

Interrupts, Processes and Threads

Software in action: context, concurrency,
synchronization

Interrupts

• An interrupt is the automatic transfer of software
execution in response to a hardware event that is
asynchronous with the current software execution

• This hardware event is called a trigger and it breaks the

execution flow of the main thread of the program

• The event causes the CPU to stop executing the current
program and begin executing a special piece of code called
an interrupt handler or interrupt service routine (ISR)

• Typically, the ISR does some work and then resumes the

interrupted program

Possible hardware events

• A busy-to-ready transition in an external I/O device
• Peripheral/device, e.g., UART input/output device
• Reset button, Timer expires, Power failure, System error

• An internal event
• Bus fault, memory fault
• A periodic timer
• Div. by zero, illegal/unsupported instruction

When the hardware needs service, signified by a busy to ready state
transition, it will request an interrupt by setting its trigger flag

Example: Cortex M3 Interrupts

● Exceptions
– System exceptions: numbered 1 to 15

– External interrupt inputs: numbered from 16 up

● Different numbers of external interrupt inputs (from 1 to 240) and
different numbers of priority levels

● Value of the current running exception is indicated by
– The special register Interrupt Program Status Register (IPSR)

– From the NVIC’s Interrupt Control State Register (the VECTACTIVE
field)

Exceptions

External Interrupts

Interrupt Programming

● To arm (disarm) a device/peripheral means to enable (shut
off) the source of interrupts. Each potential interrupting trigger
has a separate “arm” bit. One arms (disarms) a trigger if one
is (is not) interested in interrupts from this source.

● To enable (disable) means to allow interrupts at this time
(postponing interrupts until a later time). On the ARM Coretx-
M3 processor, there is one interrupt enable bit for the entire
interrupt system. In particular, to disable interrupts we set the
interrupt mask bit, I, in PRIMASK register.

Nested Vectored Interrupt Controller
(NVIC)

● Interrupts on the Cortex-M3 are controlled by
the Nested Vector Interrupt Controller (NVIC)

● NVIC supports 1 to 240 external interrupt inputs

(commonly known as IRQs)
● NVIC control registers are accessible as

memory-mapped devices
● NVIC can be accessed as memory location

0xE000E000

NVIC registers

Default behavior

Use NVIC registers

To Ignore Interrupts

Interrupt Request cleared in software

Otherwise, handles an already
processed interrupt

High Interrupt Frequency

Can still be processed, if recorded

Vector Tables

● When an exception takes place and is being

handled by the Cortex-M3, the processor will

need to locate the starting address of the

exception handler
● This information is stored in the vector table
● Each exception has an associated 32-bit vector that points

to the memory location where the ISR that handles the
exception is located

● Vectors are stored in ROM at the beginning of the memory

Exception Vector Table after powerup
● Exception Vector Table after power up is located at address

0x00000000

● ROM location 0x00000000 has the initial stack pointer

● Location 0x00000004 contains the initial program counter (pc) called
the reset vector

● Reset vector points to a function called reset handler, which is the
first thing executed following reset

● Vector table can be relocated to change interrupt handlers at runtime
(vector table offset register)

Interrupt Handler

An interrupt handler or interrupt service routine
(ISR) is the function that the kernel runs in
response to a specific interrupt
– Each device that generates interrupts has an

associated interrupt handler.

– The interrupt handler for a device is part of the device’s
driver (the kernel code that manages the device)

– Each device has one associated driver. If that device
uses interrupts (and most do), that driver must register
one interrupt handler.

Linux Interrupt Handlers

● Interrupt handlers are normal C functions
– Drivers can register an interrupt handler and enable a given

interrupt line for handling with the function request_irq(), which is
declared in <linux/interrupt.h>

– The first parameter, irq, specifies the interrupt number to allocate
● For some devices (e.g. legacy PC devices such as the system timer or

keyboard), this value is typically hard-coded.
● For most other devices, it is probed or otherwise determined

programmatically and dynamically.

– The second parameter, handler, is a function pointer to the actual
interrupt handler that services this interrupt.

E
xa

m
p

l e
 R

T
C

 H
an

d
l e

r
F

u
nc

t i o
n

dr
i v

e
rs

/ c
h

ar
/ r

tc
. c

Interrupt Context

Interrupt Handlers run in a special context called
interrupt context or atomic context.

Code executing from interrupt context cannot do the
following
– Go to sleep or relinquish the processor

– Acquire a mutex

– Perform time-consuming tasks

– Access user space virtual memory

