
Linux Real Time Patch
Understanding a Real-Time System by Steven Rostedt: 
https://www.youtube.com/watch?v=wAX3jOHHhn0

Building Embedded Linux Systems, Chapter 14: The RT Patch



What is real time?
● Deterministic results
● Repeatable results
● Predictable: Doing what you expect when you expect it
● No unbounded latency
● Can calculate worst case scenarios



Different from real fast. What is real fast?
● Hot cache look ahead features
● Translation Lookaside Buffer (TLB) for paging
● Least interruptions
● Transactional memory 



System architecture

Hardware

Kernel

Libraries

Applications



The hardware
If this isn’t deterministic, forget the rest. Example causes of non-determinism:

● Memory cache
● Branch prediction
● NUMA
● Hyper-threading
● TLB
● Transactional memory
● SMI
● CPU frequency scaling



Memory cache
● Try to run tests with cold cache
● Try to find the worst case scenario
● If your system works without cache, it should work with cache

○ Non cache is more deterministic

Branch Prediction
● CPU recognizes branch patterns
● Optimizes the pipeline
● What happens when logic changes?







NUMA
● Memory speeds dependent on CPU
● Need to organize the tasks
● Make sure RT tasks always have their memory in one place

Hyper-threading on Intel processor
● One execution unit, one cache, one system bus
● Two sets of registers, two sets of CPU pipelines
● Execution unit switches between them on stalls
● Recommended to disable for RT



Transactional memory
● Allows for parallel actions in the same critical section
● Backs out when the same memory is touched
● Restart the transaction or take another part

System Management Interrupt (SMI)
● Puts processor into System Management Mode (SMM)
● Check CPU temperature change frequency
● Perform memory scans
● Causes the system to stop what it was doing

CPU frequency scaling
● Compute times change based on CPU frequency
● CPU wakeup times are different based on idle deep sleep vs. higher 

frequency



RT Linux kernel Preempt_RT patch
● Sched_deadline

○ Earliest deadline first scheduling, in addition to FCFS/FIFO and RR
● CPU isolation
● Threaded interrupts
● Complete preemption
● High resolution timers



Threaded interrupts

● User tasks can run higher priority than interrupts
● Set required interrupts higher than your task



Complete preemption
The Complete Preemption converts spin locks from busy loops into mutexes. 
Instead of spinning in a busy loop on a CPU, a process that tries to get a spin lock 
just goes to sleep and lets the kernel schedule other processes on the CPU. When 
the spin lock is released, the blocked process is awakened. If it is currently the 
highest-priority running process, it will preempt the current thread and take over 
the CPU. By eliminating the disabling of preemption at the acquisition of a spin 
lock, the Linux kernel becomes tremendously more responsive and latencies are 
reduced to a few microseconds.



Linux Jiffies
One thing that is crucial to a real-time system is the ability to trigger an event at a 
specific time (otherwise there’s no sense in calling the system real-time). In the 
early 2.6 versions of Linux and earlier, the smallest unit of time was called a jiffy. A 
jiffy started out as one 100th of a second. A global variable called HZ represented 
the hertz of jiffies, and with the one 100th frequency, the HZ was defined as 100. 
This was all very simple and suited the needs of Linux at the time, but as 
machines became faster and people ran more applications on Linux, the 100 HZ 
setting started to show its age. Under a heavy load, applications were not smooth 
with the low HZ frequency. To get better reaction times, the HZ value became 
1,000. With the 1,000 HZ value for jiffies, the best reaction time that could be set 
was 1 millisecond. This is still very poor for any serious application that needs the 
slightest bit of real-time. But for every jiffy, a timer interrupt was needed to update 
the jiffy variable. So a balance was needed where one could choose to suffer 
increased overhead (more timer interrupts) in order to gain a finer timer resolution.



Two different timers
The RT kernel maintains two types of timers with two distinct use cases. 

● The high-resolution timer ("hrtimer") mechanism provides accurate timers 
for work that needs to be done in the near future; hrtimer uses RB trees 
and almost always run to completion.

● “Timeouts”, instead, are normally used to alert the kernel to an expected 
event that has failed to arrive — a missing network packet or I/O 
completion interrupt, for example. The accuracy requirements for these 
timers are less stringent (it doesn't matter if an I/O timeout comes a few 
milliseconds late), and, importantly, these timers are usually canceled 
before they expire. The timer wheel is used for the latter variety of timers. 
(https://lwn.net/Articles/152436/)



RT Tasks: priority inheritence

A thread can turn on priority inheritance for a mutex by specifying 
PTHREAD_PRIO_INHERIT as a mutex attribute. 

The following sample code snippet implements a pthread mutex that uses
priority inheritance:

extern pthread_mutex_t mutex;
pthread_mutexattr_t attr;
if (pthread_mutexattr_init(&attr))

perr("pthread_mutexattr_init");
if (pthread_mutexattr_setprotocol(&attr, PTHREAD_PRIO_INHERIT))

perr("pthread_mutexattr_setprotocol");



RT Tasks: memory locking



Preempt_RT patch on Raspberry PI 3, Model B+


