Today's class

Cleanup: Interrupt Bottom Halves, Intelligent Buses
New: Loadable kernel modules

Homework: look at device driver code and device tree

Next week

DMA controllers and hardware data direct copying to RAM
Linux booting process finish — bootloader and devices, root
file system and the init_kernel function

Interrupt Bottom Halves

Top Half vs. Bottom Half

These two goals of an interrupt handler conflict with one another

« Execute quickly
* Perform a large amount of work

So the processing of interrupts is split into two parts, or halves

Top half

The interrupt handler is the top half. The top half is run immediately upon receipt of the
interrupt and performs only the work that is time-critical, such as acknowledging receipt of
the interrupt or resetting the hardware.

Bottom half

Work that can be performed later is deferred until the bottom half. The bottom half runs in
the future, at a more convenient time, with all interrupts enabled.

Example using network card

When network cards receive packets from the network, the network cards
Immediately issue an interrupt. This optimizes network throughput and
latency and avoids timeouts.

The kernel responds by executing the network card's registered interrupt.

The interrupt runs, acknowledges the hardware, copies the new networking
packets into main memory, and readies the network card for more packets.
These jobs are the important, time-critical, and hardware-specific work.

The rest of the processing and handling of the packets occurs later, in the
bottom half

Again many mechanisms for
deferred work/ bottom halves

Bottom Half Status

BH Removed in 2.5

Task queues Removed in 2.5

Softirq Available since 2.3 Networking and block devices
Tasklet Available since 2.3

Work queues Available since 2.5

* Interrupts are enabled in bottom half (unlike interrupt handler)

« Softirg and tasklets cannot sleep

« Work queues can sleep

« Softirg needs proper locking (as different processors can execute same softirq code)
« Softirgs are statically allocated at compile time, tasklets can be dynamically created

e static struct softirq_action

SOftqu <kernel/softirg.c>

softirg_vec[NR_SOFTIRQS];
e 32 Is the limit, only nine exist

Tasklet Priority Softirq Description

HI SOFTIRQ 0 High-priority tasklets
TIMER SOFTIRQ 1 Timers

NET TX SOFTIRQ 2 Send network packets
NET RX SOFTIROQ 3 Receive network packets
BLOCK SOFTIRQ 4 Block devices

TASKLET SOFTIRQ 2 Normal priority tasklets
SCHED SOFTIRQ 6 Scheduler

HRTIMER SOFTIRQ 7 High-resolution timers
RCU SOFTIRQ 8 RCU locking

Handling softirg

» Assign a sofirqg index

Handling softirg

Assign a sofirq index

Register handler: the softirg handler is registered at run-time via open_softirq(), which
takes two parameters: the softirq’s index and its handler function.The networking
subsystem, for example, registers its softirgs like this, in net/core/dev.c :

- open_softirg(NET_TX_SOFTIRQ, net_tx_action);
- open_softirg(NET_RX SOFTIRQ, net_rx_action);

Handling softirg

» Assign a sofirqg index

 Register handler: the softirq handler is registered at run-time via open_softirq(), which
takes two parameters: the softirq’s index and its handler function.The networking
subsystem, for example, registers its softirgs like this, in net/core/dev.c :

- open_softirg(NET_TX_SOFTIRQ, net_tx_action);
- open_softirg(NET_RX SOFTIRQ, net_rx_action);

« Aregistered softirg must be marked before it will execute.This is called raising the
softirg. Usually, an interrupt handler marks its softirg for execution before returning. For
example, the networking subsystem would call,

- raise_softirg(NET_TX_SOFTIRQ);

Handling softirg

Assign a sofirq index

Register handler: the softirg handler is registered at run-time via open_softirq(), which
takes two parameters: the softirq’s index and its handler function.The networking
subsystem, for example, registers its softirgs like this, in net/core/dev.c :

- open_softirg(NET_TX_SOFTIRQ, net_tx_action);
- open_softirg(NET_RX SOFTIRQ, net_rx_action);

A registered softirg must be marked before it will execute.This is called raising the
softirg. Usually, an interrupt handler marks its softirg for execution before returning. For
example, the networking subsystem would call,

- raise_softirg(NET_TX_SOFTIRQ);

Then, at a suitable time, the softirg runs. Pending softirqs are checked for and executed
in the following places:

- In the return from hardware interrupt code path
- In the ksoftirqd kernel thread

- In any code that explicitly checks for and executes pending softirgs, such as the net-
working subsystem

Kernel threads run softirq, tasklets

Kernel does not immediately process reactivated softirgs. Instead, if the number of softirgs
grows excessive, the kernel wakes up a family of kernel threads to handle the load.

Kernel threads run softirq, tasklets

Kernel does not immediately process reactivated softirgs. Instead, if the number of softirgs
grows excessive, the kernel wakes up a family of kernel threads to handle the load.

The kernel threads run with the lowest possible priority (nice value of 19), which ensures they do
not run in lieu of anything important.

This concession prevents heavy softirg activity from completely starving user-space of processor
time. Conversely, it also ensures that “excess” softirgs do run eventually.

Kernel threads run softirq, tasklets

Kernel does not immediately process reactivated softirgs. Instead, if the number of softirgs
grows excessive, the kernel wakes up a family of kernel threads to handle the load.

The kernel threads run with the lowest possible priority (nice value of 19), which ensures they do
not run in lieu of anything important.

This concession prevents heavy softirg activity from completely starving user-space of processor
time. Conversely, it also ensures that “excess” softirgs do run eventually.

Finally, this solution has the added property that on an idle system the softirgs are handled
rather quickly because the kernel threads will schedule immediately.

There is one thread per processor.The threads are each named ksoftirgd/n where n is the
processor number. On a two-processor system, you would have ksoftirqgd/O and ksoftirqd/1 .
Having a thread on each processor ensures an idle processor, if available, can always service
softirgs.

Kernel threads run softirq, tasklets

Kernel does not immediately process reactivated softirgs. Instead, if the number of softirgs
grows excessive, the kernel wakes up a family of kernel threads to handle the load.

The kernel threads run with the lowest possible priority (nice value of 19), which ensures they do
not run in lieu of anything important.

This concession prevents heavy softirg activity from completely starving user-space of processor
time. Conversely, it also ensures that “excess” softirgs do run eventually.

Finally, this solution has the added property that on an idle system the softirgs are handled
rather quickly because the kernel threads will schedule immediately.

There is one thread per processor.The threads are each named ksoftirgd/n where n is the
processor number. On a two-processor system, you would have ksoftirqgd/O and ksoftirqd/1 .
Having a thread on each processor ensures an idle processor, if available, can always service
softirgs.

rijurekha@rijurekha-Inspiron-5567:~S ps -ef | grep softirq
3 ® Aug06 ? 00:00:05 [k d/e]
13 ® Aug06 ? 00:00:03 [k d/1]

©@ Aug06 ? 00:00:01 [k d/2]
23 ©@ Aug06 ? 00:00:01 [k d/3]
2165 19975 0 08:37 pts/6 00:00:00 grep --color=auto

Checking for pending tasks

 Regardless of the method of invocation, softirg
execution occurs in ___do_softirg(), which Is
Invoked by do_softirq() w2 cending;

pending = local softirq pending();
if (pending) {
struct softirqg action *h;

/* reset the pending bitmask */
set softirg pending(0);

h = softirqg vec;
do {
if (pending & 1)
h->action(h);
h++:
pending >>= 1;
} while (pending);

Work Queues

* |f we need a schedulable entity to perform bottom-half
processing, we need work queues.

* They are the only bottom-half mechanisms that run in process
context, so the only ones that can sleep.

Work Queues

* If we need a schedulable entity to perform bottom-half
processing, we need work queues.

* They are the only bottom-half mechanisms that run in process
context, so the only ones that can sleep.

o Useful for situations in which we

- need to allocate a lot of memory
- obtain a semaphore
- perform block 1/O

* In its most basic form, the work gqueue subsystem is an interface
for creating kernel threads to handle work queued from
elsewhere.These kernel threads are called worker threads.

Running worker threads in Riju's machine

rijurekha@rijurekha-Inspiron-5567:~% ps
root 5 2 Aug06 ? : : 00 JO:0H]
root 15 2 Aug06 - : 00 J/1:0H]
root 20 2 Aug06 : 00 J/2:0H]
root 25 2 Aug06 : 00 /3:0H]
root 169 2 Aug06 : 01 JO:1H]
root 171 2 Aug06 : 01 /2:1H]
root 205 2 Aug06 : 01 J1:1H]
root 379 2 Aug06 : 05 /3:1H]
root 1044 2 07:41 : 01 J/O:1]
root 1279 2 @7:55 : 00 [/2:1]
root 1366 2 08:02 : 00 /3:0]
root 1473 2 08:08 : 00 fu8:0]
root 1741 2 E8:17 : 00 /1:0]
root 1797 2 08:21 : 00 Jfu8:1]
root 1823 2 8:22 : 00 [/1:2]
root 1877 2 08:26 : 00 /3:1]
root 1878 2 08:26 : 00 [/2:2]
root 1895 2 08:26 : 00 fu8:21]
root 1997 2 08:30 : 00 [/O0:2]
root 2105 2 08:34 : 00 /3:2]
root 2135 2 ©8:35 : /0:0]
2 08:37 - - fu8:3]
5 08:37 : : --color=auto

LY R T R R L B R Y I LY LY

root 2158
rijurek+ 2169 1997

lcjooNojNojojoNooNoNoNoNoNoNooNoNoNoNoNoNoNoO)

Choosing among mechanisms?
-- policy

- If the deferred task needs to block (kmalloc, user
space data copy), work queue is the only option

- For everything else, tasklets are good (dynamic
allocation, need not worry about synchronization)

- For highly time critical tasks softirg-s are used, as
same sofirq can run on different processors
iImproving concurency (driver writer should take
care of synchronization issues).

Intelligent buses that detect non-
platform devices

Bus core driver for non-platform

devices (detectable)

 E.g. USB or PCI

 Example: USB. Implemented in drivers/usb/core/

- Creates and registers the bus_type structure

- Provides an API to register and implement adapter drivers (here USB
controllers), able to detect the connected devices and allowing to
communicate with them.

- Provides an API to register and implement device drivers (here USB
device drivers)

- Matches the device drivers against the devices detected by the adapter
drivers.

- Defines driver and device specific structures, here mainly struct
usb_driver and struct usb_interface

A high level USB controller driver

LISE Core
Registers the bus_type structure

USE Adapter USE Adapter USE Device USE Device USE Device
driver A driver B driver 1 driver 2 driver 3

DEV1 DEV2
USEL
System DEVY DEVS
e USB2 I I

A single driver for compatible devices, though connected to buses with different controllers.

Device Driver

Need to register supported devices to the bus core.
Example: drivers/net/usb/rtI8150.c

static struct usb_device id rtI8150 table[] =

{{ USB_DEVICE(VENDOR_ID_REALTEK, PRODUCT _ID_RTL8150) },

{ USB_DEVICE(VENDOR_ID_MELCO, PRODUCT_ID LUAKTX) },

{ USB_DEVICE(VENDOR_ID_MICRONET, PRODUCT_ID_SP128AR) },

{ USB_DEVICE(VENDOR_ID _LONGSHINE, PRODUCT ID LCS8138TX) }[...]

{}
3
MODULE_DEVICE_TABLE(usb, rtl8150 _table):

Device Driver (contd.)

Need to register hooks to manage devices (newly detected or removed ones),
as well as to react to power management events (suspend and resume)

static struct usb_driver rtI8150 driver = {
.name = "rtI8150",

.probe = rtl8150 probe,

.disconnect = rtl8150 disconnect,
1d_table = rtIl8150 table,

.suspend = rtI8150 suspend,

resume = rtI8150 resume

J

When a device Is detected on bus

Step 2: USB core looks
up the registered IDs, and
finds the matching driver

USB Core

Step 1: a new
USB device is
detected with

ID XY

ohci-at91 rt18150

Step 3: The USB core calls
the probe method of the

usb_ driver structure registered
by the rtl8150 driver

| oadable Kernel Modules

What iIs it, why useful?

« Software component which can be added to the
memory image of the Kernel while it is already
running.

- The kernel does not need to be recompiled to add new
software facilities

- They are also used to develop new parts of the Kernel
that can be then integrated in the final image once
stable

- They are also used to tailor the start up of a kernel
configuration, depending on specific needs

Module Code hello.c

#include <linux/init.h> // Macros used to mark up functions e.g., __imit __exit
#include <linux/module.h> // Core header for loading LKMs into the kernel

#include <linux/kernel.h> // Contains types, macros, functions for the kernel
MODULE_LICENSE({"GPL"); //f< The license type -- this affects runtime behavior
MODULE_AUTHOR("Derek Molloy"); ///< The author -- visible when you use modinfo
MODULE_DESCRIPTION("A simple Linux driver for the BBB."); ///< The description -- see modinfo
MODULE_VERSION{"®.1"); /i< The version of the module

static char *name = "world"; /< An example LKM argument -- default value is "world”

module_param({name, charp, S_IRUGD); ///< Param desc. charp = char ptr, S_IRUGO can be read/not changed
MODULE_PARM_DESC(name, "The name to display in /var/log/kern.log"); ///< parameter description

/** gbrief The LKM initialization function
* The static keyword restricts the visibility of the function to within this C file. The __init
* macro means that for a built-in driver (not a LKM) the function is only used at initialization
* +time and that it can be discarded and its memory freed up after that point.
¥ @return returns @ if successful
*f
static int __init helloBBB_init(void){
printk(KERN_INFO "EBB: Hello %s from the BBB LKMI“n", name);
return ©;

}

/** gbrief The LKM cleanup function
* Similar to the initialization function, it is static. The __exit macro notifies that if this
* code is used for a built-in driver (not a LKM) that this function is not required.
*/
static void __exit helloBBB_exit(void){
printk(KERN_INFO "EBB: Goodbye %s from the BBBE LKMI!%n", name);
t

/** Bbrief A module must use the module_init() module_exit() macros from linux/init.h, which
* 1dentify the initialization function at insertion time and the cleanup function (as
* listed above)
o'd

module_init(helloBBB_init);

module_exit(helloBBB_exit);

07:
07:
07:
07:

07:
07:
07:
07:
07:
07:

printk messages In Riju’'s machine

rijurekha@rijurekha-Inspiron-5567:~$ tail -f /var/log/kern.log

04:
04:
04:
04:

04:
04:
04:
04:
04:
04:

11
11
11
11

11
11
11
11
11
11

rijurekha-
rijurekha-
rijurekha-
rijurekha-

rijurekha-
rijurekha-
rijurekha-
rijurekha-
rijurekha-
rijurekha-

Inspiron-5567
Inspiron-5567
Inspiron-5567
Inspiron-5567

Inspiron-5567
Inspiron-5567
Inspiron-5567
Inspiron-5567
Inspiron-5567
Inspiron-5567

kernel:
kernel:
kernel:
kernel:

kernel:
kernel:
kernel:
kernel:
kernel:
kernel:

[202702.
[202702.
[202702.
[202702.

[202702.
[202702.
[202702.
[202702.
[202702.
[202702.

148023]
149635]
149784]
240371]

254500]
260875]
263446]
267385]
279236]
282654]

wlan@:
MELE

IPvé6:

wlan0:

wlan0:
wlan@:
wlan@:
wlan@:
wlan@:
wlan@:

RX AssocResp from d0:04:01:5f:bb:be (capab=0x431 status=0 aid=5)
associated
ADDRCONF(NETDEV_CHANGE): wlan®: link becomes ready
deauthenticating from d0:04:01:5f:bb:be by local choice (Reason: 2=PREV_AUTH_NOT_V

authenticate with d0:04:01:5f:bb:be

send auth to d0:04:01:5f:bb:be (try 1/3)

authenticated

associate with d0:04:01:5f:bb:be (try 1/3)

RX AssocResp from d0:04:01:5f:bb:be (capab=0x431 status=0 aid=6)
associated

Dynamically loading and removing
modules

« Amodule is loaded by the administrator via the shell command
insmod

* It takes as a parameter the path to the object file generated when
compiling the module

* It can also be used to pass parameters (variable=value)

- These are not passed as actual function parameters, but as initial values of
global variables declared in the module source code

- sudo insmod hello.ko name=Derek instead of “Hello World”, “Hello Derek”
will be printed

A module is unloaded via the shell command rmmod

* We can also use modprobe, which by default looks for the actual
module in the directory /lib/modules/$(uname —r)

Reference Counters

 The Kernel keeps a reference counter for each loaded
LKM

 |f the reference counter is greater than zero, then the
module is locked

- This means that there are processes in the system
which rely on facilities exposed by the module

- If not forced, unloading of the module fails

rijurekha@rijurekha-Inspiron-5567:~%S sudo Lsmod
[sudo] password for rijurekha:
Size Used bwvy
28672
16384
16384
2004480
163849
20480
9632
230480

snd_hdg_codec_hdmi 53248
dell_ lLed 1384
snd_hda_codec_realtek 90112 y |

HEEONNOQOORK

Today's class

Cleanup: Interrupt Bottom Halves, Intelligent Buses
New: Loadable kernel modules

Homework: look at device driver code and device tree

Next week

DMA controllers and hardware data direct copying to RAM
Linux booting process finish — bootloader and devices, root
file system and the init_kernel function

