Real Time Systems

Real-Time Systems

Jane W. S. Liu, University of llinois at Urbana-Champaign

Real Time Types

Wt} Wit}

deadline

deadline

M {no value)
L T |

(a) Soft by Firm

" deadline & deadline

-1 {(penalty) == {disaster)

{c) Hard essential {(d)y Hard critical

Fig. 1. Deadlines represented with value functions.

Real-Time Is Not Fair

 Main goal of an RTOS scheduler is to meet
task deadlines

 |f you have five homework assignments and
only one is due in half an hour, you work on
that one first

e Fairness does not help you meet deadlines

Real time Is not necessarily fast

* Fast means low average latency
* Real time needs predictable worst case performance

* One needs to mathematically prove that all deadlines
will be met even in the worst case

— For uniprocessor system and periodic tasks, mathematical
proofs were given in 1970-1990. Now one has to perform
some schedulability tests, and if the tests pass, the deadlines
are guaranteed to be met.

- Linux real time patch is designed to be real time, but is not
real time, as the code base is too complex for giving
mathematical guarantees

- It has a number of changes to improve reliability/predictability

Other real time system classifications

 Based on where it runs
- Uniprocessor
- Multicore
- Distributed
 Based on time characteristics of tasks
- Periodic
- Aperiodic
- Sporadic
« Based on when scheduling decisions are taken
- Clock based

- Event based
- Hybrid

Periodic tasks

Arrival time C: computing time

F: finishing/response time

[| _ time
T:period

R: release time D: deadline

i Periodic tasks (the simplified case)

Scheduled to run

Arrival time

N\

Finishing/response time
computing

time

T:period
D: deadline

R: release time

i Periodic task model

= A task = (C, T)
= C: worst case execution time/computing time (C<=T!)
« [:period (D=T)

= Atask set: (Ci,Ti)

= Alltasks are independent
= The periods of tasks start at 0 simultaneously

CPU utilization

s C/Tis the CPU utilization of a task
s U=2(Ci/Ti)is the CPU utilization of a task set

= Note that the CPU utilization is a measure on how busy the
processor could be during the shortest repeating cycle:
T1*T2*..%Tn

= U>1(overload): some task will fail to meet its deadline no matter
what algorithms you use!

« U<=1:itwill depend on the scheduling algorithms

= If U=1 and the CPU is kept busy (non idle algorithms e.g. EDF), all
deadlines will be met

Scheduling Algorithms

Scheduling Algorithms

o T

Static Scheduling Dynamic Scheduling
(offline, or clock-driven) (online, or priority-driven)

P e

Static-Priority Scheduling Dynamic-Priority Scheduling

* Preemptive vs. Non-preemptive
* Guarantee-Based vs. Best-Effort
 Optimal vs. Non-optimal

i Static cyclic scheduling

s Shortest repeating cycle = least common
multiple (LCM)

= Within the cycle, it is possible to construct a
static schedule i.e. a time table

s Schedule task instances according to the time
table within each cycle

Example: the Car Controller

Activities of a car control system. Let
1. C= worst case execution time
2. T=(sampling) period
3. D= deadline
E Speed measurment: C=4ms, T=20ms, D=20ms
- ABS control: C=10ms, T=40ms, D=40ms
- Fuel injection: C=40ms, T=80ms, D=80ms
- Other software with soft deadlines e.g audio, air condition etc

The car controller:

= The shortest repeating cycle = 80ms
= All task instances within the cycle:

0 20 40 60 80
Speed Speed Speed Speed

ABS ABS

Fuel

= Try any method to schedule the tasks

The car controller:
time table constructed with EDF

800

iﬁ)ﬂ RT tasks speed 7 14
ABS /

FUEL-1 20
/

speed

76

FUEL=4

A feasible Schedule!

Static cyclic scheduling: + and —

Deterministic: predictable (+)
= Easy to implement (+)

= Inflexible (-)
= Difficult to modify, e.g adding another task
= Difficult to handle external events

= The table can be huge (-)
= Huge memory-usage
« Difficult to construct the time table

Example: shortest repeating cycle

= OBS: The LCM determines the size of the time table
= LCM =50ms for tasks with periods: 5ms, 10ms and 25ms
« LCM =7*13*23=2093 msfor tasks with periods: 7ms, 13ms and
23ms (very much bigger)
= Soif possible, manipulate the periods so that they are multiples
of each other
= Easier to find a feasible schedule and
= Reduce the size of the static schedule, thus less memory usage

Scheduling Algorithms

Scheduling Algorithms

o T

Static Scheduling Dynamic Scheduling
(offline, or clock-driven) (online, or priority-driven)

P e

Static-Priority Scheduling Dynamic-Priority Scheduling

* Preemptive vs. Non-preemptive
* Guarantee-Based vs. Best-Effort
 Optimal vs. Non-optimal

Fixed versus Dynamic Priority Algorithms

A fixed-priority algorithm assigns the same
priority to all the jobs in each task.

« A dynamic-priority algorithm assigns different
priorities to the individual jobs in each task.

* Most real-time scheduling algorithms of practical
Interests assign job-level fixed priorities.

Fixed-Priority Algorithms

« Rate-monotonic (RM) algorithm: It assigns
priorities to tasks based on their periods: the
shorter the period, the higher the priority.
Hence, the higher the rate, the higher the
priority.

« Deadline-monotonic (DM) algorithm: It assigns
priorities to jobs according to their relative
deadlines: the shorter the relative deadline, the

higher the priority.

EDF Algorithm

» Earliest-Deadline-First (EDF) algorithm assigns priorities
to jobs according to their deadlines. The earlier the
deadline, the higher the priority.

» This algorithm is optimal when used to schedule jobs on
a processor as long as preemption is allowed and jobs
do not contend for resources.

« Definition of “optimal”: can produce a feasible schedule
of a set of jobs with arbitrary release times and deadlines
on a processor If a feasible schedule exists.

LST Algorithm

» Least-Slack-Time-First (LST) algorithm, a.k.a. Minimum-
Laxity-First (MLF) algorithm, assigns priorities to jobs
based on their slacks: the smaller the slack, the higher
the priority.

« At any time t, the slack (or laxity) of a job with deadline at
d is equal to d —t minus the time required to complete
the remaining portion of the job.

« EDF and LST algorithms are optimal only when
preemption is allowed.

Schedulabllity Tests

Earliest Deadline First (EDF)

= Task model

= a set of independent periodic tasks (not necessarily the simplified
task model)

= EDF:

=« Whenever a new task arrive, sort the ready queue so that the task
closest to the end of its period assigned the highest priority

= Preemptthe running task if it is not placed in the first of the queue
in the last sorting

= FACT 1: EDF is optimal
= EDF can schedule the task set if any one else can

= FACT 2 (Scedulability test):
= 2 Ci/Ti <= 1iff the task set is schedulable

i Example

= Task set: {(2,5),(4,7)}
s U=2/5+4/7= 34/35 ~ 0.97 (schedulable!)

0 [| [[e e e |,
0 5 10 15 35

EDF: + and — sy smbesacses ome patoms an ppisions

= Note that this is just the simple EDF algorithm; itjworks for all
types of tasks: periodic or non periodic
»« Itis simple and works nicely in theory (+)
= Simpleschedulability test: U <=1 (+)
= Optimal (+)
» Best CPU utilization (+) /
= Difficult to implement in practice. It is not very often adopted

due to the dynamic priority-assignment (expensive to sort the
ready queue on-line), which has nothing to do with the periods

of tasks. Note that Any task could get the highest priority (-)

= Nonstable: if any task instance fails to meet its deadline, the
system is not predictable, any instance of any task may fail (-)

i Rate Monotonic Scheduling: task model

Assume a set of periodic tasks: (Ci,Ti)

s Di=Ti

= Tasks are always released at the start of their periods
= Tasks are independent

RMS: fixed/static-priority scheduling

Rate Monotonic Fixed-Priority Assignment:
« Tasks with smaller periods get higher priorities

= Run-Time Scheduling:
= Preemptive highest priority first

= FACT: RMS is optimal in the sense:

= If a task set is schedulable with any fixed-priority
scheduling algorithm, it is also schedulable with RMS

Example

{(20,100),(40,150),(100,350)} Pr(T1)=1,Pr(T2)=2,Pr(T3)=3

. m m

100 200 300

T2 ‘ 40 40 ‘ 40
0 150 300

”~

0 350

& Example

s Task set: T1=(2,5), T2=(4,7)
m U=2/5+4/7= 34/35 ~ 0.97 (schedulable?)
= RMS priority assignment: Pr(T1)=1, Pr(T2)=2

= b b b

.
0 2 5 10 15 35

/ Missing the deadline!

© O O |

0 2 5 7 14 35

[by Liu and Layland, 1973: a classic result]

‘ The famous Utilization Bound test (UB test)

= Assume a set of n independent tasks:
« S={(C1,T1)(C2,T2)...(Cn,Tn)}and U = £ Ci/Ti

s FACT:if U<=n*(2'/n-1), then S is schedulable by RMS

= Note that the bound depends only on the size of the task set

i Example: Utilization bounds

[B(1)=1.0 B(4)=0.756 B(7)=0.728
B(2)=0.828 B(5)=0.743 B(8)=0.724
B(3)=0.779 B(6)=0.734 U(00)=0.693

Note that U(c0)=0.693 !

Example: applying UB Test

C T (D=T) C/T
Task 1 20 100 0.200
Task 2 40 150 0.267
Task 3 100 350 0.286

Total utilization: U=0.2+0.267+0.286=0.753<B(3)=0.779!
The task set is schedulable

i Example: RM Scheduling

{(20,100),(40,150),(100,350)}

% 20 2

0 100 200

‘ 40 40

0 150

i UB test is only sufficient, not necessay!

= Let U= > Ci/Tiand B(n) = n*(21/n-1)

= Three possible outcomes:
« 0O<=U<=B(n): schedulable
= B(n)<U<=1: no conclusion
s 1< U: overload

= Thus, the test may be too conservative
= (exact test will be given later)

i Example: UB test is sufficient, not necessary

= Assume a task set: {(1,3),(1,5),(1,6),(2,10)}

s CPU utilization U= 1/3+1/5+1/6+2/10=0.899
= The utilization bound B(4)=0.756

= The task set fails in the UB test due to U>B(4)
= Question: is the task set schedulable?

= Answer: YES

1(1,3),(1,5),(1,6),(2,10)}

Response times?
Worst case? First period?
Why?

m ..

m m
0 3

18

E =
10

20

This is only for the first periods! But we will see that this is enough

to tell that the task set is schedullable.

i RMS: Summary

= Task model:
« priodic, independent, D=T, and a task= (Ci,Ti)
= Fixed-priority assignment:
= Smaller periods = higher priorities
= Run time scheduling: Preemptive HPF
= Sufficient schedulability test: U<= n*(21/"-1)
= Precise/exact schedulability test exists

RMS: + and —

= Simple to understand (and remember!) (+)
= Easy to implement (static/fixed priority assignment)(+)

= Stable: though some of the lower priority tasks fail to meet
deadlines, others may meet deadlines (+)

» "lower” CPU utilization (-)

= Requires D=T (-)

= Only deal with independent tasks (-)
» Non-precise schedulability analysis (-)

= Butthese are not really disadvantages;they can be fixed (+++)
= We can solve all these problems except “lower” utilization

Critical instant: an important observation

= Note that in our examples, we have assumed that all tasks are
released at the same time: this is to consider the critical instant
(the worst case senario)

= If tasks meet the first deadlines (the first periods), they will do so
in the future (why?)

= Critical instant of a task is the time at which the release of the
task will yield the largest response time. It occurs when the task
is released simultaneously with higher priority tasks

= Note that the start of a task period is not necessarily the same
as any of the other periods: but the delay between two releases
should be equal to the constant period (otherwise we have
jitters)

Sufficient and necessary schedulability analysis

= Simple ideas [Mathai Joseph and Paritosh Pandya, 1986]:

« Critical instant: the worst case response time for all tasks is
given when all tasks are released at the same time

« Calculate the worst case response time R for each task with
deadline D. If R<=D, the task is schedulable/feasible.
Repeat the same check for all tasks

« If all tasks pass the test, the task set is schedulable

« If some tasks pass the test, they will meet their deadlines
even the other don't (stable and predictable)

= Question:
« how to calculate the worst case response times?

1(1,3),(1,5),(1,6),(2,10)}

‘ Worst case response time calculation: example

Response times?
Worst case? First period?
Why?

E B mm =]
0 3 6 9 12 1 18
|
‘0 5 10 ‘1 20 "
N N | m m
0 6 12 18
| n E B = | :
0 10 20

Worst case response time calculation: example

Why?
Oh 3h Gh WCR=1
- [] ? WCR=2
‘0 [‘6 [] WCR=3
‘] WCR=9

Calculation of worst case response times
[Mathai Joseph and Paritosh Pandya, 1986]

+

= Let Ri stand for the response time for task i. Then
Ri=Ci + ZJ- I(i,j)
« Ciis the computing time
« I(i,j) is the so-called interference of task j to i
« I(i,j) = 0if task i has higher priority than j
« I(i,j) = [Ri/Tj *Cj if task i has lower priority than j
« | x]denotes the least integer larger than x
« Egl3.2] =4,[3]=3,/19]=2

= Ri=Ci + X ¢ ppgi) [RI/Tj ¥Cj

Intuition on the equation

Ri= Ci + X ¢ pp) | Ri/Tj *Cj
= [Ri/Tjis the number of instances of task j during Rj

= | Ri/Tj [*Cj is the time needed to execute all instances of task
j released within Rj
= % < Hp(i) | Ri/Tj [¥Cjis the time needed to execute instances
01'J tasks with higher priorities than task i, released during Rj
= Rjis the sum of the time required for executing task

instances with higher priorities than task j and its own
computing time

i Equation solving and schedulability analysis

= We need to solve the equation:
Ri= Ci + % < pp(y | RI/Tj ¥Cj
= This can be done by numerical methods to compute
the fixed point of the equation e.g. By iteration: let
« R =0Ci +2 ¢ yp(i) G = C1+C2+...+Ci (the first guess)
« Rt =Ci+ % ¢ wpeiy [RIYTI*C (the (k+1)th guess)
= The iteration stops when either

s RiM*1>Ti or = non schedulable
= Rim<Tiand Rim+1=Rim =»schedulable

= Thisis the so called Precise test

i Combine UB and Precise tests

= Order tasks according to their priorities (periods)

= Use UB test as far as you can until you find the first
non-schedulable task

= Calculate response time for the task and all the tasks
with lower priority

Example

C T C/T
Task 1 40 100 0.400
Task 2 40 150 0.267
Task 3 100 350 0.286

Total utilization: U=0.4+0.267+0.286= 0.953>B(3)=0.779!

UB test is inclusive: we need Precise test

but we do have U(T1)+U(T2)= 0.4+0.267= 0.667<U(2)=0.828
so we need to calculate R3 only!

Calculate response time for task 3

s R30=C1+C2+C3=180
s R31=C3+/R39/T1*C1+ R3°/T2 *C2
=100+ 180/100 [*40+| 180/150 [*40

=100+2*40+2*40=260

s R32=C34R31/T1 ¥C1+ R3Y/T2 *C2
=100+260/100 [*40+| 260/150 [*40=300

s R33=C3+ R3%/T1 FC1+| R3%/T2 *C2
=100+ | 300/100 [*40+ 300/150 [*40=300 (done)

Task 3 is schedulable and so are the others!

Example (combine UB test and precise test)

= Consider the same task set: {(1,3),(1,5),(1,6),(3,10)}
= CPU utilization U= 1/3+1/5+1/6+3/10=0.899> B(4)= 0.756

= Fail the UB test!

= ButU(3)=1/3+1/5+1/6=0.699<B(3)=0.779
= Thismeans that the first 3 tasks are schedulable
= Question: is task 4 set schedulable?
s R49=C1+C2+C3+C4=6

= R41= C4+ R4%/T1

=3+[6/3*1+/6/5

= R42=C4+ R4!/T1]

*Cl+

*C1+

R4%/T2]|

*1+ 6/6 ¥1=8

[R41/T2]

*C2+

*C2+

= 3 +[8/3 %1+ 8/5*1+ 8/6 1

= 3+3+2+2
=10

[R4Y/T3]|

[R4YT3]|

*C3

*C3

= R43= C4+/R42/T1 *C1+ R4%/T2 [*C2+| R4 T3 [*C3
=3+4+ 2+ 2 =11 (task 4 is non schedulable!

Summary: Three ways to check schedulability

1. UB test (simple but conservative)
2. Response time calculation (precise test)

3. Construct a schedule for the first periods
= assume the first instances arrive at time 0 (critical instant)
= draw the schedule for the first periods

« if all tasks are finished before the end of the first periods,
schedulable, otherwise NO

'i Deadline Monotonic Scheduling (DMS)

Task model: the same as for RMS but Di<=Ti

Priority-Assignment: tasks with shorter deadline are
assigned higher priorities
Run-time scheduling: preemptive HPF

FACTS:
=« DMS s optimal
« RMSis a special case of DMS

DMS is often refered as Rate Monotonic Scheduling
for historical reasons and they are so similar

DMS: Schedulability analysis

= UB test (sufficient):
> Ci/Di <= n*(21/n-1) implies schedulable by DMS
= Prescise test (exactly the same as for RMS):
Response time calculation: Ri= Ci + ¥j ¢ Hp(i)| Ri/Tj *Cj
« R =Ci+2jcnpi)C = C1+C2+...+Ci > the first guess
« R =Ci+ Y ¢ pp(i)| RI¥/Tj*Cj > the (k+1)th guess
= The iteration stops when either

« RM™1>Di or =>non schedulable
« RiM<Di and Ri™1=RiM™ =»schedulable

Handling context switch overhands
in schedulability analysis

= Assume that
« Clis the extra time required to load the context for a new
task (load contents of registers etc from TCB)

=« Csis the extra time required to save the context for a
current task (save contents of registers etc to TCB)

= Note that in most cases, Cl=Cs, which is a parameter
depending on hardware a

Cs
Task 1

-

Dispatch/context switch

Task 2

Handling context switch overheads ?

= Thus, the real computing time for a task should be
Ci "= Ci+Cl+Cs

= The schedulability analysis techniques we studied so far are
applicable if we use the new computing time C".

= Unfortunately thisis not right

Handling context switch

e Ri= G+ 5 oo [RUTI* G
= Ci+ 2Ccs + Xj . upg | Ri/Tj ¥(Cj + 2Ccs)

= Thisis wrong!

= Ri=Ci+ 2Ccs + X _ g, | RI/Tj *¥Cj
T Z] e HP() rR|/T]—|*4C(S

(each preemption =22 context switches)

= Ci+ 2Ccs + Zj c HPO) rRi/Tﬂ*(Cj +4Ccs)
= Thisis right

Handling interrupts: problem and example

Task O 0_ | __'

60 100 200

Task 0 is the interrupt handler

with highest priority Missing deadline = 50

Re sied heré

C T=D Response time = 70
IH, task0 60 200 l
Task1 |10 |50 skl 550760 -
Task2 |40 | 250

Task 2 . | .

Handling interrupts: solution

= Whenever possible: move code from the interrupt
handler to a special application task with the same
rate as the interrupt handler to make the interrupt
handler (with high priority) as shorter as possible

= Interrupt processing can be inconsistent with RM
priority assignment, and therefore can effect
schedulability of task set (previous example)
« Interrupt handler runs with high priority despites its period

« Interrupt processing may delay tasks with shorter periods
(deadlines)

« how to calculate the worst case response time ?

Handling interrupts: example

§ | .

Task 0 is the interrupt handler
with highest priority
C |T=D

IH |10 [200 5 | 1
K Task 1 I_. . . l . R
Task1 110959 %0 10 10

H H H b H
H H H H H
H H H H H
H H b :
- H i H

i

5150

Task2 |40 | 150

Task3 |50 |200
sk2 | [

Task 3 | - .

iHandling non-preemtive sections

= So far, we have assumed that all tasks are
preemptive regions of code. This not always the case
e.g code for context switch though it may be short,
and the short part of the interrupt handler as we
considered before
= Some section of a task is non preemptive

= In general, we may assume an extra parameter B in

the task model, which is the computing time for the
non preemtive section of a task.

= Bi = computing time of non preemptive section of task i

Handling non preemptive sections:
Problem and Example

Task 3 is an interrupt handler with highest priority
Task 4 has a non preemptive section of 20 sec

Missing deadline 150

C T=D blocking | blocked
Task 1 |20 100 0 20
Task 2 | 40 150 0 20
Task 3 | 60 200 0 20
Task4 | 40 350 20 0

H Task 3 _ [HNNMNCONNNN

Task 1 ‘
Task 2 :

;150
Task 4 -

Non preemptive/non interruptible section of 20

Response time calculation

I Handling non-preemtive sections:

= The equation for response time calculation:
Ri= Bi + Ci + X ¢ ypciy | Ri/Tj ¥Cj
= Where Bi is the longest time that task i can be

blocked by lower-priority tasks with non preemptive
section

» Note that a task preempts only one task with lower priority
within each period

i So now, we have an equation:

Ri= Bi + Ci+2Ccs + ¥ < Hp(j) | Ri/Tj *(Cj +4*Ccs)

iThe Jitter Problem

So far, we have assumed that tasks are released at a
constant rate (at the start of a constant period)

This is true in practice and a realistic assumption

However, there are situations where the period or
rather the release time may fjitter’ or change a little,
but the jitter is bounded with some constant J

The jitter may cause some task missing deadline

Jitter: Example

{(20,100),(40,150),(20, T3)}

n m i m

0 100 200 300

T2 40 40 % § 40
O b 130150 170 e300

- 20 ‘ H ‘

0 150 300 "

T3 is activated by T2 when it finishes within each period
Note that because the response time for T2 is not a constant,
the period between two instances of T3 is not a constant: 170, 130

i Jitter: Definition

J(biggest)=maximal delay from period-start
J(smallest)=minimal delay from period-start
Jitter= J(biggest)-J(smallest)

Jitter = the maximal length of the interval in which a
task may be released non-deterministically

If J(biggest)=](smallest), then NO JITTER and
therefore no influence on the other tasks with lower
priorities

Jitter: Example

{(20,100),(40,150),(20, T3)} Pr(T1)=1,Pr(T2)=2,Pr(T3)=3

" [m © o

0 100 200

T2 ‘ 40 40
o Lo 130150 170 e

sl . Bm

0 150

T3 is activated by T2 by the end of each instance
J(biggest)= R2(worst case), J(smallest)= R2(best case)
Jitter = J(biggest)- J(smallest)=60-40=20

Jitter: Example
{(20,100),(40,150),(20, T3)}

" h i h

0 100 200 300

T2 ‘ 40
(0 A 9Q--

T3 is activated by T2 at any time during its execution of an instance
J(biggest)= R2(worst case), J(smallest)= R2(best case)-C2
Jitter = J(biggest)- J(smallest)=60-0=60

The number of preemptions due to Jitter

Task L will be preempted at least 2 times if Rio,, > Thigh Jhign

Rlow
One release
Task L _
0
Tlow
Jhigh One more release due to the jitter
Task H Which preempts L, one more time
0

Thigh

Task L wil be preempted at least 3 times if R, > 2Ty Jhigh

Rlow
One release
Task L _
0
Tlow
Jhigh One more release due to the jitter
Task H Which preempts L, one more time

0 Thig h 2Thig h

The number of preemptions/blocking
when jitters occur

= TaskL will be preempted at least 2 times if Ry, > Thigh ~Jhigh
» Task L will be preempted at least 3 times if Ry > 2 *Thigh ~Jhigh

= Task L will be preempted at least n times if
Row > (n'l)* Thigh _Jhigh

= Thus (Row +Jhign)/Tj >n-1

« the largest n satisfying the condition is given by

n=| (Row + Jhigh)/ Thigh—l

i Handling Jitters in schedulability analysis

= Ri= Ci+ 2 c Hp() "number of preemptions” *Cj
« Ri* = Ri + Ji(biggest)

= if Ri™ < Di, task i is schedulable otherwise no

i Handling Jitters in schedulability analysis

= R= G+ 25 ¢ HP() r(Ri-I_--lj)/-rj—‘*cj

« R* =R + Ji(biggest)

why Ri+Ji(biggest) ?

s ifR™* < D, task i is schedulable, otherwise no

* Now, we have an equation:

Ri= Ci+ 2Ccs + B + 3 ¢ Hp(iy | (Ri+;)/T; (G +4Ccs)

The response time for task i
R* = Ri+Ji(biggest)
Ji(biggest) is the "biggest jitter” for task i

Bounded Priority Inversion

Priovity Inversion
|
= »
ry
OGS
i 'r.m-:Ei ; E-‘-.'E‘:
[AE O)

[}
i
1
i
[}
[}
|

TAKE

L aatl |
(LEW) i: | : : !3 | '
| | | | '

i1 2 t3 k4

5 16

Unbounded Priority Inversion

IH'I:'IH:I.H!’!

=

.
-| e 1 ¢
(W O} | — | —
A I i L anE |
on | @ L Arj) s
| | | | : | L |
" 12 LI 15 15 Tl

Tima

Priority Inheritence

Rule # Description
1 If Ris in use, T is blocked.
2 lfRis free, R is allocated to T.
3 When a task of a higher priority requests the same resource, T's execution priority is raised to the requesting task's priority level.
4 The task returns to its previous priority when it releases R.
Pricuiry Inversian
Y
HPLERE
(HKGEH] !
] i 1
] 1 i 1
g TAKE | GIVE ! CHNE :
B i 1 i
(ME Lol i i : i
] i 1 i
u i 1 i
— ' : : :
] 1 i 1
LEW E : J LP-gask : ¥ V LPdask
| | | | I .
t td 13 k4 L i

Transitive Priority Inheritence

Prigiity imearsion

o i O

LEdank
LIRITY
i i
I I
WP 1k O Pk | , OhE i
(ME L) ; : i

|

Celiling Priority Protocol

* In the ceiling priority protocol, the priority of every task is known, as
are the resources required by every task.

* For a given resource, the priority ceiling is the highest priority of all
possible tasks that might require the resource.

* For example, if a resource R is required by four tasks (T1 of priority
4, T2 of priority 9, T3 of priority 10, and T4 of priority 8), the priority
celling of R is 10, which is the highest priority of the four tasks.

 With the ceiling priority protocol, the task inherits the priority ceiling
of the resource as soon as the task acquires the resource even
when no other higher priority tasks contend for the same resource.

* This rule implies that all critical sections from every sharing task
have the same criticality level. The idea is to finish the critical
section as soon as possible to avoid possible conflicts.

Celiling Priority Protocol Rules

el B et SN

Rule # Description

1 If R is in use, T is blocked.

2 If Ris free, R is allocated to T. T's execution priority is raised to the priority ceiling of R if that is higher. At any given time, T's execution priority equals the highest
priority ceiling of all its held resources.

3 T's priority is assigned the next-highest priority ceiling of another resource when the resource with the highest priority ceiling is released.

4 The task returns to its assigned priority after it has released all resources.

Priority

A
LP-task
(HIGH) .
| GIVE |
(MEDIUM) |
TAKE | |
- !
: I
(LOW) ¥
| | | :
t1 t2 Time

P:laxk

Next week classes

« Commercial and free RTOS

- Hard real time guarantees
* Linux Real Time patch

- No guarantee, but design for more predictability
e Minor 2 (due on Oct 11):

— Build raspbian from source (CFS scheduler)

- Apply BFS patch

- Apply Preempt RT patch

- Run same benchmark with three different schedulers and report
average and worst case latencies

