Minor 1: kernel and user space

Need to be demo-ed to Riju 3+3+6+6+6 = 24

1. Do a UART loopback test on the PI. Connect the tx and rx pins with a wire and start minicom. Disable local echo. Then type in something in the minicom terminal. If
you see what you type, then the tx is sending those characters to the rx pins through local loopback and your uart tx-rx pins are working. Tutorial:
https://lwww.raspberrypi.org/forums/viewtopic.php?t=148440.

2. Write a "hello world (on insmod), goodbye world (on rmmod)" loadable kernel module. Build it (locally compile on Pl or cross compile on host) and insmod/rmmod it
from Raspbian command line. Show the kernel print messages.

3. Convert 2 GPIO pins on the PI to UART pins using the pigpio library http://abyz.me.uk/rpi/pigpio/. Do the tx-rx loopback as before, but now connecting the two GPIO
pins with a wire. Tutorial: https://www.rs-online.com/designspark/raspberry-pi-2nd-uart-a-k-a-bit-banging-a-k-a-software-serial.

4. Convert the same 2 GPIO pins as above with kernel modules. Again test the tx-rx loopback, connecting the two GPIO pins with a wire. The two kernel modules to try:
(a) https://github.com/adrianomarto/soft_uart/,
(b) https://github.com/themrleon/RpiSoft-UART.

Need to be uploaded as a text file in Moodle 2+2+2 =6

5. List the system calls that the pigpio library uses, to talk to hardware through the linux kernel. Describe in a line or two what each such function does.
6. List the functions in the two kernel modules that talk to the hardware. Describe in a line or two what each such function does.
7. List the functions in the two kernel modules that user space processes can call. Describe in a line or two what each such function does.

Kernel Threads or Light Weight
Processes (LWP):
Unit of scheduling in Linux Kernel

Why Light Weight?

« A computer program becomes a process when it is loaded from some store into the computer's memory
and begins execution. A process can be executed by a processor or a set of processors. A process
description in memory contains vital information such as the program counter which keeps track of the

current position in the program (i.e. which instruction is currently being executed), registers, variable
stores, file handles, signals, and so forth.

Why Light Weight?

« A computer program becomes a process when it is loaded from some store into the computer's memory
and begins execution. A process can be executed by a processor or a set of processors. A process
description in memory contains vital information such as the program counter which keeps track of the
current position in the program (i.e. which instruction is currently being executed), registers, variable
stores, file handles, signals, and so forth.

« Athread is a sequence of such instructions within a program that can be executed independently of other
code. Threads are within the same process address space, thus, much of the information present in the
memory description of the process can be shared across threads.

« Some information cannot be replicated, such as the stack (stack pointer to a different memory area per
thread), registers and thread-specific data. This information sufficies to allow threads to be scheduled
independently of the program's main thread and possibly one or more other threads within the program.

Process Multithreaded Process

Process State: PC, Process State: PC, Thread| | Thread | | Thread
registers, SP, etc... registers, SP, etc... ELESES ELESES State
Data Segment Data Segment ﬁ
=T ~ Heap =
¥ v

\/

+* o T 4O
2 S N

HQ

Why Light Weight?

A computer program becomes a process when it is loaded from some store into the computer's memory
and begins execution. A process can be executed by a processor or a set of processors. A process
description in memory contains vital information such as the program counter which keeps track of the
current position in the program (i.e. which instruction is currently being executed), registers, variable
stores, file handles, signals, and so forth.

Athread is a sequence of such instructions within a program that can be executed independently of other
code. Threads are within the same process address space, thus, much of the information present in the
memory description of the process can be shared across threads.

Some information cannot be replicated, such as the stack (stack pointer to a different memory area per
thread), registers and thread-specific data. This information sufficies to allow threads to be scheduled
independently of the program's main thread and possibly one or more other threads within the program.

Explicit operating system support is required to run multithreaded programs. Fortunately, most modern
operating systems support threads such as Linux (via NPTL), BSD variants, Mac OS X, Windows, Solaris,
AlX, HP-UX, etc. Operating systems may use different mechanisms to implement multithreading support.

Process Multithreaded Process

Process State: PC, Process State: PC, Thread| | Thread | | Thread
registers, SP, etc... registers, SP, etc... ELESES ELESES State
Data Segment ﬁ
| TTeEr O =
¥ F

* 0 0 0
T

Data Segment

HQ “

POSIX Threads or pthreads

« Standard that unix vendors have to support, to
enable creating threads in userspace

POSIX Threads or pthreads

« Standard that unix vendors have to support, to
enable creating threads in userspace

* LINUX gives userspace library Native POSIX
Threads Library (NPTL) as part of glibc

rijurekha@rijurekha-Inspiron-5567:~/Downloads/acmart-master$ getconf GNU LIBPTHREAD VERSION

NPTL 2.19

POSIX Threads or pthreads

« Standard that unix vendors have to support, to
enable creating threads in userspace

* LINUX gives userspace library Native POSIX
Threads Library (NPTL) as part of glibc

 We can write C code that includes the pthread.h
library and call the supported functions

» \We also write higher level code In the user space
e.g. in Python, C interpreters of which internally
iIncludes pthread.h library

rijurekha@rijurekha-Inspiron-5567:~/Downloads/acmart-master$ getconf GNU LIBPTHREAD VERSION

NPTL 2.19

Mapping from userspace threads to
kernel threads/ Light Weight Processes (LWP)

Relationship between user-level and kernel-level
threads

—-1:1
— N:1

— M:N

Mapping from userspace threads to
kernel threads/ Light Weight Processes (LWP)

Relationship between user-level and kernel-level threads
-1:1
each user-level thread maps to one kernel-level thread
e.g. win32, LinuxThreads (1996), Linux NPTL, windows 7, FreeBSD
—N:1
purely user-level threads, kernel is not aware of the existence of threads
e.g. Early version of Java, Solaris Green Thread
— M:N
In 2003, IBM released the Next Generation POSIX Threads (NGPT), which
offered substantial improvements over LinuxThreads. It improved support for
the POSIX standard, and was notable for providing an M:N threading model in

which M user-space threads are executed on N kernel threads. Not used in
linux, NPTL became mainstream and not NGPT.

http://www.drdobbs.com/open-source/nptl-the-new-implementation-of-threads-
/184406204

Pthread APIs

 Thread management
* Thread synchronization

More than 100 subroutines

Create API

int

pthread create(pthread t * thread,
const pthread attr t * attr,
void * (*start routine)(void ¥},
void *arg);

« thread - returns the thread id. (unsigned long int defined in pthreadtypes.h)

attr - Set to NULL if default thread attributes are used. (else define members of the struct pthread_attr t

defined in pthreadtypes.h). Attributes include:

detached state (joinable? Default: PTHREAD CREATE_JOINABLE. Other option: PTHREAD_CREATE_DETACHED)
scheduling policy (real-time? PTHREAD_INHERIT_SCHED,PTHREAD_EXPLICIT_SCHED,SCHED_OTHER)
scheduling parameter

inheritsched attribute (Default: PTHREAD_EXPLICIT_SCHED Inherit from parent thread:
PTHREAD_INHERIT_SCHED)

scope (PTHREAD_SCOPE_SYSTEM, PTHREAD_SCOPE_PROCESS)

guard size

stack address (See unistd.h and bits/posix_opt.h POSIX_THREAD_ATTR_STACKADDR)
stack size (default minimum PTHREAD_STACK_SIZE set in pthread.h),

* void * (*start_routine) - pointer to the function to be threaded. Function has a single argument: pointer to
void.

 *arg - pointer to argument of function. To pass multiple arguments, send a pointer to a structure.

vold pthread exit(void *retval);

 This routine kills the thread. The pthread_exit function never returns. If the thread is not detached, the
thread id and return value may be examined from another thread by using pthread_join.

» Note: the return pointer *retval, must not be of local scope otherwise it would cease to exist once the thread
terminates.

Change stack size

#include <pthread.h»
#include <stdio.h»
#define NTHREADE 4
#define N 1000

#define MEGEXTRA 1000000

pthread attr_t attr;

void rdowork(void +*threadid)
{

double A[N] [NW];

int i,9;

long tid;

size t mystacksize;

tid = (long)threadid;
pthread attr getatacksize (&attr, &mystacksize);
printf ("Thread %1d: stack size - %1i bytes \n", tid, mystacksize);
for (i=0; i<M; i++)
for (j=0; j<N; j++)
Ali) [3) = ((i*j)/3.452) + (W-i),;
pthread exit (NULL);

}

int main{int argc, char *argv([])
{
pthread t threads ([NTEREADS] ;
size t stacksize;
int rc;
long t;

pthread attr_ init (&attr);
pthread attr getstacksize (&attr, &stacksize);
printf ("Default stack size - %li\n", stacksize);
stacksize - gizeof (double) "N*N+MEGEXTRA;
printf ("Amount of stack needed per thread - %li\n",stacksize);
pthread attr_setstacksize (&attr, stacksize);
printf("Creating threads with stack size = %1i bytes'\n",stackaize);
for(t=0; t<NTHREADS; t++}{
¥c = pthread create(&threads(t], &attr, dowork, (wvoid #)t);

if (re)
printf ("ERROR; return code from pthread create() is %d\n", xc);,
exit(-1);

b

printf ("Ccreated %1d threads.\n", t);
pthread exit (NULL);

Mutex APl

Compile and run

Compile:
C compiler: cc -Ipthread pthreadl.c
or
C++ compiler: g++ -Ipthread pthreadl.c

Run:
Ja.out

Results:
Thread 1
Thread 2
Thread 1 returns: 0
Thread 2 returns: 0

Compile:
cc -Ipthread mutexl1.c

Run:
Ja.out

Results:
Counter value: 1
Counter value: 2

Join API

https://code.wobog.org/userspace/glibc/nptl/

pPrin CGU_GLLI_DCLJ.IIII!:I LLOUIITU. L
pthread attr setschedparam.c
pthread attr setschedpolicy.c
pthread attr setscope.c
pthread attr setstack.c
pthread attr setstackaddr.c
pthread attr setstacksize.c
pthread barrier destroy.c
pthread barrier init.c

pthread barrier wait.c

pthread barrierattr destroy.c
pthread barrierattr getpshared.c
pthread barrierattr init.c
pthread barrierattr setpshared.c
pthread cancel.c
pthread clock gettime.c
pthread clock settime.c
pthread cond broadcast.c
pthread cond common.c
pthread cond destroy.c
pthread cond init.c
pthread cond signal.c
pthread cond wait.c condvar cleanup buffer
pthread condattr destroy.c
pthread condattr getclock.c
pthread condattr getpshared.c
pthread condattr init.c
pthread condattr setclock.c
pthread condattr setpshared.c
pthread create.c

pthread detach.c

pthread equal.c

pthread exit.c
rFhraad AadyrasFFTarmT v o~

https://code.woboqg.org/userspace/glibc/nptl/pthread create.c.html

618 int

619 pthread create 2 1 (pthread t *newthread, const pthread attr t *attr,
620 void *(*start routine) (void *), void *arg)

621 {

622 STACK VARIABLES;

623

624 const struct pthread attr *iattr = (struct pthread attr *) attr;
625 struct pthread attr default attr;

626 bool free cpuset = false;

627 if (iattr == NULL)

628 {

629 LIl lock (default pthread attr lock, LLL PRIVATE);
630 default attr = default pthread attr;

631 size t cpusetsize = default attr.cpusetsize;

632 if (cpusetsize > 0)

633 {

634 cpu set t *cpuset;

635 if (glibc likely (1libc use alloca (cpusetsize)))
636 cpuset = alloca (cpusetsize);

637 else

638 {

639 cpuset = malloc (cpusetsize);

640 if (cpuset == NULL)

641 {

642 L1l unlock (default pthread attr lock, LLL PRIVATE);

~ A=

- FRIARAFRA .

User space code in Python

Python program to illustrate the concept
of threading

import threading

import os

= H

def taskl{):
print{"Task 1 assigned to thread: {}".format(threading.current_thread().name})
print("ID of process running task 1: {}".format{os.getpid()))

def task2():
print{"Task 2 assigned to thread: {}".format(threading.current_thread().name})
print("ID of process running task 2: {}".format{os.getpid()))

if _name__ == "_main__":

print ID of current process
print("ID of process running main program: {}".format{os.getpid()))

print name of main thread
print({"Main thread name: {}".fTormat{threading.main_thread().name))

creating threads
tl = threading.Thread(target=taskl, name='tl')
t2 = threading.Thread(target=task2, name='ft2'")

starting threads
ti.start()
tZ2.start()

wait until all threads finish
til.join()
t2.join()

Run on IDE

I0 of process running main program: 11758
Main thread name: MainThread

Task 1 assigned to thread: tl

ID of process running task 1: 11758

Task 2 assigned to thread: t2

ID of process running task 2: 11758

Python Interpreter internally calls pthread APIs

https://github.com/enthought/Python-2.7.3/blob/master/Python/thread_pthread.h
https://github.com/python/cpython/blob/master/Python/thread.c

long
Branch: master » | Python-2.7.3 / Python / thread_pthread.h Find file = Copy path PyThread_start_new_thread(void (*func)(void *), void *arg)
i
pthread_t th;
int status;
#if defined(THREAD_STACK_SIZE) || defined(PTHREAD_SYSTEM_SCHED_SUPPORTED)
pthread_attr_t attrs;
#endif
#if defined(THREAD_STACK_SIZE)

size_t tss;

ﬁ cournape Python 2.7.3. 6ofeaff on 21 Dec 2013

1 contributor

506 lines (420 sloc) 13 KB Raw Blame History & [

#endif
* Posix threads interface */
dprintf{("PyThread_start_new_thread calledn"));
if (rinitialized)
PyThread_init_thread()

ginclude «stdlib.h>

ginclude <string.h>

#if defined(_APPLE_) || defined(HAVE_PTHREAD_DESTRUCTOR)
#define destructor xxdestructor

#if defined(THREAD_STACK_SIZE) || defined{PTHREAD_SYSTEM_SCHED_SUPPORTED)

if (pthread_attr_init{&attrs) != @)
#endif return -1:
#include <pthread.h> sendif
#1if defined({THREAD_STACK_SIZE)
tss = (_pythread_stacksize != @) ? _pythread_stacksize

: THREAD_STACK _SIZE;
if (tss = @) {
if (pthread_attr_setstacksize(&attrs, tss) != @) {
~ . . . pthread_attr_destroy(&attrs);
for safety, ensure a viable minimum stacksize
- return -1;
#define THREAD_STACK_MIN @xgeoe S* 32ke */ 1
1
#endif
#1f defined({PTHREAD_SYSTEM_SCHED_SUPFPORTED)
pthread_attr_setscope(&attrs, PTHREAD_SCOPE_SYSTEM);
#endif

status = pthread_create(&th
#if defined({THREAD_STACK_SIZE) || defined{PTHREAD_SYSTEM_SCHED_SUPPORTED)
gattrs,

(pthread_attr_t*JNULL,
{(wvoid* (*){woid *))func,

(void *)arg

Vi

User space code In Java,
JVM internally calls pthread APIs

public class Thread {

static AtomicInteger threadCount = new AtomicInteger(l);

public wvoid run() {

System.out.println("Running Thread " + threadCount.getAndIncrement());

public void start() {
start@(); {

}

private native void starte();

JNIEXPORT void JNICALL Java_com_threading_Thread_start@(JNIEnv *env, jobject javaThreadObjectRef)

//Get jvm instance and global reference to Thread java object to be passed to

//pthread entry point function.

JavaThreadWrapper* args = new JavaThreadwWrapper(env, javaThreadObjectRef);

//init thread attributes

pthread_attr_t attr;

pthread_attr_init(&attr);

pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);

//native thread id
pthread_t tid;
if (pthread_create(&tid, &attr, thread_entry_point, args))
{
fprintf(stderr, "Error creating thread\n")

return;

std::cout << "Started a linux thread " << tid << "!" << endl;

return;

What if the python interpreter or the
JVM does something weird?

What if the python interpreter or the
JVM does something weird?

http://www.dabeaz.com/python/GIL.pdf

A Performance Experiment

® Consider this trivial CPU-bound function

def count(n):
while n > 0:
n-=1

® Run it twice in series

count (100000000)
count (100000000)

® Now,run it in parallel in two threads

t1l = Thread(target=count,args=(100000000,))
tl.start()

t2 = Thread(target=count,args=(100000000,))
t2.start()

tl.join(); t2.join()

What if the python interpreter or the
JVM does something weird?

http://www.dabeaz.com/python/GIL.pdf

A Performance Experiment A Mystery

® Consider this trivial CPU-bound function

o comern, ® Why do | get these performance results on
Sl e 13 my Dual-Core MacBook?

® Run it twice in series Sequential :24.6s
count (100000000 Threaded :45.5s (1.8X slower!)
count (100000000)

 Now, run it in parallel in two threads ® And if | disable one of the CPU cores, why
t1l = Thread(target=count,args=(100000000,)) dOES the thl"E&dEd pEI"fOI"mElnCE gEt bEtter'?
tl.start()
tg-:tzii??d[targehcount,args=(100000000,)) Thr’eaded :38-05

tl.join(); t2.join()

