
  

Process, threads and interrupts

Chapters 3, 7 (Monday class) and 8 in “Linux Kernel Development” by Robert Love



  

Process

● A program in execution, living result of running 
program code, also called task
– executes program code (also called the text section)

– data section containing global variables 

– set of resources like open files, pending signals, 
internal kernel data, processor state

– memory address space with one or more memory 
mappings

– one or more threads of execution



  

In pictures



  

Process State



  

Creating and terminating processes

● fork() system call creates a new process by duplicating an 
existing one

● The process that calls fork() is the parent, whereas the new 
process is the child

● The parent resumes execution and the child starts execution at 
the same place: where the call to fork() returns.

● Often, immediately after a fork it is desirable to execute a new, 
different program. exec() creates a new address space and 
loads a new program into it.

● Finally, a program exits via the exit() system call.This function 
terminates the process and frees all its resources.



  

fork() implemented with clone(), 
clone() -> do_fork() -> copy_process() <kernel/fork.c>

● calls dup_task_struct() , which creates a new kernel stack, thread_info structure, and 
task_struct for the new process. At this point, the child and parent process descriptors are 
identical.

● checks new child will not exceed the limits on the number of processes for current user.
● various members of the process descriptor are cleared or set to initial values. The bulk of the 

values in task_struct remain unchanged.
● The child’s state is set to TASK_UNINTERRUPTIBLE to ensure that it does not yet run
● copy_process() calls copy_flags() to update the flags member of the task_struct .The 

PF_SUPERPRIV flag, which denotes whether a task used superuser privileges, is 
cleared.The PF_FORKNOEXEC flag, which denotes a process that has not called exec() , is 
set.

● calls alloc_pid() to assign an available PID to the new task.
● Depending on the flags passed to clone() , copy_process() either duplicates or shares open 

files, filesystem information, signal handlers, process address space, and namespace.These 
resources are typically shared between threads in a given process; otherwise they are 
unique and thus copied here.

● copy_process() cleans up and returns to the caller a pointer to the new child.
● back in do_fork() , if copy_process() returns successfully, the new child is woken up and run.



  

Process Descriptor and Task List

● Circular doubly linked list called task list
● Each element in the task list is a process descriptor
● Process descriptor is of the type struct task_struct, defined 

in <linux/sched.h>
● task_struct is ~1.7 KB on a 32 bit machine  
● Process descriptor contains all information about a specific 

process
– process identification value or PID (unique) 

– open files

– the process’s address space

– pending signals

– the process’s state

– and much more.



  

Process Descriptor and Task List



  

Threads

● Threads are a popular modern programming abstraction.
● Threads enable concurrent programming and on multi-

processor systems parallelism
● Obejct of activity within process
● Each thread includes

– unique program counter

– process stack

– set of processor registers

● The kernel schedules individual threads, not processes



  

In pictures



  

Linux implementation of threads

● Linux implements all threads as standard 
processes. A thread is merely a process, that 
shares resources with other processes.

● No special scheduling semantics or data 
structures to represent threads.



  

Creating Threads
● Threads are created as normal tasks
● clone() system call is passed flags corresponding 

to the specific resources to be shared

● Identical to normal fork(), except that address space, 
file system resources, file descriptors and signal 
handlers are shared

● The new task and its parent are what are popularly 
called threads



  

What to share with child process/ thread
<linux/sched.h>



  

Kernel Threads
<linux/kthread.h>

● Standard processes existing only in the kernel space
● Do not have an address space, mm pointer that points to 

address space is null
● Opearte only in the kernel space and do not context switch into 

the user space
● Schedulable and preemptible, just like normal processes
● Linux delegates several tasks to kernel threads, most notably 

the flush tasks and the ksoftirqd task.
● We can see the kernel threads by running the command 

ps -ef



  

Process, threads and interrupts

Chapters 3, 7 (Monday class) and 8 in “Linux Kernel Development” by Robert Love



  

Top Half vs. Bottom Half

These two goals of an interrupt handler conflict with one another
● Execute quickly
● Perform a large amount of work

So the processing of interrupts is split into two parts, or halves

Top half

The interrupt handler is the top half. The top half is run immediately upon receipt of the 
interrupt and performs only the work that is time-critical, such as acknowledging receipt of 
the interrupt or resetting the hardware.

Bottom half 

Work that can be performed later is deferred until the bottom half. The bottom half runs in 
the future, at a more convenient time, with all interrupts enabled.



  

Example using network card

● When network cards receive packets from the network, the network cards immediately 
issue an interrupt. This optimizes network throughput and latency and avoids timeouts.

● The kernel responds by executing the network card's registered interrupt.

● The interrupt runs, acknowledges the hardware, copies the new networking packets into 
main memory, and readies the network card for more packets. These jobs are the 
important, time-critical, and hardware-specific work.

● The kernel generally needs to quickly copy the networking packet into main memory 
because the network data buffer on the networking card is fixed and miniscule in size, 
particularly compared to main memory. Delays in copying the packets can result in a 
buffer overrun, with incoming packets overwhelming the networking card's buffer and 
thus packets being dropped.

● After the networking data is safely in the main memory, the interrupt's job is done, and it 
can return control of the system to whatever code was interrupted when the interrupt was 
generated.

● The rest of the processing and handling of the packets occurs later, in the bottom half



  

Bottom halves and deferred work

● Interrupts are enabled in bottom half (unlike 
interrupt handler)

● Softirq and tasklets cannot sleep
● Work queues can sleep
● Softirq needs proper locking (as different 

processors can execute same softirq code)

Networking and block devices



  

Softirq <kernel/softirq.c>

● static struct softirq_action 
softirq_vec[NR_SOFTIRQS]; 

● 32 is the limit, only nine exist



  

Handling softirq

● Assign a sofirq index
● Register handler: the softirq handler is registered at run-time via 

open_softirq(), which takes two parameters: the softirq’s index and its handler 
function.The networking subsystem, for example, registers its softirqs like this, 
in net/core/dev.c :
– open_softirq(NET_TX_SOFTIRQ, net_tx_action);

– open_softirq(NET_RX_SOFTIRQ, net_rx_action);

● A registered softirq must be marked before it will execute.This is called raising 
the softirq. Usually, an interrupt handler marks its softirq for execution before 
returning. For example, the networking subsystem would call,
– raise_softirq(NET_TX_SOFTIRQ);

● Then, at a suitable time, the softirq runs. Pending softirqs are checked for and 
executed in the following places:
– In the return from hardware interrupt code path

– In the ksoftirqd kernel thread

– In any code that explicitly checks for and executes pending softirqs, such as the net-
working subsystem



  

Kernel threads run softirq, tasklets

● In designing softirqs, the kernel developers realized that some sort of compromise 
was needed.

● The solution ultimately implemented in the kernel is to not immediately process

reactivated softirqs. Instead, if the number of softirqs grows excessive, the kernel 
wakes up

a family of kernel threads to handle the load.
● The kernel threads run with the lowest possible priority (nice value of 19), which 

ensures they do not run in lieu of anything important.
● This concession prevents heavy softirq activity from completely starving user-spaceof 

processor time. Conversely, it also ensures that “excess” softirqs do run eventually.
● Finally, this solution has the added property that on an idle system the softirqs are 

handled rather quickly because the kernel threads will schedule immediately.
● There is one thread per processor.The threads are each named ksoftirqd/n where n 

is the processor number. On a two-processor system, you would have ksoftirqd/0 and 
ksoftirqd/1 . Having a thread on each processor ensures an idle processor, if 
available, can always service softirqs.



  

Checking for softirq-s

● Regardless of the method of invocation, softirq 
execution occurs in __do_softirq(), which is 
invoked by do_softirq()



  

Work Queues

● If we need a schedulable entity to perform bottom-half 
processing, we need work queues.

● They are the only bottom-half mechanisms that run in process 
context, so the only ones that can sleep.

● Useful for situations in which we
– need to allocate a lot of memory 

– obtain a semaphore 

– perform block I/O

● In its most basic form, the work queue subsystem is an interface 
for creating kernel threads to handle work queued from 
elsewhere.These kernel threads are called worker threads.



  

Work Queues


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 16
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

