is the task with the least
vruntime, cached in min_vruntime

min_vruntime

At a context switch
● Pick the leftmost node of the tree

– This has the lowest vruntime

– It is cached in min_vruntime, so accessed in O(1)

● If the preempted process is runnable, it is inserted
into the tree depending on its new vruntime
– This is O(log(n)) (by property of rb tree)

● Tasks move from left to right of the tree after its
execution completes, prevents starvation

min_vruntime

P
ic

k
ne

xt
 ta

sk

fr
om

 C
F

S
 c

la
ss

ht
tp

s:
//g

i th
ub

.c
om

/to
rv

al
d s

/li
nu

x/
b l

ob
/m

as
te

r/
ke

rn
el

/s
ch

ed
/fa

ir.
c

I/O bound processes, new processes

● I/O bound processes have small CPU bursts,
therefore will have low vruntime. They would
appear to the left of the tree and get higher
priorities.

● I/O bound processes will typically have larger time
slices, because they have smaller vruntime.

● New processes get added to the rb-tree.
● Starts with the initial value of min_vruntime, to

ensure it gets to execute quickly.

 A
dd

in
g

pr
oc

es
se

s
to

 r
b

tr
ee

ht
tp

s:
//g

i th
ub

.c
om

/to
rv

al
d s

/li
nu

x/
b l

ob
/m

as
te

r/
ke

rn
el

/s
ch

ed
/fa

ir.
c

Processor Affinity

● The Linux scheduler
– Tries to provide soft or natural affinity by attempting to keep processes on the same

processor.

– Enforces hard processor affinity, enabling a user to say,“This task must remain on this subset
of the available processors no matter what.”

● This hard affinity is stored as a bitmask
– in the task’s task_struct as cpus_allowed .

– contains one bit per possible processor on the system.

– By default, all bits are set and, therefore, a process is potentially runnable on any processor.

– The user, however, via sched_setaffinity(), can provide a different bit-mask of any combination
of one or more bits. Likewise, the call sched_getaffinity() returns the current cpus_allowed
bitmask.

● The kernel enforces hard affinity in a simple manner.
– First, when a process is initially created, it inherits its parent’s affinity mask. Because the

parent is running on an allowed processor, the child thus runs on an allowed processor.

– Second, when a processor’s affinity is changed, the kernel uses the migration threads to
push the task onto a legal processor.

– Finally, the load balancer pulls tasks to only an allowed processor.

System calls to change scheduler parameters

Remaining questions on linux
scheduing

● When is the scheduler called?
● How often is the scheduler called?
● What is the overhead of running the scheduler?
● What are cgroups and are the relevant in

scheduling decisions?
● What alternative is there to CFS? When is it

useful?
●

