

Real Time Systems

Real-Time Systems

Jane W. S. Liu, University of Ilinois at Urbana-Champaign

Real Time Types

Real time is not necessarily fast

● Fast means low average latency
● Real time needs predictable worst case performance
● One needs to mathematically prove that all deadlines

will be met even in the worst case
– For uniprocessor system and periodic tasks, mathematical

proofs were given in 1970-1990. Now one has to perform
some schedulability tests, and if the tests pass, the deadlines
are guaranteed to be met.

– Linux real time patch is designed to be real time, but is not
real time, as the code base is too complex for giving
mathematical guarantees

– It has a number of changes to improve reliability/predictability

Other real time system classifications
● Based on where it runs

– Uniprocessor

– Multicore

– Distributed

● Based on time characteristics of tasks
– Periodic

– Aperiodic

– Sporadic

● Based on when scheduling decisions are taken
– Clock based

– Event based

– Hybrid

()

Schedulability Tests

Data structure space and insertion times are too high for
typical embedded real time platforms and applications

Bounded Priority Inversion

Unbounded Priority Inversion

Priority Inheritence

Transitive Priority Inheritence

Ceiling Priority Protocol

● In the ceiling priority protocol, the priority of every task is known, as
are the resources required by every task.

● For a given resource, the priority ceiling is the highest priority of all
possible tasks that might require the resource.

● For example, if a resource R is required by four tasks (T1 of priority
4, T2 of priority 9, T3 of priority 10, and T4 of priority 8), the priority
ceiling of R is 10, which is the highest priority of the four tasks.

● With the ceiling priority protocol, the task inherits the priority ceiling
of the resource as soon as the task acquires the resource even
when no other higher priority tasks contend for the same resource.

● This rule implies that all critical sections from every sharing task
have the same criticality level. The idea is to finish the critical
section as soon as possible to avoid possible conflicts.

Ceiling Priority Protocol Rules

Next week classes

● Commercial and free RTOS
– Hard real time guarantees

● Linux Real Time patch
– No guarantee, but design for more predictability

● Minor 2 (due on Oct 11):
– Build raspbian from source (CFS scheduler)

– Apply BFS patch

– Apply Preempt RT patch

– Run same benchmark with three different schedulers and report
average and worst case latencies

