
  

Cleanup: Interrupt Bottom Halves, Intelligent Buses
New: Loadable kernel modules
Homework: look at device driver code and device tree

Today's class

Next week
DMA controllers and hardware data direct copying to RAM
Linux booting process finish – bootloader and devices, root 
file system and the init_kernel function



  

Interrupt Bottom Halves



  

Top Half vs. Bottom Half

These two goals of an interrupt handler conflict with one another
● Execute quickly
● Perform a large amount of work

So the processing of interrupts is split into two parts, or halves

Top half

The interrupt handler is the top half. The top half is run immediately upon receipt of the 
interrupt and performs only the work that is time-critical, such as acknowledging receipt of 
the interrupt or resetting the hardware.

Bottom half 

Work that can be performed later is deferred until the bottom half. The bottom half runs in 
the future, at a more convenient time, with all interrupts enabled.



  

Example using network card

● When network cards receive packets from the network, the network cards 
immediately issue an interrupt. This optimizes network throughput and 
latency and avoids timeouts.

● The kernel responds by executing the network card's registered interrupt.

● The interrupt runs, acknowledges the hardware, copies the new networking 
packets into main memory, and readies the network card for more packets. 
These jobs are the important, time-critical, and hardware-specific work.

● The rest of the processing and handling of the packets occurs later, in the 
bottom half



  

Again many mechanisms for 
deferred work/ bottom halves

● Interrupts are enabled in bottom half (unlike interrupt handler)
● Softirq and tasklets cannot sleep
● Work queues can sleep
● Softirq needs proper locking (as different processors can execute same softirq code)
● Softirqs are statically allocated at compile time, tasklets can be dynamically created

Networking and block devices



  

Softirq <kernel/softirq.c>

● static struct softirq_action 
softirq_vec[NR_SOFTIRQS]; 

● 32 is the limit, only nine exist



  

Handling softirq

● Assign a sofirq index



  

Handling softirq

● Assign a sofirq index

● Register handler: the softirq handler is registered at run-time via open_softirq(), which 
takes two parameters: the softirq’s index and its handler function.The networking 
subsystem, for example, registers its softirqs like this, in net/core/dev.c :

– open_softirq(NET_TX_SOFTIRQ, net_tx_action);

– open_softirq(NET_RX_SOFTIRQ, net_rx_action);



  

Handling softirq

● Assign a sofirq index

● Register handler: the softirq handler is registered at run-time via open_softirq(), which 
takes two parameters: the softirq’s index and its handler function.The networking 
subsystem, for example, registers its softirqs like this, in net/core/dev.c :

– open_softirq(NET_TX_SOFTIRQ, net_tx_action);

– open_softirq(NET_RX_SOFTIRQ, net_rx_action);

● A registered softirq must be marked before it will execute.This is called raising the 
softirq. Usually, an interrupt handler marks its softirq for execution before returning. For 
example, the networking subsystem would call,

– raise_softirq(NET_TX_SOFTIRQ);



  

Handling softirq

● Assign a sofirq index

● Register handler: the softirq handler is registered at run-time via open_softirq(), which 
takes two parameters: the softirq’s index and its handler function.The networking 
subsystem, for example, registers its softirqs like this, in net/core/dev.c :

– open_softirq(NET_TX_SOFTIRQ, net_tx_action);

– open_softirq(NET_RX_SOFTIRQ, net_rx_action);

● A registered softirq must be marked before it will execute.This is called raising the 
softirq. Usually, an interrupt handler marks its softirq for execution before returning. For 
example, the networking subsystem would call,

– raise_softirq(NET_TX_SOFTIRQ);

● Then, at a suitable time, the softirq runs. Pending softirqs are checked for and executed 
in the following places:

– In the return from hardware interrupt code path

– In the ksoftirqd kernel thread

– In any code that explicitly checks for and executes pending softirqs, such as the net-
working subsystem



  

Kernel threads run softirq, tasklets

● Kernel does not immediately process reactivated softirqs. Instead, if the number of softirqs 
grows excessive, the kernel wakes up a family of kernel threads to handle the load.



  

Kernel threads run softirq, tasklets

● Kernel does not immediately process reactivated softirqs. Instead, if the number of softirqs 
grows excessive, the kernel wakes up a family of kernel threads to handle the load.

● The kernel threads run with the lowest possible priority (nice value of 19), which ensures they do 
not run in lieu of anything important.

● This concession prevents heavy softirq activity from completely starving user-space of processor 
time. Conversely, it also ensures that “excess” softirqs do run eventually.



  

Kernel threads run softirq, tasklets

● Kernel does not immediately process reactivated softirqs. Instead, if the number of softirqs 
grows excessive, the kernel wakes up a family of kernel threads to handle the load.

● The kernel threads run with the lowest possible priority (nice value of 19), which ensures they do 
not run in lieu of anything important.

● This concession prevents heavy softirq activity from completely starving user-space of processor 
time. Conversely, it also ensures that “excess” softirqs do run eventually.

● Finally, this solution has the added property that on an idle system the softirqs are handled 
rather quickly because the kernel threads will schedule immediately.

● There is one thread per processor.The threads are each named ksoftirqd/n where n is the 
processor number. On a two-processor system, you would have ksoftirqd/0 and ksoftirqd/1 . 
Having a thread on each processor ensures an idle processor, if available, can always service 
softirqs.



  

Kernel threads run softirq, tasklets

● Kernel does not immediately process reactivated softirqs. Instead, if the number of softirqs 
grows excessive, the kernel wakes up a family of kernel threads to handle the load.

● The kernel threads run with the lowest possible priority (nice value of 19), which ensures they do 
not run in lieu of anything important.

● This concession prevents heavy softirq activity from completely starving user-space of processor 
time. Conversely, it also ensures that “excess” softirqs do run eventually.

● Finally, this solution has the added property that on an idle system the softirqs are handled 
rather quickly because the kernel threads will schedule immediately.

● There is one thread per processor.The threads are each named ksoftirqd/n where n is the 
processor number. On a two-processor system, you would have ksoftirqd/0 and ksoftirqd/1 . 
Having a thread on each processor ensures an idle processor, if available, can always service 
softirqs.



  

Checking for pending tasks

● Regardless of the method of invocation, softirq 
execution occurs in __do_softirq(), which is 
invoked by do_softirq()



  

Work Queues

● If we need a schedulable entity to perform bottom-half 
processing, we need work queues.

● They are the only bottom-half mechanisms that run in process 
context, so the only ones that can sleep.



  

Work Queues

● If we need a schedulable entity to perform bottom-half 
processing, we need work queues.

● They are the only bottom-half mechanisms that run in process 
context, so the only ones that can sleep.

● Useful for situations in which we
– need to allocate a lot of memory 

– obtain a semaphore 

– perform block I/O

● In its most basic form, the work queue subsystem is an interface 
for creating kernel threads to handle work queued from 
elsewhere.These kernel threads are called worker threads.



  

Running worker threads in Riju's machine



  

Choosing among mechanisms? 
-- policy

– If the deferred task needs to block (kmalloc, user 
space data copy), work queue is the only option

– For everything else, tasklets are good (dynamic 
allocation, need not worry about synchronization)

– For highly time critical tasks softirq-s are used, as 
same sofirq can run on different processors 
improving concurency (driver writer should take 
care of synchronization issues). 



  

Intelligent buses that detect non-
platform devices 



  

Bus core driver for non-platform 
devices (detectable)

● E.g. USB or PCI
● Example: USB. Implemented in drivers/usb/core/

– Creates and registers the bus_type structure

– Provides an API to register and implement adapter drivers (here USB 
controllers), able to detect the connected devices and allowing to 
communicate with them.

– Provides an API to register and implement device drivers (here USB 
device drivers)

– Matches the device drivers against the devices detected by the adapter 
drivers.

– Defines driver and device specific structures, here mainly struct 
usb_driver and struct usb_interface



  

A high level USB controller driver



  

Device Driver

Need to register supported devices to the bus core.

Example: drivers/net/usb/rtl8150.c

static struct usb_device_id rtl8150_table[] =

{{ USB_DEVICE(VENDOR_ID_REALTEK, PRODUCT_ID_RTL8150) },

{ USB_DEVICE(VENDOR_ID_MELCO, PRODUCT_ID_LUAKTX) },

{ USB_DEVICE(VENDOR_ID_MICRONET, PRODUCT_ID_SP128AR) },

{ USB_DEVICE(VENDOR_ID_LONGSHINE, PRODUCT_ID_LCS8138TX) },[…]

{}

};

MODULE_DEVICE_TABLE(usb, rtl8150_table);



  

Device Driver (contd.)

Need to register hooks to manage devices (newly detected or removed ones), 
as well as to react to power management events (suspend and resume)

static struct usb_driver rtl8150_driver = {

.name = "rtl8150",

.probe = rtl8150_probe,

.disconnect = rtl8150_disconnect,

.id_table = rtl8150_table,

.suspend = rtl8150_suspend,

.resume = rtl8150_resume

};



  

When a device is detected on bus



  

Loadable Kernel Modules



  

What is it, why useful?

● Software component which can be added to the 
memory image of the Kernel while it is already 
running.
– The kernel does not need to be recompiled to add new 

software facilities

– They are also used to develop new parts of the Kernel 
that can be then integrated in the final image once 
stable

– They are also used to tailor the start up of a kernel 
configuration, depending on specific needs



  

Module Code hello.c



  

printk messages in Riju's machine



  

Dynamically loading and removing 
modules

● A module is loaded by the administrator via the shell command 
insmod

● It takes as a parameter the path to the object file generated when 
compiling the module

● It can also be used to pass parameters (variable=value)
– These are not passed as actual function parameters, but as initial values of 

global variables declared in the module source code

– sudo insmod hello.ko name=Derek instead of “Hello World”, “Hello Derek” 
will be printed

● A module is unloaded via the shell command rmmod
● We can also use modprobe, which by default looks for the actual 

module in the directory /lib/modules/$(uname –r)



  

Reference Counters

● The Kernel keeps a reference counter for each loaded 
LKM

● If the reference counter is greater than zero, then the 
module is locked

– This means that there are processes in the system 
which rely on facilities exposed by the module

– If not forced, unloading of the module fails



  

Cleanup: Interrupt Bottom Halves, Intelligent Buses
New: Loadable kernel modules
Homework: look at device driver code and device tree

Today's class

Next week
DMA controllers and hardware data direct copying to RAM
Linux booting process finish – bootloader and devices, root 
file system and the init_kernel function


