

Synchronization
Mechanisms and Policies

Linux Device Drivers Chapter 5
Linux Kernel Development Chapters 9 and 10

Concurrency: The reason why
synchronization is needed

Race conditions occur due to shared access to resources

● [Interrupt] A thread/process was working on some data when
interrupt happened. The interrupt handler needs to work on the
same data.

● [Preemption] A thread/process was working on some data
when it was prempted by the kernel scheduler. The new
thread/process needs to work on the same data.

● [SMP or Symmetric Multiprocessing] While a thread/process is
working with some data, another thread/process needs to work
on the same data on a different processor.

Critical Sections in Code

● Taste food
● Add salt

Thread 1: Taste food
Thread 2: Taste food
Thread 1: Add salt
Thread 2: Add salt

Thread 2: Taste food
Thread 1: Taste food
Thread 1: Add salt
Thread 2: Add salt

Thread 2: Taste food
Thread 1: Taste food
Thread 2: Add salt
Thread 1: Add salt

Thread 1: Taste food
Thread 1: Add salt
Thread 2: Taste food
Thread 2: Add salt

Thread 2: Taste food
Thread 2: Add salt
Thread 1: Taste food
Thread 1: Add salt

Synchronization: Only one thread of execution should enter the critical section at a time,
other threads should wait.

Thread 1: Taste food
Thread 2: Taste food
Thread 2: Add salt
Thread 1: Add salt

How to make a thread wait
(mechanisms)?

● Semaphores (counting or binary)
● Spinlocks
● Read/write semaphores/spinlocks
● Sequential lock
● Completion variables
● Lock free mechanisms: no waiting
● Read copy update (RCU)
● !!!!

Not all critical sections are the same
● Do we just add two intergers or bits in the critical section?

● Do we sleep in the critical section or is the critical section too long?
– kmalloc()

– copy data to/from user space to kernel space

It makes sense to put the waiting thread(s) on sleep

● Is the critical section too small?
– Will context switching overhead be higher than the time it takes for the

waiting thread to complete the critical section?

● Do we have both readers and writers to the shared data?

It makes sense to keep the waiting thread hold the cpu

It makes sense to synchronize only the writers, and the readers can
share the resource simultaneously.

It makes sense to use atomic instructions

Atomic Integer Operation Instructions
(same present for 32 bits)

Atomic Bit Operation Instructions

Semaphore
(Dijkstra designed this inspired by trains)

Counting and Binary Semaphore
● Semaphores allow for an arbitrary number of simultaneous lock holders.

● The number of permissible simultaneous holders of semaphores can be set at
declaration time.This value is called the usage count or simply the count.

● If the count is equal to one, the semaphore is called a binary semaphore
(because it is either held by one task or not held at all) or a mutex (because it
enforces mutual exclusion).

● If the count is initialized to a nonzero value greater than one, the semaphore is
called a counting semaphore, and it enables at most count holders of the lock at
a time.

● Counting semaphores are not used to enforce mutual exclusion because they
enable multiple threads of execution in the critical region at once. Instead, they are
used to enforce limits in certain code. They are not used much in the kernel.

Spinlocks

Spinlocks

Two threads reach here simultaneously?

Spinlocks

Two threads reach here simultaneously?

What things are allowed for a thread waiting for a lock?
- can it be preempted by another process or interrupt?

Spinlocks

Two threads reach here simultaneously?

What things are allowed for a thread holding a lock?
- can it be preempted by another process or interrupt?

What things are allowed for a thread waiting for a lock?
- can it be preempted by another process or interrupt?

Semaphore vs. Spinlock: Policy

● Because the contending tasks sleep while waiting for the lock to
become available, semaphores are well suited to locks that are
held for a long time.

● Semaphores are not optimal for locks that are held for short
periods because the overhead of sleeping, maintaining the wait
queue, and waking back up can easily outweigh the total lock hold
time.

● Unlike spin locks, semaphores do not disable kernel preemption and,
consequently, code holding a semaphore can be preempted.

Reading vs. Writing Locks

● Threads should be able to read shared data
simultaneously

● A writer thread needs to synchronize with
readers and other writers

● Define separate locks for readers and writers

Sequential Lock

● Data has lot of readers and few writers
● Though writers are few, we favor them.

Readers should never starve writers.
● No lock for readers, but a sequential variable

read to match values..
● Lock for writers, immediately available

● Jiffies hold a 64-bit count of the number of clock
ticks since the machine booted.

● Only one writer (the timer interrupt)
● Enormous number of readers

Prominent Example of Sequential Lock:
Linux Jiffies

Read Copy Update (RCU)

● Reads are common, writes are rare
● Reads are lock free
● Resources being protected should be accessed via pointers,

and all references to those resources must be held only by
atomic code.

● When the data structure needs to be changed, the writing
thread makes a copy, changes the copy, then aims the relevant
pointer at the new version—thus, the name of the algorithm.

● When the kernel is sure that no references to the old version
remain, it can be freed.

Example: network routing table is read/written using this mechanism

Completion Variable
● Easy way to synchronize between two tasks in the kernel when

one task needs to signal to the other that an event has occurred.
● One task waits on the completion variable while another task

performs some work.
● When the other task has completed the work, it uses the

completion variable to wake up any waiting tasks.
● The idea is similar to semaphores. Completion variables merely

provide a simple solution to a problem whose answer is otherwise
semaphores.

● For example, the vfork() system call uses completion variables to
wake up the parent process when the child process execs or exits.

Lock Free Mechanism

Synchronization Mechanisms

● Atomic integer and bit operation instructions
● Semaphores (counting or binary)
● Spinlocks
● Read/write semaphores/spinlocks
● Sequential lock
● Read copy update (RCU)
● Lock free mechanisms: no waiting
● Completion variables
● Kernel preemption disallow
● Ordering and barriers

