
  

Memory management



  

Virtual address space
● Each process in a multi-tasking OS runs in its own memory 

sandbox called the virtual address space.
● In 32-bit mode this is a 4GB block of memory addresses.
● These virtual addresses are mapped to physical memory by page 

tables, which are maintained by the operating system kernel and 
consulted by the processor. 

● Each process has its own set of page tables. 
● Once virtual addresses are enabled, they apply to all software 

running in the machine, including the kernel itself. 
● Thus a portion of the virtual address space must be reserved to 

the kernel



  

Kernel and user space

● Kernel might not use 1 GB much physical memory.
● It has that portion of address space available to map whatever physical 

memory it wishes. 
● Kernel space is flagged in the page tables as exclusive to privileged 

code (ring 2 or lower), hence a page fault is triggered if user-mode 
programs try to touch it. 

● In Linux, kernel space is constantly present and maps the same 
physical memory in all processes. 

● Kernel code and data are always addressable, ready to handle 
interrupts or system calls at any time. 

● By contrast, the mapping for the user-mode portion of the address 
space changes whenever a process switch happens



  

Kernel virtual address space

● Kernel address space is the area above 
CONFIG_PAGE_OFFSET.

● For 32-bit, this is configurable at kernel build time. 
The kernel can be given a different amount of 
address space as desired.

● Two kinds of addresses in kernel virtual address 
space
– Kernel logical address

– Kernel virtual address



  

Kernel logical address

● Allocated with kmalloc()
● Holds all the kernel data structures
● Can never be swapped out
● Virtual addresses are a fixed offset from their physical addresses.

– Virt: 0xc0000000 → Phys: 0x00000000

● This makes converting between physical and virtual addresses easy. 
Macros that do that
– _pa(x)

– _va(x)

● Virtually-contiguous regions are by nature also physically contiguous.
● Makes them suitable for DMA transfers.



  

Kernel virtual address

● Allocated with vmalloc()
● Contiguous virtual addresses can go to non-

contiguous physical addresses
● Easier to allocate, especially for large buffers 



  

Mapping changes on context switch

● Blue regions represent virtual addresses that 
are mapped to physical memory, whereas white 
regions are unmapped. 

● In the example above, Firefox has used far 
more of its virtual address space due to its 
legendary memory hunger. 



  

Memory segments



  

Virtual address randomization

● An exploit often needs to reference absolute memory locations: an 
address on the stack, the address for a library function, etc. 

● Remote attackers must choose this location blindly, counting on the 
fact that address spaces of all processes are the same. 

● When they are, the attack is successful. 
● Thus address space randomization has become popular. 
● Linux randomizes the stack, memory mapping segment, and heap 

by adding offsets to their starting addresses. 
● Unfortunately the 32-bit address space is pretty tight, leaving little 

room for randomization and hampering its effectiveness.



  

Stack segment

● The topmost segment in the process address space is the stack, which 
stores local variables and function parameters in most programming 
languages. 

● Calling a method or function pushes a new stack frame onto the stack. 
● The stack frame is destroyed when the function returns. 
● This simple design, possible because the data obeys strict LIFO order, 

means that no complex data structure is needed to track stack contents - 
a simple pointer to the top of the stack will do. 

● Pushing and popping are thus very fast and deterministic. 
● Also, the constant reuse of stack regions tends to keep active stack 

memory in the cpu caches, speeding up access. 
● Each thread in a process gets its own stack.



  

Growing the stack segment

● It is possible to exhaust the area mapping the stack by pushing more data than it 
can fit. 

● This triggers a page fault that is handled in Linux by expand_stack(), which in turn 
calls acct_stack_growth() to check whether it's appropriate to grow the stack. 

● If the stack size is below RLIMIT_STACK (usually 8MB), then normally the stack 
grows and the program continues merrily, unaware of what just happened. This is 
the normal mechanism whereby stack size adjusts to demand. 

● However, if the maximum stack size has been reached, we have a stack overflow 
and the program receives a Segmentation Fault. 

● While the mapped stack area expands to meet demand, it does not shrink back 
when the stack gets smaller.

● Dynamic stack growth is the only situation in which access to an unmapped 
memory region, might be valid. Any other access to unmapped memory triggers a 
page fault that results in a Segmentation Fault. Some mapped areas are read-
only, hence write attempts to these areas also lead to segfaults. 



  

Memory mapping segment

● Below the stack, we have the memory mapping segment. 
● Here the kernel maps contents of files directly to memory. 
● Any application can ask for such a mapping via the Linux mmap() 

system call. 
● Memory mapping is a convenient and high-performance way to do file 

I/O, so it is used for loading dynamic libraries. 
● It is also possible to create an anonymous memory mapping that does 

not correspond to any files, being used instead for program data. 
● In Linux, if you request a large block of memory via malloc(), the C 

library will create such an anonymous mapping instead of using heap 
memory. 'Large' means larger than MMAP_THRESHOLD bytes, 128 
kB by default and adjustable via mallopt().



  

Heap segment
● Heap comes next in our plunge into address space. 
● The heap provides runtime memory allocation, like the stack.
● Heap is meant for data that must outlive the function doing the allocation, 

unlike the stack. 
● Most languages provide heap management to programs. Satisfying memory 

requests is thus a joint affair between the language runtime and the kernel. 
● In C, the interface to heap allocation is malloc() and friends. 
● In a garbage-collected language like C# the interface is the new keyword.
● If there is enough space in the heap to satisfy a memory request, it can be 

handled by the language runtime without kernel involvement. 
● Otherwise the heap is enlarged via the brk() system call (implementation) to 

make room for the requested block. 
● Heap management is complex, requiring sophisticated algorithms that strive 

for speed and efficient memory usage in the face of our programs' chaotic 
allocation patterns. The time needed to service a heap request can vary 
substantially.



  

BSS and data segment
● BSS and data segments store contents for static (global) variables in C. 
● BSS 

– stores the contents of uninitialized static variables, whose values are not set by 
the programmer in source code. 

– The BSS memory area is anonymous: it does not map any file. 

– If you say static int cntActiveUsers, the contents of cntActiveUsers live in the 
BSS.

● The data segment 
– holds the contents for static variables initialized in source code. 

– This memory area is not anonymous. It maps the part of the program's binary 
image that contains the initial static values given in source code. 

– So if you say static int cntWorkerBees = 10, the contents of cntWorkerBees live 
in the data segment and start out as 10. 

– Even though the data segment maps a file, it is a private memory mapping, 
which means that updates to memory are not reflected in the underlying file. 

– This must be the case, otherwise assignments to global variables would change 
your on-disk binary image. 



  

Text segment

● Text segment is 
– read-only.

– stores all of your code in addition to tidbits like string literals. 

– maps your binary file in memory. 

– writes to this area earn your program a Segmentation Fault. 
This helps prevent pointer bugs



  

How kernel manages process memory

● Linux processes are implemented in the kernel as 
instances of task_struct, the process descriptor. 

● The mm field in task_struct points to the memory 
descriptor, mm_struct, which is an executive 
summary of a program's memory.



  

Virtual memory area



  

VMA information

● Each virtual memory area (VMA) is a contiguous range of virtual 
addresses; these areas never overlap. 

● An instance of vm_area_struct fully describes 
– a memory area, including its start and end addresses

– flags to determine access rights and behaviors

– the vm_file field to specify which file is being mapped by the area, if any. 
A VMA that does not map a file is anonymous. 

● Each memory segment above (e.g., heap, stack) corresponds to a 
single VMA, with the exception of the memory mapping segment. 
This is not a requirement, though it is usual in x86 machines. 

● VMAs do not care which segment they are in.



  

VMA data structures

● A program's VMAs are stored in its memory descriptor 
– as a linked list in the mmap field, ordered by starting virtual 

address

– as a red-black tree rooted at the mm_rb field. 

● When you read file /proc/pid_of_process/maps, the 
kernel is simply going through the linked list of VMAs 
for the process and printing each one.

● The red-black tree allows the kernel to search quickly 
for the memory area covering a given virtual address. 



  

Virtual address to physical address



  

Virtual address to physical address



  

Virtual address to physical address



  

Virtual address to physical address



  

Virtual pages
● The 4GB virtual address space is divided into 

pages. 
● Linux maps the user portion of the virtual 

address space using 4KB pages. 
● Bytes 0-4095 fall in page 0, bytes 4096-8191 

fall in page 1, and so on. 
● The size of a VMA must be a multiple of page 

size.



  

Physical page frame
● This physical address space is broken down by the kernel into page frames. 
● The processor doesn't know or care about frames, yet they are crucial to the 

kernel because the page frame is the unit of physical memory management. 
● Linux uses 4KB page frames in 32-bit mode. In the kernel, the abbreviation pfn, 

for page frame number, is often used to refer to refer to physical page frames.
● In Linux, physical memory is managed with the buddy memory allocation 

technique, hence a page frame is free if it's available for allocation via the 
buddy system.



  

A page table per process

● Each process has its own set of page tables – 
created at time of process creation and modified 
over its lifetime.

● Per process page tables are large and stored in 
RAM.

● Linux stores a pointer to a process' page tables in 
the pgd field of the memory descriptor.



  

A page table entry (PTE)

● Bit P tells the processor whether the virtual page is present in physical 
memory. If 0, accessing the page triggers a page fault. When 0, the 
kernel can do whatever it pleases with the remaining fields. 

● The R/W flag stands for read/write; if clear, the page is read-only. 
● Flag U/S stands for user/supervisor; if clear, then the page can only 

be accessed by the kernel. These flags are used to implement the 
read-only memory and protected kernel space we saw before.

● Bits D and A are for dirty and accessed. A dirty page has had a write, 
while an accessed page has had a write or read. Both flags are sticky: 
the processor only sets them, they must be cleared by the kernel.

● Finally, the PTE stores the starting physical address that corresponds 
to this page, aligned to 4KB.



  

MMU: hardware based address 
translation

● MMU is programmed with page table details to 
translate a virtual address into a physical 
memory address.

● A special register, the page table base 
register (PTBR), points to the beginning of the 
page table of the currently scheduled process.

● Whenever a process switch occurs, PTBR is 
changed.



  

Part of page table cached in TLB



  

Kernel involvement in address translation

● Once the page table for the scheduled process is 
appropriately set up, every user space process 
memory access (instruction fetch, data 
read/write, stack, etc) goes only through the 
MMU. 

● The hardware handles it all, without need to 
switch into the kernel on every access.

● Kernel is notified only in case of exceptions 
called page faults.



  

3 cases of page faults and 
kernel involvement

 

(a) Illegal access: If there's no suitable VMA, no contract covers the attempted 
memory access and the process is punished by Segmentation Fault.

(b) Legal access, mapped page, swapped out: The PTE for a swapped out 
page, for example, has 0 in the Present flag but is not blank. Instead, it stores 
the swap location holding the page contents, which must be read from disk and 
loaded into a page frame by do_swap_page() in what is called a major fault.

(c) Legal access, unmapped page: When a VMA is found the kernel must 
handle the fault by looking at the PTE contents and the type of VMA. In our 
case, the PTE shows the page is not present. In fact, our PTE is completely 
blank (all zeros), which in Linux means the virtual page has never been 
mapped. This must be handled by do_anonymous_page(), which allocates a 
page frame and makes a PTE to map the faulted virtual page onto the freshly 
allocated frame.



  

Lazy Allocation: agreed upon (VMA) 
vs. actually done (PTE)

● A VMA is like a contract between your program and 
the kernel.

● You ask for something to be done (memory allocated, 
a file mapped, etc.), the kernel says "sure", and it 
creates or updates the appropriate VMA. 

● But it does not actually honor the request right away, it 
waits until a page fault happens to do real work.

● The rule is that VMAs record what has been agreed 
upon, while Page table entries (PTE) reflect what has 
actually been done by the lazy kernel.



  

VMA, PTE and page frames

● Blue rectangles represent pages in the VMA range, while 
arrows represent page table entries mapping pages onto 
page frames. Some virtual pages lack arrows; this means 
their corresponding PTEs have the Present flag clear. This 
could be because the pages have never been touched or 
because their contents have been swapped out. 

● In either case access to these pages will lead to page 
faults, even though they are within the VMA.



  

Heap allocation example

When the program asks for more memory via the brk() system call, the 
kernel simply updates the heap VMA and calls it good. No page frames 
are actually allocated at this point and the new pages are not present in 
physical memory. 



  

Embedded systems specific


