Interrupts, Processes and Threads

Software In action: context, concurrency,
synchronization

Interrupts

* An interrupt is the automatic transfer of software
execution in response to a hardware event that is
asynchronous with the current software execution

* This hardware event is called a trigger and it breaks the
execution flow of the main thread of the program

* The event causes the CPU to stop executing the current
program and begin executing a special piece of code called
an interrupt handler or interrupt service routine (ISR)

* Typically, the ISR does some work and then resumes the
interrupted program

Possible hardware events

* A busy-to-ready transition in an external I/O device
* Peripheral/device, e.qg., UART input/output device
* Reset button, Timer expires, Power failure, System error

* An internal event
* Bus fault, memory fault
* A periodic timer
* Div. by zero, illegal/unsupported instruction

When the hardware needs service, signified by a busy to ready state
transition, it will request an interrupt by setting its trigger flag

Example: Cortex M3 Interrupts

« Exceptions

- System exceptions: numbered 1 to 15
- External interrupt inputs: numbered from 16 up

 Different numbers of external interrupt inputs (from 1 to 240) and
different numbers of priority levels

» Value of the current running exception is indicated by

- The special register Interrupt Program Status Register (IPSR)

- From the NVIC’s Interrupt Control State Register (the VECTACTIVE
field)

Exceptions

Exception | Exception Type Priority Description

Number

1 Reset —3 (Highest) Reset

2 NMI -2 Nonmaskable interrupt (external NMI input)

3 Hard Fault —1 All fault conditions, if the corresponding fault
handler is not enabled

4 MemManage Fault | Programmable Memory management fault; MPU violation or access
to illegal locations

5 Bus Fault Programmable Bus error; occurs when AHB interface receives an
error response from a bus slave (also called prefetch
abort if it is an instruction fetch or data abort ifitis a
data access)

6 Usage Fault Programmable Exceptions due to program error or trying to access
coprocessor (the Cortex-M3 does not support a
COprocessor)

7-10 Reserved NA -

11 SvCall Programmable System Service call

12 Debug Monitor Programmable Debug monitor (breakpoints, watchpoints, or
external debug requests)

13 Reserved NA -

14 PendSV Programmable Pendable request for system device

15 SYSTICK Programmable System Tick Timer

External Interrupts

handle_IRQ_event()

nerates an interrupt /
. ; 2 \
| T | i /
processor intermupts g there an interrupt run all interrupt
‘ \ the kernel handler on this ling? handlers on this line
N /.

interrupt controller

| do_IRQY N returnto the
! 1 ret_from_intr() — kernel code
| L that was
interrupted
#

Hardware handle_|RQ_event()

generates an interrupt | Fﬂﬂ/ \
. P | 7
processor interrupts Is there an interrupt run all interrupt
\ / no

interrupt controller
do_IRQ(\ retumn to the
L Y L ret_from_intr() —3» kernel code
- L that was
interrupted

Processor

Interrupt Programming

 To arm (disarm) a device/peripheral means to enable (shut
off) the source of interrupts. Each potential interrupting trigger
has a separate “arm” bit. One arms (disarms) a trigger if one
IS (is not) interested in interrupts from this source.

 To enable (disable) means to allow interrupts at this time
(postponing interrupts until a later time). On the ARM Coretx-
M3 processor, there is one interrupt enable bit for the entire
Interrupt system. In particular, to disable interrupts we set the
interrupt mask bit, I, in PRIMASK register.

Hardware

L J

generates an interrupt

L

interrupt controller

Processor

processor intermupts g there an interrupt
the kernel handler on this line?

NN

do_IRQ)

handle_IRQ_event()

/”Jr \

run all interrupt
handlers on this line

\ return to the

ret_from_intr) —* kemel code
that was

interrupted

Nested Vectored Interrupt Controller
(NVIC)

 Interrupts on the Cortex-M3 are controlled by
the Nested Vector Interrupt Controller (NVIC)

* NVIC supports 1 to 240 external interrupt inputs
(commonly known as IRQS)

* NVIC control registers are accessible as
memory-mapped devices

* NVIC can be accessed as memory location
OxEOOOEOOO

Cortex-M3
Processor Core System
e . D
o e dl Register 2
¢] o 8 o Bank =
£ ~ B~ 3 - =
Interrupts 38 25 3 = t} Debug > Trace
= 3 20 A S System [
~ lgi ALU =
o
=
Memory Interface : >
Memory
Instruction Bus Protection Data Bus
Unit
Debug
Bus Interconnect l{ Debug «——
Interface
Code Memory System Private :
Memory and Peripherals Peripherals S

Memory

Map

OXEOOFFFFF

Vendor Specific

Private Peripheral Bus - External

Private Peripheral Bus - Internal

0xE00FF000 ROM table
0xE0042000 External PPB
0xE0041000 ETM
OxE0040000 TPIU
OxEOD3FFFF
0xE0DOF000 | Reserved
0xEQDDED0D @
OxE0003000 Reserved
0xE0002000 FPB
0xE0001000 DWT
0xE0000000 I™
0x43FFFFFF

Bit band alias
0x 42000000
OxMFFFFFF
0x40100000 3 :
0x 40000000 Bit band region
0x23FFFFFF

Bit band alias
0x22000000
0x21FFFFFF
0x20100000
020000000 Bit band region

External Device 1GB
External RAM 1 GB
Peripheral 0.5GB
SRAM 0.5GB
Code 0.5GB

OxFFFFFFFF

0xE0040000(
OxE003FFFF
0xE0000000
OxDFFFFFFF

OxADDODODDD)
OXOFFFFFFF

0x60000000
Ox5FFFFFFF

040000000
Ox3FFFFFFF

0%20000000
OXIFFFFFFF

0x00000000

NVIC registers

Table 6-1 NVIC registers

Address Name Type Reset Description

OxEGOOE0Q4 ICTR RO - Interrupt Controller Tvpe Register, ICTR
OxEOPOE1P0 - NVIC ISERO- RW 0x00000000 Interrupt Set-Enable Registers
BxEBBOEL1C NVIC ISER7

OxEOBOE180 - NVIC ICERO- RW 0x00000000 Interrupt Clear-Enable Registers
@EABOXE19C NVIC_ICER7

OxEOGOE200 - NVIC_ISPRO- RW 0x00000000 Interrupt Set-Pending Registers
BxEBBOE21C NVIC_ISPR7Y

OxEG0OE280 - NVIC_ICPRO- RW 0x00000000 Interrupt Clear-Pending Registers
xE0OOE29C NVIC_ICPR7

OxEGOOE300 - NVIC IABRO- RO @x00000000 Interrupt Active Bit Register
@xEBBOE31C NVIC_IABR7

OxEQPPE400 - NVIC IPRO - RW @x00000000 Interrupt Priontv Register

Default behavior

f- Hardware cleared interrupt request

Interrupt
Hequest \
Interrupt
Pending Status /‘
Handler Mode
Thread
Processor Mode

Mode

Use NVIC registers

Table 6-1 NVIC registers

Address Name Type Reset Description

OxEGOOE0Q4 ICTR RO - Interrupt Controller Tvpe Register, ICTR
OxEOPOE1P0 - NVIC ISERO- RW 0x00000000 Interrupt Set-Enable Registers
BxEBBOEL1C NVIC ISER7

OxEGOOE180 - NVIC ICERO- RW 0x00000000 Interrupt Clear-Enable Registers
@EABOXE19C NVIC_ICER7

OxEOGOE200 - NVIC_ISPRO- RW 0x00000000 Interrupt Set-Pending Registers
BxEBBOE21C NVIC_ISPR7Y

OxEG0OE280 - NVIC_ICPRO- RW 0x00000000 Interrupt Clear-Pending Registers
OxEBBBE29C NVIC_ICPR7

OxEGOOE300 - NVIC IABRO- RO @x00000000 Interrupt Active Bit Register
@xEBBOE31C NVIC_IABR7

OxEQPPE400 - NVIC IPRO - RW @x00000000 Interrupt Priontv Register

To Ignore Interrupts

Interrupt
Request \
Interrupt
Pending Status r
Pending status
cleared by software
Thread
Processor Mode

Mode

Interrupt Request cleared in software

Interrupt request
x~ cleared by software

Interrupt
Hequest \

Interrupt

Pending Status /'

Interrupt |
Active Status

A t
| R
. Handler Mode = Interrupt returned
/
/
f
/
i

Processor Thread
Mode Mode

Otherwise, handles an already
processed interrupt

Interrupt request stay active

Interrupt
request \
Interrupt [
pending status \\
Interrupt
active statL?s Interrupt return "'Ll
Handler mode w

Processor Thread / \/Q\

mode mode Interrupt reentered

High Interrupt Frequency

Interrupt
request

Interrupt
pending status

Interrupt
active status

Processor
mode

before entering ISR

Multiple interrupt pulses

\

e

Thread
mode

Handler mode

/ Interrupt return \

Can still be processed, If recorded

Interrupt request
pulsed again

Interrupt

Request \

-

Interrupt | _\ Interrupt ‘

Pending Status pended

again
Interrupt L
Active Status
Handler Mode
fﬁ Interrupt returned <~ i*"\.
Thread / \
Processor Mode / Interrupt re-entered

Mode

Hardware

Y

L

interrupt controller

generates an interrupl

processor interrupts
the kernel

Is there an interrupt
handler on this ling?

[N/ ™

Processor

do_IRQ)

handle_|RQ_event()

<N

run all interrupt
handlers on this line

return to the

ret_frum_intr[] —3» kemel code
that was

interrupted

Vector Tables

* When an exception takes place and is being
handled by the Cortex-M3, the processor will
need to locate the starting address of the
exception handler

* This information is stored in the vector table

« Each exception has an associated 32-bit vector that points
to the memory location where the ISR that handles the
exception is located

» Vectors are stored in ROM at the beginning of the memory

Exception Vector Table after powerup

e EXxception Vector Table after power up is located at address
0x00000000

« ROM location 0x00000000 has the initial stack pointer

« Location 0x00000004 contains the initial program counter (pc) called
the reset vector

« Reset vector points to a function called reset handler, which is the
first thing executed following reset

* Vector table can be relocated to change interrupt handlers at runtime
(vector table offset register)

Address Exception Number Value (Word Size)
0x00000000 - MSP initial value
0x00000004 1 Reset vector (program counter initial value)
0x00000008 2 NMI handler starting address
0x0000000C 3 Hard fault handler starting address
Other handler starting address

Hardware

Y

interrupt controller

Processor

generates an interrupt

handle |RQ_event()

/"‘H‘E/r \

FU

all interrupt

hanqem on this line

l L processorinterrupts | s there an interrupt
‘ \ the Immﬂl\ handler on this line?

/-

do_IRQ)

\ return to the

ret_from_intr{) — kernel code

that was

interrupted

Interrupt Handler

An interrupt handler or interrupt service routine
(ISR) is the function that the kernel runs In
response to a specific interrupt

- Each device that generates interrupts has an
associated interrupt handler.

- The interrupt handler for a device is part of the device’s
driver (the kernel code that manages the device)

- Each device has one associated driver. If that device
uses interrupts (and most do), that driver must register
one interrupt handler.

Linux Interrupt Handlers

* Interrupt handlers are normal C functions

- Drivers can register an interrupt handler and enable a given
Interrupt line for handling with the function request_irq(), which is
declared in <linux/interrupt.h>

- The first parameter, irg, specifies the interrupt number to allocate

* For some devices (e.g. legacy PC devices such as the system timer or
keyboard), this value is typically hard-coded.
* For most other devices, it is probed or otherwise determined
programmatically and dynamically.
- The second parameter, handler, is a function pointer to the actual
Interrupt handler that services this interrupt.

int request_irq(unsigned int irc

unsigned long flag
const char *
void *

Example RTC Handler Function

drivers/char/rtc.c

static irqreturn_t rtc_interrupt(int irq, void *dev_id)

* Can be an alarm interrupt, update complete interrupt,
* or a periodic interrupt. We store the status in the

* low byte and the number of interrupts received since
* the last read in the remainder of rtc_irq data.

*/

spin_lock(&rtc_lock);
rtc_irqg_data += 0x160;
rtc_irq_data &= ~-@xff;
if (is_hpet_enabled()) {
i %
In this case it is HPET RTC interrupt handler
* calling us, with the interrupt information
* passed as argl, instead of irgqg.
4
rtc_irg_data |= (unsigned long)irg & OxF@;
} else {
rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & OxF@);

if (rtc_status & RTC_TIMER_ON)
mod_timer (&rtc_irg timer, jiffies + HZ/rtc_freq + 2*HZ/1086);

spin_unlock(&rtc_lock);

/* Now do the rest of the actions */

spin_lock(&rtc_task_lock});

if (rtc_callback)
rtc_callback->func(rtc_callback->private_data);

spin_unlock(&rtc_task_ lock);

wake_up_interruptible(&rtc_wait);

kill fasync(&rtc_async_queue, SIGIO, POLL_IN);

return IRQ_HANDLED;

Interrupt Context

Interrupt Handlers run in a special context called
iInterrupt context or atomic context.

Code executing from interrupt context cannot do the
following

- Go to sleep or relinquish the processor

- Acquire a mutex
- Perform time-consuming tasks
— Access user space virtual memory

