Summary class before minor 1 week using
Raspberry Pi as example

How is hardware specified for an embedded platform?

device trees
https://www.raspberrypi.org/documentation/configuration/device-tree.md

How Is software written to work with different hardware
peripherals?

- device driver examples for
« SPI (which can use polling or interrupt or DMA)

User space interactions with the device drivers
Some more details about DMA

Raspberry Pl SoCs

BCM2835

This is the Broadcom chip used in the Raspberry Pi Model A, B, B+, the Compuite
Module, and the Raspberry Fi Zero.

BCM2836

The Broadcom chip used in the Raspberry Pi 2 Model B

The underlying architecture in BCM2836 is identical to BCMZ2835. The only
significant difference is the removal of the ARM1176JZF-S processor and
replacement with a quad-core Cortex-A7 cluster.

BCM2837

This is the Broadcom chip used in the Raspberry Pi 3, and in later models of the
Raspberry Pi 2. The underlying architecture of the BCM2837 is identical to the
BCM2836. The only significant difference is the replacement of the ARMv7 quad
core cluster with a quad-core ARM Cortex AS53 (ARMv8B) cluster.

The ARM cores run at 1.2GHz, making the device about 50% faster than the
Raspberry Pi 2. The VideoCore IV runs at 400MHz.

Pl Zero device tree hierarchy

https://github.com/torvalds/linux/blob/master/arch/arm/boot/dts/bcm2835.dtsi
https://github.com/torvalds/linux/blob/master/arch/arm/boot/dts/bcm2835-rpi.dtsi
https://github.com/torvalds/linux/blob/master/arch/arm/boot/dts/bcm283x-rpi-usb-otg.dtsi
https://github.com/torvalds/linux/blob/master/arch/arm/boot/dts/bcm2835-rpi-zero-w.dts

£ 1
compatible = "brcm, bcm2835";

cpus {
#address-cells = <1>;

#5i7e-cells = =@=>;

cpu@® {
device_type = "cpu";
compatible = "arm,armll76jzf-s";

reg = <0x0=;

Pl 3B device tree hierarchy

https://github.com/torvalds/linux/blob/master/arch/arm/boot/dts/bcm2837.dtsi
https://github.com/torvalds/linux/blob/master/arch/arm/boot/dts/bcm2835-rpi.dtsi

https://github.com/torvalds/linux/blob/master/arch/arm/boot/dts/bcm283x-rpi-usb-otg.dtsi
https://github.com/torvalds/linux/blob/master/arch/arm/boot/dts/bcm2837-rpi-3-b.dts

cpus: cpus {

#Faddress-cells = <i1>;
#slize-cells = =0=;
enable-method = "brcm, bcm2836-smp"; /., for ARM 32-bit

cpu®: cpu@e {
dewvice twype = "cpu";
compatible = "arm,cortex-as3";
reg = =@=;
enable-method = "spin-table';
cpu-release-addr = =0x@ xEQEREAAdE=;

cpul: cpu@l {
dewvice_type = "cpu";
compatible = "arm,cortex-as3";
reg = <1>;
enable-method = "spin-table'";
cpu-release-addr = =0x@ ExO0ORORQed=>;

cpu2: cpu@z2 {
dewvice_type = "cpu";
compatible = "arm,cortex-as3";
reg = =2>=;
enable-method = "spin-table'";
cpu-release-addr = <@x@ OxEEEREEREe8>;

cpu3: cpu@3 {
dewvice_type = "cpu";
compatible = "arm,cortex-a53";
reg = =3>;
enable-method = "spin-table'";
cpu-release-addr = =0x0 xR0 TFE=;

SoC Peripheral Hardware Description

https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf

|

BROADCOM.
N -

BCM2835 ARM Peripherals
BCM?2835 contains the following peripherals which may safely be accessed by the ARM:

e Timers

® Interrupt controller
e GPIO

e [USB

e PCM/I2S

e DMA controller
¢ [2C master

e [2C/ SPI slave

e SPIO, SPI1, SPI2
e PWM

e UARTO, UARTI

The purpose of this datasheet 1s to provide documentation for these peripherals in sufficient
detail to allow a developer to port an operating system to BCM2835.

SPI In datasheet

https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf

10 SPI
10.1
10.2
10.2.1
10.2.2
10.3
10.3.1
10.3.2
10.3.3
10.3.4
10.3.5
10.4
10.5
10.6
10.6.1
10.6.2
10.6.3
10.6.4

Introduction
SPIl Master Mode
Standard mode
Bidirectional mode
LoSS| mode
Command write
Parameter write
Byte read commands
24bit read command
32bit read command
Block Diagram
SPI Register Map
Software Operation
Polled
Interrupt
DMA
MNotes

148
148
148
148
149
150
150
150
151
151
151
152
152
158
158
158
158
159

SPI driver code supports all three (along
with helper functions)

https://github.com/torvalds/linux/blob/master/drivers/spi/spi-bcm2835.c

static int bcm2835_spi_transfer_one_poll(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *tfr,
u32 cs,

unsigned long long xfer_time_us)

static int bcm2835_spi_transfer_one_irq(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *tfr,
u32 cs)

static int bcm2835_spi_transfer_one_dma(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *tfr,
u32 cs)

SPI driver code chooses among three

https://github.com/torvalds/linux/blob/master/drivers/spi/spi-bcm2835.c

static int bcm2835_spi_transfer_one(struct spi_master *master,
struct spi_device *spi,

struct spi_transfer *tfr)

/* calculate the estimated time in us the transfer runs */
xfer_time_us = (unsigned long long)tfr-=len
* 9 /* clocks/byte - SPI-HW waits 1 clock after each byte */
* 1000000;

do_div(xfer_time_us, spi_used_hz);

/* Tor short requests run polling*/
if (xfer_time_us <= BCM2835_SPI_POLLING_LIMIT_US)
return bcm2835_spi_transfer_one_poll(master, spi, tfr,

cs, xfer_time_us);

/* run in dma mode if conditions are right */
if (master-=can_dma && bcm2835_spi_can_dma(master, spi, tfr))

return bcm2835_spi_transfer_one_dma(master, spi, tfr, cs);

/* run in interrupt-mode */

return bcm2835_spi_transfer_one_irg(master, spi, tfr, cs);

But none of the files In the device
tree hieararchy mentions anything
about SPI or DMA controller

Device Tree Overlays

Description from Android Source
Documentation

https://source.android.com/devices/architecture/dto/

« Adevice tree (DT) is a data structure of named nodes and properties
that describe non-discoverable hardware.

« Operating systems, such as the Linux kernel used in Android, use
DTs to support a wide range of hardware configurations used by
Android-powered devices.

« Hardware vendors supply their own DT source files, which Linux then
compiles into the Device Tree Blob (DTB) file used by the bootloader.

« A device tree overlay (DTO) enables a central device tree blob (DTB)
to be overlaid on the device tree.

» A bootloader using DTO can maintain the system-on-chip (SoC) DT
and dynamically overlay a device-specific DT, adding nodes to the
tree and making changes to properties in the existing tree.

Loading a device tree in bootloader involves
building, partitioning, and running.

BUILD PARTITION RUMN
o

Fltg=-rl
1 apatible = -some,copotes-revenpe- s compile load into bootloader
cwcé_!f ‘ {dtﬂ}
W oAt L = T AT SO LEE=AT T
cpeabl 4§

Ve COMpAL Enle T AT SO EEE=aE T
[¥] °

e 8 B 19 0 IEeEegel
¥ Come ik Bl -'

FESAPAT ST B

' P e -'
]

rmulr o, o
L

Memory

pass memory address
to configure hardware

T, ST

e i Py T R

000 Hemanen |
¥e Eble = “arm,pli%8";

:T“m - “wrm, pleaa”;
. kernel

*hittp.//elinux.org/Device_Tree_Usage#Devices

bootloader bootloader

boot image header boot image header

oot [et B Possible partitions

ramdisk

ramdisk dth

.dtb, .dtbo merging Is needed

* Typical runtime implementation for device tree
overlay in bootloader.

- Load .dtb from storage into memory.

- Load .dtbo from storage into memory.

- Overlay .dtb with .dtbo to be a merged DT.

- Start kernel given the memory address of the merged DT.

VENDOR PROVIDED ODM PROVIDED

bootloader

load and

overiay \ FDT format:
Merged DT itrﬁ;eu?

partition

pass memory address
to configure hardware

;

kernel

Similar procedure in Pl

https://github.com/eq-3/RaspberryMatic/blob/master/linux-4.1/arch/arm/boot/dts/overlays/README

Device Tree makes it possible to support many hardware configurations with a single kernel and
without the need to explicitly load or blacklist kernel modules. This isn't a "pure"” Device Tree
configuration

- (c.f. MACH_BCMZ2835) - some on-board devices are still configured by the board support code, but the
intention is to eventually reach that goal.

On Raspberry Pi, Device Tree usage is controlled from /boot/config.txt. By default, the Raspberry Pi
kernel boots with device tree enabled. You can completely disable DT usage (for now) by adding:

device_tree=
to your config.txt, which should cause your Pi to revert to the old way of doing things after a reboot.

In /boot you will find a .dtb for each base platform. This describes the hardware that is part of the
Raspberry Pi board.

The loader (start.elf and its siblings) selects the .dtb file appropriate for the platform by name, and
reads it into memory.

At this point, all of the optional interfaces (i2c, i2s, spi) are disabled, but they can be enabled using
Device Tree parameters:

dtparam=i2c=0n,i2s=0on,spi=on

Configuring additional, optional hardware is done using Device Tree overlays

DT overlay example in Pl

» Overlays are loaded using the "dtoverlay" directive. As an example,
consider the popular lirc-rpi module, the Linux Infrared Remote Control
driver.

* In the pre-DT world this would be loaded from /etc/modules, with an
explicit "modprobe lirc-rpi" command, or programmatically by lircd.

« With DT enabled, this becomes a line in config.txt:
dtoverlay=lirc-rpi

* This causes the file /boot/overlays/lirc-rpi-overlay.dtb to be loaded. By
default it will use GPIOs 17 (out) and 18 (in), but this can be modified
using DT parameters:

dtoverlay=lirc-rpi,gpio_out_pin=17,gpio_in_pin=13

DT overlays for SPI on Pl

https://github.com/eqg-3/RaspberryMatic/blob/master/linux-4.1/arch/arm/boot/dts/overlays/spi-
bcm?2835-overlay.dte 7

* Device tree overlay for spi-bcm2835

*/
Jdts-vi/;
/plugin/;
/7 {
compatible = "brcm,bcm2835", "brecm, bcm2836", "brcm,bcm2708", "brcm, bcm2709";
/* setting up compatiblity to allow loading the spi-bcm2835 driver */
fragment@e {
target = <&spif>;
__overlay__ {
status = "okay";
compatible = "brcm, bcm2835-spi”;
}i
1
};

https://github.com/eq-3/RaspberryMatic/blob/master/linux-4.1/arch/arm/boot/dts/overlays/spi-dma-

()\/EBrIEi)/-(th; * Dewvice tree overlay for spi-bcm2835 to allow dma
*f
Sdts-v1is;
Splugin/;
7 L
compatible = "brcm, bcm2835", "brcm, bcm2836", "brcm, bcm27e8", "brcm,bcm2709";

fragment@e {
target — <&spie>;
__overlay___ {
#address-cells = <i1>;
#size-cells = <=B0=;
dmas = <&dma 6>, <&dma 7>;

dma-names = "tx", "rx";

Choosing an appropriate overlay

Name : spi-bcm2708
Info: Selects the bcm2708-spi SPI driver
Load: dtoverlay=spi-bcm2708

Params: =MNone:>

Name : spi-bcm2835
Info: Selects the bcm2835-spi SPI driver
Load: dtoverlay=spi-bcm2835

Params: =MNone:>

Name : spli-dma
Info: enables dma modes for spi-bcm2835
Load: dtoverlay=spi-dma

Params: =MNone:>

Discussions over choosing default driver

https://github.com/raspberrypi/linux/issues/864

SPI: switch to spi-bcm2835 - what would it require?
msperl opened this issue on 1 Mar 2015 - 12 comments

u
ﬂ msperl commented on 1 Mar 2015 Contributor Assignees
Mo one assigned
Hi!
. . . . Labels
Quick guestion with regards to the spi drivers:
Mone yet

What is the reason for not switching from the spi-bcm2708 to the upstream spi-bcm2835 driver?

ing DT

jons using

Different suggest

notro commented on 1 Mar 2015 Contributor

| suggest the following:

* Enable building of spi-bcm2835
« Keep building spi-bcm2708
« Enable spi-bcm2835 instead of spi-bcm2708 in the Device Tree

If someone starts having trouble, it's quite easy to hack together an overlay that switches to spi-bcm2708
instead. Or just provide a fallback overlay upfront.

msperl commented on 1 Mar 2015 Contributor

Why not compile both (each one has a separate .compatible string)?

* to start have a device overlay to set the compatibility to spi-bcm2835, so everyone would need to
enable it explicitly.
= Then at a later point in time switch over and provide the old as an overlay

« Finally if nobody complains for some time: remove the old one (by that time we should hopefully be
Device Tree only)

That could mean a transition with fallback for those complaining and giving us a window to fix issues...

Martin

pelwell commented on 1 Mar 2015 Contributor

| would prefer adding an overlay to enable it for the first release, then we can allow the advanced users
some time to try it out.

This would be a good occasion to use the Release Note/Warning on Update feature, if we had one.

User Space Libraries

http://www.airspayce.com/mikem/bcm2835/

bcm2835 156

Main Page | Modules | Files | Examples | Q

C library for Broadcom BCM 2835 as used in Raspberry Pi

This is a C library for Raspberry Pi (RPi). It provides access to GPIO and other 10 functions on the Broadcom BCM 2835 chip, as used in the
RaspberryPi, allowing access to the GPIO pins on the 26 pin IDE plug on the RPi board so you can control and interface with various external
devices.

It provides functions for reading digital inputs and setting digital outputs, using SPI and 12C, and for accessing the system timers. Pin event
detection is supported by polling (interrupts are not supported).

It is C++ compatible, and installs as a header file and non-shared library on any Linux-based distro (but clearly is no use except on Raspberry Pi
or another board with BCM 2835).

The version of the package that this documentation refers to can be downloaded from http://www.airspayce.com/mikem/bcm2835/bcm2835-
1.56.tar.gz You can find the latest version at http://www.airspayce.com/mikem/bcm2835

Several example programs are provided.

Using SPI from userspace with lib functions

http://www.airspayce.com/mikem/bcm2835/

SPI Pins

The bcm2835 spi_* functions allow you to control the BCM 2835 SPIOQ interface, allowing you to send and received data by SPI (Serial Peripheral Interface). For more information about SPI, see
http://en.wikipedia.org/wiki/Serial Peripheral Interface Bus

When bem2835_spi_begin() is called it changes the bahaviour of the SPI interface pins from their default GPIO behaviour in order to support SPI. While SPI is in use, you will not be able to
control the state of the SPI pins through the usual bcm2835 spi_gpio write(). When bem2835_spi_end() is called, the SPI pins will all revert to inputs, and can then be configured and controled
with the usual bcm2835_gpio_* calls.

The Raspberry Pi GPIO pins used for SPI are:

Although it is possible to select high speeds for the SPI interface, up to 125MHz (see bem2835_spi_setClockDivider()) you should not expect to actually achieve those sorts of speeds with the
RPi wiring. Our tests on RPi 2 show that the SPI CLK line when unloaded has a resonant frequency of about 40MHz, and when loaded, the MOSI and MISO lines ring at an even lower frequency.
Measurements show that SPI waveforms are very poor and unusable at 62 and 125MHz. Dont expect any speed faster than 31MHz to work reliably.

The bcm2835_aux_spi_* functions allow you to control the BCM 2835 SPI1 interface, allowing you to send and received data by SPI (Serial Peripheral Interface).
The Raspberry Pi GPIO pins used for AUX SPI (SPI1) are:

« P1-38 (MOSI)
« P1-35 (MISO)
« P1-40 (CLK
(

)
« P1-36 (CE2)

Root vs. Non-root and installation

Running as root

Prior to the release of Rasphian Jessie in Feb 2016, access to any peripheral device via /dev/mem on the RPi required the process to run as root. Rasphian Jessie permits non-root users to
access the GPIO peripheral (only) via /dev/gpiomem, and this library supports that limited mode of operation.

If the library runs with effective UID of O (ie root), then becm2835 _init() will attempt to open /devimem, and, if successful, it will permit use of all peripherals and library functions.

If the library runs with any other effective UID (ie not root), then bcm2835 init() will attempt to open /dev/gpiomem, and, if successful, will only permit GPIO operations. In particular,
hcm2835_spi_begin() and bem2835_i2¢_begin() will return false and all other non-gpio operations may fail silently or crash.

Installation

This library consists of a single non-shared library and header file, which will be installed in the usual places by make install

download the latest version of the library, say bcm2835-1.xx.tar.gz, then:
tar zxvf bcm2835-1.xx.tar.qz

cd bem2835-1.xx

.Jconfigure

make

sudo make check

sudo make install

Python bindings

https://pypi.org/project/PyBCM2835/
]

Search projects

PyBCM2835 0.1.0

pip install PyBCM2835

Python extension for libbcm2835.

Navigation

= Project description

‘D Release history

X Download files

Project links

) Homepage

Statistics

GitHub statistics:
W% Stars: 4

P* Forks:4

© Openissues/PRs: 2

Help Donate Login Register

v Latest version

I Last released: Mar 14, 2013

Project description

This extension provides functionality from libbcm2835 (Written by Mike McCauley) for the Raspberry Pi.
For more documentation visit: http://www.open.com.au/mikem/bcm2835/
Open Source Licensing GPL V2

This is the appropriate option if you want to share the source code of your application with everyone you
distribute it to, and you also want to give them the right to share who uses it. If you wish to use this software
under Open Source Licensing, you must contribute all your source code to the open source community in
accordance with the GPL Version 2 when your application is distributed. See
http://www.gnu.org/copyleft/gpl.html and COPYING.

In order to use this extension you must build libbcm2835 as a shared object.
Example:

tar xvfz bcm2835-1.22 tar.gz cd bcm2835-1.22/src make libbcm2835.a gec -shared becm2835.0 -0 libbcm2835.s0
sudo cp libbcm?2835.s0 /usr/local/lib/ sudo cp bcm2835.h fusr/local/include/

Make sure that the library path is can be found by the linker. Run ‘sudo ldconfig -v* and if necessary, add the
entry to /etc/ld.so.conf.d/libc.conf.

DMA controller in datasheet

https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf

4 DMA Controller

4.1 Overview

4.2 DMA Controller Registers

4.2.1 DMA Channel Register Address Map
4.3 AXI Bursts

4.4 Error Handling

4.5 DMA LITE Engines

Linux Kernel APIs that drivers can include

https://elixir.bootlin.com/linux/latest/source/include/linux/dmaengine.h
https://github.com/torvalds/linux/blob/master/include/linux/dma-mapping.h

38
38
39
40
63
63
63

DMA controller hardware

 Circuit implementing load-store loop
 Driver software runs on CPU

» Copies descriptor from RAM to controller device register to
start copying

- Source, destination
- Burst size
- Length of transfer

e Separate channels have separate hardware registers to
provide concurrency

» Raises interrupt once transfer is done

Descriptor in RAM

Descriptor Read Descriptor Write

Transfer Complete Interrupt

N <
BUS Peripherals BUS
/

DMA controller driver code

https://github.com/torvalds/linux/blob/master/drivers/dma/bcm2835-dma.c

e Gives 14 DMA channels

» Calls many of the linux dma mapping api-s that
we saw in Monday class

- dma_pool create, dma_pool alloc
 Different peripherals use different channels

- PCM/I2S audio
- PWM DMA channel 5
- SPIl uses 2 DMA channels

https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf

First Party DMA or bus controller

4 DMA Controller

4.1 Overview

The majority of hardware pipelines and peripherals within the BCM2835 are bus masters,
enabling them to efficiently satisfy their own data requirements. This reduces the
requirements of the DMA controller to block-to-block memory transfers and supporting some
of the simpler peripherals. In addition, the DMA controller provides a read only prefetch
mode to allow data to be brought into the L2 cache in anticipation of its later use.

