
  

Summary class before minor 1 week using 
Raspberry Pi as example

● How is hardware specified for an embedded platform? 

device trees

● How is software written to work with different hardware 
peripherals?
– device driver examples for 

● SPI (which can use polling or interrupt or DMA) 

● User space interactions with the device drivers
● Some more details about DMA

https://www.raspberrypi.org/documentation/configuration/device-tree.md 



  

Raspberry PI SoCs



  

PI Zero device tree hierarchy

https://github.com/torvalds/linux/blob/master/arch/arm/boot/dts/bcm2835.dtsi

https://github.com/torvalds/linux/blob/master/arch/arm/boot/dts/bcm2835-rpi-zero-w.dts

https://github.com/torvalds/linux/blob/master/arch/arm/boot/dts/bcm2835-rpi.dtsi
https://github.com/torvalds/linux/blob/master/arch/arm/boot/dts/bcm283x-rpi-usb-otg.dtsi



  

PI 3B device tree hierarchy 

https://github.com/torvalds/linux/blob/master/arch/arm/boot/dts/bcm2837-rpi-3-b.dts

https://github.com/torvalds/linux/blob/master/arch/arm/boot/dts/bcm2837.dtsi
https://github.com/torvalds/linux/blob/master/arch/arm/boot/dts/bcm2835-rpi.dtsi
https://github.com/torvalds/linux/blob/master/arch/arm/boot/dts/bcm283x-rpi-usb-otg.dtsi



  

SoC Peripheral Hardware Description
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf



  

SPI in datasheet
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf



  

SPI driver code supports all three (along 
with helper functions)

https://github.com/torvalds/linux/blob/master/drivers/spi/spi-bcm2835.c



  

SPI driver code chooses among three

https://github.com/torvalds/linux/blob/master/drivers/spi/spi-bcm2835.c



  

But none of the files in the device 
tree hieararchy mentions anything 

about SPI or DMA controller

Device Tree Overlays



  

Description from Android Source 
Documentation

● A device tree (DT) is a data structure of named nodes and properties 
that describe non-discoverable hardware. 

● Operating systems, such as the Linux kernel used in Android, use 
DTs to support a wide range of hardware configurations used by 
Android-powered devices. 

● Hardware vendors supply their own DT source files, which Linux then 
compiles into the Device Tree Blob (DTB) file used by the bootloader.

● A device tree overlay (DTO) enables a central device tree blob (DTB) 
to be overlaid on the device tree. 

● A bootloader using DTO can maintain the system-on-chip (SoC) DT 
and dynamically overlay a device-specific DT, adding nodes to the 
tree and making changes to properties in the existing tree.

https://source.android.com/devices/architecture/dto/



  

Loading a device tree in bootloader involves 
building, partitioning, and running.

Possible partitions



  

.dtb, .dtbo merging is needed

● Typical runtime implementation for device tree 
overlay in bootloader.
– Load .dtb from storage into memory.

– Load .dtbo from storage into memory.

– Overlay .dtb with .dtbo to be a merged DT.

– Start kernel given the memory address of the merged DT.



  

Similar procedure in PI

● Device Tree makes it possible to support many hardware configurations with a single kernel and 
without the need to explicitly load or blacklist kernel modules. This isn't a "pure" Device Tree 
configuration 
– (c.f. MACH_BCM2835) - some on-board devices are still configured by the board support code, but the 

intention is to eventually reach that goal.

● On Raspberry Pi, Device Tree usage is controlled from /boot/config.txt. By default, the Raspberry Pi 
kernel boots with device tree enabled. You can completely disable DT usage (for now) by adding:

    device_tree=

to your config.txt, which should cause your Pi to revert to the old way of doing things after a reboot.

● In /boot you will find a .dtb for each base platform. This describes the hardware that is part of the 
Raspberry Pi board. 

● The loader (start.elf and its siblings) selects the .dtb file appropriate for the platform by name, and 
reads it into memory. 

● At this point, all of the optional interfaces (i2c, i2s, spi) are disabled, but they can be enabled using 
Device Tree parameters:

    dtparam=i2c=on,i2s=on,spi=on

● Configuring additional, optional hardware is done using Device Tree overlays

https://github.com/eq-3/RaspberryMatic/blob/master/linux-4.1/arch/arm/boot/dts/overlays/README



  

DT overlay example in PI

● Overlays are loaded using the "dtoverlay" directive. As an example, 
consider the popular lirc-rpi module, the Linux Infrared Remote Control 
driver. 

● In the pre-DT world this would be loaded from /etc/modules, with an 
explicit "modprobe lirc-rpi" command, or programmatically by lircd. 

● With DT enabled, this becomes a line in config.txt:

    dtoverlay=lirc-rpi

● This causes the file /boot/overlays/lirc-rpi-overlay.dtb to be loaded. By 
default it will use GPIOs 17 (out) and 18 (in), but this can be modified 
using DT parameters:

    dtoverlay=lirc-rpi,gpio_out_pin=17,gpio_in_pin=13



  

DT overlays for SPI on PI
https://github.com/eq-3/RaspberryMatic/blob/master/linux-4.1/arch/arm/boot/dts/overlays/spi-
bcm2835-overlay.dts

https://github.com/eq-3/RaspberryMatic/blob/master/linux-4.1/arch/arm/boot/dts/overlays/spi-dma-
overlay.dts



  

Choosing an appropriate overlay



  

Discussions over choosing default driver

https://github.com/raspberrypi/linux/issues/864



  

D
iff

er
e

n
t s

u
g

g
es

tio
ns

 u
si

n
g

 D
T



  

User Space Libraries
http://www.airspayce.com/mikem/bcm2835/



  

Using SPI from userspace with lib functions
http://www.airspayce.com/mikem/bcm2835/



  

Root vs. Non-root and installation



  

Python bindings
https://pypi.org/project/PyBCM2835/



  

DMA controller in datasheet
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf

https://elixir.bootlin.com/linux/latest/source/include/linux/dmaengine.h

https://github.com/torvalds/linux/blob/master/include/linux/dma-mapping.h

Linux Kernel APIs that drivers can include



  

DMA controller hardware

● Circuit implementing load-store loop
● Driver software runs on CPU
● Copies descriptor from RAM to controller device register to 

start copying
– Source, destination

– Burst size

– Length of transfer

● Separate channels have separate hardware registers to 
provide concurrency

● Raises interrupt once transfer is done



  

Descriptor in RAM



  

DMA controller driver code

● Gives 14 DMA channels
● Calls many of the linux dma mapping api-s that 

we saw in Monday class
– dma_pool_create, dma_pool_alloc

● Different peripherals use different channels
– PCM/I2S audio

– PWM DMA channel 5

– SPI uses 2 DMA channels

https://github.com/torvalds/linux/blob/master/drivers/dma/bcm2835-dma.c

https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf



  

First Party DMA or bus controller


