

Bootloaders

With U-Boot as an example

From https://training.ti.com/bootloading-101

A bootloader can be as simple or as complex as the author wants it to be.

Hardware vendors supply board support packages
(BSP) that include bootloaders

Who cares about this kind of software?

Uses of boot-loaders

● Boot a larger OS (e.g. linux) from disk to RAM
– Initialize RAM

– Initialize communication with host machine (UART)
● Needed if embedded platform doesn't have SD card/ flash to hold the

kernel image
● To change configuration parameters (if needed)

– Initialize communication with a network server
● Needed if remote updates are needed

..................

...................

● Write bare metal code for embedded platforms

Uses of boot-loaders

● Boot a larger OS (e.g. linux) from disk to RAM
● Write bare metal code for embedded platforms

Copy from Network/Flash (different kinds of flash
memory) to RAM

Image File Name RAM Address Flash

u-boot u-boot u-boot_addr_r u-boot_addr

Linux kernel bootfile kernel_addr_r kernel_addr

device tree fdtfile fdt_addr_r fdt_addr

ramdisk ramdiskfile ramdisk_addr_r ramdisk_addr

Types of source code in U-Boot

Pure initialization code: This code always runs during U-Boot’s
own bring-up

Drivers: Code that implements a set of functions, which gives
access to a certain piece of hardware. Much of this is found in
drivers/, fs/ and others

Commands: Adding commands to the U-Boot shell, and
implementing their functionality, typically based upon calls to
driver API. These appear as common/cmd_*.c

/arch Architecture specific files
 /arc Files generic to ARC architecture
 /arm Files generic to ARM architecture
 /m68k Files generic to m68k architecture
 /microblaze Files generic to microblaze architecture
 /mips Files generic to MIPS architecture
 /nds32 Files generic to NDS32 architecture
 /nios2 Files generic to Altera NIOS2 architecture
 /openrisc Files generic to OpenRISC architecture
 /powerpc Files generic to PowerPC architecture
 /riscv Files generic to RISC-V architecture
 /sandbox Files generic to HW-independent "sandbox"
 /sh Files generic to SH architecture
 /x86 Files generic to x86 architecture

U-Boot source code directory structure

/api Machine/arch independent API for external apps
/board Board dependent files
/cmd U-Boot commands functions
/common Misc architecture independent functions
/configs Board default configuration files
/disk Code for disk drive partition handling
/doc Documentation (don't expect too much)
/drivers Commonly used device drivers
/dts Contains Makefile for building internal U-Boot fdt.
/examples Example code for standalone applications, etc.
/fs Filesystem code (cramfs, ext2, jffs2, etc.)
/include Header Files
/lib Library routines generic to all architectures
/Licenses Various license files
/net Networking code
/post Power On Self Test
/scripts Various build scripts and Makefiles
/test Various unit test files
/tools Tools to build S-Record or U-Boot images, etc.

U-Boot source code directory structure

While the source code is not too small

You can control what gets compiled based on
configuration files

$make rpi_3_defconfig

Huge Number of hardware specific configurations

Huge Number of hardware specific configurations

Hardware vendors create these config files and
add them to the source repo

Initialization code

U-Boot is one of the first things to run on the processor, and may be responsible
for the most basic hardware initialization. On some platforms the processor’s
RAM isn’t configured when U-Boot starts running, so the underlying assumption
is that U-Boot may run directly from ROM (typically flash memory).

The bring-up process’ key event is hence when U-Boot copies itself from where
it runs in the beginning into RAM, from which it runs the more sophisticated
tasks (handling boot commands in particular). This self-copy is referred to as
“relocation”.

Almost needless to say, the processor runs in “real mode”: The MMU, if there is
one, is off. There is no memory translation nor protection. U-Boot plays a few
dirty tricks based on this.

Typical stages in initialization code
● Pre-relocation initialization (possibly directly from flash or other kind of ROM)

● Relocation: Copy the code to RAM.

● Post-relocation initialization (from proper RAM).

● Execution of commands: Through autoboot or console shell

● Passing control to the Linux kernel (or other target application)

Typical stages in initialization code

The sequence for the ARM architecture can be deduced from arch/arm/lib/crt0.S, which
is the absolutely first thing that runs. This piece of assembly code calls functions as
follows (along with some very low-level initializations):
● board_init_f() (defined in e.g. arch/arm/lib/board.c): Calls the functions listed in the init_sequence_f function pointer

array (using initcall_run_list()), which is enlisted in this file with a lot of ifdefs. This function then runs various ifdef-
dependent init snippets.

● relocate_code()

● coloured_LED_init() and red_led_on() are directly called by crt0.S. Defining these functions allow hooking visible
indications of early boot progress.

● board_init_r() (defined in arch/arm/lib/board.c): Runs the initialization as a “normal” program running from RAM.
This function never returns. Rather,

● board_init_r() loops on main_loop() (defined in common/main.c) forever. This is essentially the autoboot or
execution of commands from input by the command parser (hush command line interpreter).

● At some stage, a command in main_loop() gives the control to the Linux kernel (or whatever was loaded instead).

Secondary Program Loader

The SPL (Secondary Program Loader) boot feature is irrelevant in most scenarios, but
offers a solution if U-Boot itself is too large for the platform’s boot sequence. For
example, the ARM processor’s hardware boot loader in Altera’s SoC FPGAs can only
handle a 60 kB image. A typical U-Boot ELF easily reaches 300 kB (after stripping).

The point with an SPL is to create a very small preloader, which loads the “full” U-Boot
image. It’s built from U-Boot’s sources, but with a minimal set of code.

So when U-Boot is built for a platform that requires SPL, it’s typically done twice: Once
for generating the SPL, and a second time for the full U-Boot.

The SPL build is done with the CONFIG_SPL_BUILD is defined. Only the pre-location
phase runs on SPL builds. All it does is the minimal set of initializations, then loads the
full U-Boot image, and passes control to it.

Example boot process in
Altera’s Cyclone V SoC FPGA

● The ARM processor loads a hardcoded boot routine from an on-chip ROM, and runs it. There is of course no way
to change this code.

● The SD card’s partition table is scanned for a partition with the partition type field having the value 0xa2. Most
partition tools will consider this an unknown type.

● The 0xa2 partition is expected to contain raw boot images of the preloader. Since there’s a 60 kB limit on this
stage, the full U-boot loader can’t fit. Rather, the SPL (”Secondary Program Loader”) component of U-boot is
loaded into the processor.

● The U-boot SPL, which functions as the preloader, contains board-specific initialization code, that the correct UART
is used, the DDR memory becomes usable and the pins designated as GPIO start to behave like such, etc. One
side-effect is that the four leftmost LEDs are turned off. This is a simple visible indication that the SPL has loaded.

● The SPL loads the “full U-boot” image into memory, and runs it. The image resides in the 0xa2 partition,
immediately after the SPL’s boot images.

● U-boot launches, counts down for autoboot, and executes its default boot command (unless a key is pressed on
the console, allowing an alternative boot or change in environment variables through the shell).

● In the example setting, U-boot loads three files from the first partition of the SD device, which is expected to be
FAT: The kernel image as uImage (in U-boot image format), the device tree as socfpga.dtb, and the FPGA
bitstream as soc_system.rbf.

● The kernel is launched.

Example boot process in
Altera’s Cyclone V SoC FPGA

● The ARM processor loads a hardcoded boot routine from an on-chip ROM, and runs it. There is of course no way
to change this code.

● The SD card’s partition table is scanned for a partition with the partition type field having the value 0xa2. Most
partition tools will consider this an unknown type.

● The 0xa2 partition is expected to contain raw boot images of the preloader. Since there’s a 60 kB limit on this
stage, the full U-boot loader can’t fit. Rather, the SPL (”Secondary Program Loader”) component of U-boot is
loaded into the processor.

● The U-boot SPL, which functions as the preloader, contains board-specific initialization code, that the correct UART
is used, the DDR memory becomes usable and the pins designated as GPIO start to behave like such, etc. One
side-effect is that the four leftmost LEDs are turned off. This is a simple visible indication that the SPL has loaded.

● The SPL loads the “full U-boot” image into memory, and runs it. The image resides in the 0xa2 partition,
immediately after the SPL’s boot images.

● U-boot launches, counts down for autoboot, and executes its default boot command (unless a key is pressed on
the console, allowing an alternative boot or change in environment variables through the shell).

● In the example setting, U-boot loads three files from the first partition of the SD device, which is expected to be
FAT: The kernel image as uImage (in U-boot image format), the device tree as socfpga.dtb, and the FPGA
bitstream as soc_system.rbf.

● The kernel is launched.

Add new functionality

The typical way to add a completely new
functionality to U-Boot is
– writing driver code

– writing the command front-end for it

– enable them both with CONFIG flags

In some cases, a segment is added in the
initialization sequence, in order to prepare the
hardware before any command is issued.

Example: Enable GPIO

cmd/gpio.c

drivers/gpio/*

cmd/Makefile

drivers/gpio/Makefile

go - start application at address 'addr'
run - run commands in an environment variable
bootm - boot application image from memory
bootp- boot image via network using BootP/TFTP protocol
bootz - boot zImage from memory
...........
diskboot- boot from IDE devicebootd - boot default, i.e., run 'bootcmd'
loads - load S-Record file over serial line
loadb- load binary file over serial line (kermit mode)
md - memory display
mm - memory modify (auto-incrementing)
............
cmp - memory compare
crc32- checksum calculation
i2c - I2C sub-system
sspi - SPI utility commands
base - print or set address offset
printenv- print environment variables
setenv - set environment variables
saveenv - save environment variables to persistent storage
protect - enable or disable FLASH write protection
erase- erase FLASH memory
.........
bdinfo - print Board Info structure
iminfo - print header information for application image
coninfo - print console devices and informations
...........
mtest- simple RAM test
icache - enable or disable instruction cache
dcache - enable or disable data cache
reset - Perform RESET of the CPU
echo - echo args to console
version - print monitor version
help - print online help
? - alias for 'help'

E
xi

s t
in

g
U

-B
o

o
t c

o
m

m
an

d
s

Available C APIs useful in adding
new functionality

Every function within U-Boot can be accessed by any code, but some functions are more
used than others. Looking at other drivers and cmd_*.c files usually gives an idea on how
to write new code. Much of the classic C API is supported, even things one wouldn’t expect
in a small boot loader.

There are a few functions in the API that are worth to mention:

● Registers are accessed with writel() and readl() etc. like in Linux, as defined in
arch/arm/include/asm/io.h

● The environment can be accessed with functions such as setenv(), setenv_ulong(),
setenv_hex(), getenv(), getenv_ulong() and getenv_hex(). These, and other functions are
defined in common/cmd_nvedit.c

● printf() and vprintf() are available, as well as getc(), putc() and puts().
● There’s gunzip() and zunzip() for uncompressing data.
● The lib/ directory contains several library functions for handling strings, CRC, hash tables,

sorting, encryption and others.
● It’s worth looking in include/common.h for some basic API functions.

Get source code and compile U-Boot

● Compile?
– cross compile on x86 for ARM

– sudo apt-get install gcc-arm-linux-gnueabi

– export CROSS_COMPILE=aarch64-linux-gnu-

● Version issues
– U-boot git clone gets 2018 version, that needs gcc > 6.0

– The above for Ubuntu 14.04 has gcc 4.3.7

– http://releases.linaro.org/components/toolchain/binaries/6.2-2016.11/arm-linux-gnueabih
f/
has a cross compiler with gcc 6. Download, untar and set CROSS_COMPILE
accordingly

export CROSS_COMPILE=~/linaro-toolchain/gcc-linaro-6.2.1-2016.11-x86_64_arm-linux-
gnueabihf/bin/arm-linux-gnueabihf-

– gives compilation error (reported in u-boot bugs)

– finally got a 2017 version of u-boot from http://ftp.denx.de/pub/u-boot/

