

Minor 1: kernel and user space
==

Need to be demo-ed to Riju 3+3+6+6+6 = 24

==

1. Do a UART loopback test on the PI. Connect the tx and rx pins with a wire and start minicom. Disable local echo. Then type in something in the minicom terminal. If
you see what you type, then the tx is sending those characters to the rx pins through local loopback and your uart tx-rx pins are working. Tutorial:
https://www.raspberrypi.org/forums/viewtopic.php?t=148440.

2. Write a "hello world (on insmod), goodbye world (on rmmod)" loadable kernel module. Build it (locally compile on PI or cross compile on host) and insmod/rmmod it
from Raspbian command line. Show the kernel print messages.

3. Convert 2 GPIO pins on the PI to UART pins using the pigpio library http://abyz.me.uk/rpi/pigpio/. Do the tx-rx loopback as before, but now connecting the two GPIO
pins with a wire. Tutorial: https://www.rs-online.com/designspark/raspberry-pi-2nd-uart-a-k-a-bit-banging-a-k-a-software-serial.

4. Convert the same 2 GPIO pins as above with kernel modules. Again test the tx-rx loopback, connecting the two GPIO pins with a wire. The two kernel modules to try:

(a) https://github.com/adrianomarto/soft_uart/,

(b) https://github.com/themrleon/RpiSoft-UART.

===

Need to be uploaded as a text file in Moodle 2+2+2 = 6

===

5. List the system calls that the pigpio library uses, to talk to hardware through the linux kernel. Describe in a line or two what each such function does.

6. List the functions in the two kernel modules that talk to the hardware. Describe in a line or two what each such function does.

7. List the functions in the two kernel modules that user space processes can call. Describe in a line or two what each such function does.

Kernel Threads or Light Weight
Processes (LWP):

Unit of scheduling in Linux Kernel

Why Light Weight?
● A computer program becomes a process when it is loaded from some store into the computer's memory

and begins execution. A process can be executed by a processor or a set of processors. A process
description in memory contains vital information such as the program counter which keeps track of the
current position in the program (i.e. which instruction is currently being executed), registers, variable
stores, file handles, signals, and so forth.

Why Light Weight?
● A computer program becomes a process when it is loaded from some store into the computer's memory

and begins execution. A process can be executed by a processor or a set of processors. A process
description in memory contains vital information such as the program counter which keeps track of the
current position in the program (i.e. which instruction is currently being executed), registers, variable
stores, file handles, signals, and so forth.

● A thread is a sequence of such instructions within a program that can be executed independently of other
code. Threads are within the same process address space, thus, much of the information present in the
memory description of the process can be shared across threads.

● Some information cannot be replicated, such as the stack (stack pointer to a different memory area per
thread), registers and thread-specific data. This information sufficies to allow threads to be scheduled
independently of the program's main thread and possibly one or more other threads within the program.

Why Light Weight?
● A computer program becomes a process when it is loaded from some store into the computer's memory

and begins execution. A process can be executed by a processor or a set of processors. A process
description in memory contains vital information such as the program counter which keeps track of the
current position in the program (i.e. which instruction is currently being executed), registers, variable
stores, file handles, signals, and so forth.

● A thread is a sequence of such instructions within a program that can be executed independently of other
code. Threads are within the same process address space, thus, much of the information present in the
memory description of the process can be shared across threads.

● Some information cannot be replicated, such as the stack (stack pointer to a different memory area per
thread), registers and thread-specific data. This information sufficies to allow threads to be scheduled
independently of the program's main thread and possibly one or more other threads within the program.

● Explicit operating system support is required to run multithreaded programs. Fortunately, most modern
operating systems support threads such as Linux (via NPTL), BSD variants, Mac OS X, Windows, Solaris,
AIX, HP-UX, etc. Operating systems may use different mechanisms to implement multithreading support.

POSIX Threads or pthreads

● Standard that unix vendors have to support, to
enable creating threads in userspace

POSIX Threads or pthreads

● Standard that unix vendors have to support, to
enable creating threads in userspace

● LINUX gives userspace library Native POSIX
Threads Library (NPTL) as part of glibc

POSIX Threads or pthreads

● Standard that unix vendors have to support, to
enable creating threads in userspace

● LINUX gives userspace library Native POSIX
Threads Library (NPTL) as part of glibc

● We can write C code that includes the pthread.h
library and call the supported functions

● We also write higher level code in the user space
e.g. in Python, C interpreters of which internally
includes pthread.h library

Mapping from userspace threads to
kernel threads/ Light Weight Processes (LWP)

Relationship between user-level and kernel-level
threads

– 1:1

– N:1

– M:N

Relationship between user-level and kernel-level threads

– 1:1

each user-level thread maps to one kernel-level thread

e.g. win32, LinuxThreads (1996), Linux NPTL, windows 7, FreeBSD

– N:1

purely user-level threads, kernel is not aware of the existence of threads

e.g. Early version of Java, Solaris Green Thread

– M:N

In 2003, IBM released the Next Generation POSIX Threads (NGPT), which
offered substantial improvements over LinuxThreads. It improved support for
the POSIX standard, and was notable for providing an M:N threading model in
which M user-space threads are executed on N kernel threads. Not used in
linux, NPTL became mainstream and not NGPT.

http://www.drdobbs.com/open-source/nptl-the-new-implementation-of-threads-
f/184406204

Mapping from userspace threads to
kernel threads/ Light Weight Processes (LWP)

Pthread APIs

● Thread management
● Thread synchronization

More than 100 subroutines

Create API

●

● thread - returns the thread id. (unsigned long int defined in pthreadtypes.h)
● attr - Set to NULL if default thread attributes are used. (else define members of the struct pthread_attr_t

defined in pthreadtypes.h). Attributes include:
– detached state (joinable? Default: PTHREAD_CREATE_JOINABLE. Other option: PTHREAD_CREATE_DETACHED)

– scheduling policy (real-time? PTHREAD_INHERIT_SCHED,PTHREAD_EXPLICIT_SCHED,SCHED_OTHER)

– scheduling parameter

– inheritsched attribute (Default: PTHREAD_EXPLICIT_SCHED Inherit from parent thread:
PTHREAD_INHERIT_SCHED)

– scope (PTHREAD_SCOPE_SYSTEM, PTHREAD_SCOPE_PROCESS)

– guard size

– stack address (See unistd.h and bits/posix_opt.h _POSIX_THREAD_ATTR_STACKADDR)

– stack size (default minimum PTHREAD_STACK_SIZE set in pthread.h),

● void * (*start_routine) - pointer to the function to be threaded. Function has a single argument: pointer to
void.

● *arg - pointer to argument of function. To pass multiple arguments, send a pointer to a structure.

● This routine kills the thread. The pthread_exit function never returns. If the thread is not detached, the
thread id and return value may be examined from another thread by using pthread_join.

● Note: the return pointer *retval, must not be of local scope otherwise it would cease to exist once the thread
terminates.

C
ha

ng
e

st
ac

k
si

ze

Mutex API

Compile and run
Compile:

 C compiler: cc -lpthread pthread1.c

 or

 C++ compiler: g++ -lpthread pthread1.c

Run:

 ./a.out

Results:

 Thread 1

 Thread 2

 Thread 1 returns: 0

 Thread 2 returns: 0

Compile:

 cc -lpthread mutex1.c

Run:

 ./a.out

Results:

 Counter value: 1

 Counter value: 2

Join API

https://code.woboq.org/userspace/glibc/nptl/

https://code.woboq.org/userspace/glibc/nptl/pthread_create.c.html

User space code in Python

Python Interpreter internally calls pthread APIs

https://github.com/enthought/Python-2.7.3/blob/master/Python/thread_pthread.h
https://github.com/python/cpython/blob/master/Python/thread.c

User space code in Java,
JVM internally calls pthread APIs

What if the python interpreter or the
JVM does something weird?

What if the python interpreter or the
JVM does something weird?

http://www.dabeaz.com/python/GIL.pdf

What if the python interpreter or the
JVM does something weird?

http://www.dabeaz.com/python/GIL.pdf

