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Over the past few years, advances in deep learning have driven tremendous progress in image
processing, speech recognition, and forecasting. At Uber, we apply deep learning across our
business; from self-driving research to trip forecasting and fraud prevention, deep learning
enables our engineers and data scientists to create better experiences for our users
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enables our engineers and data scientists to create better experiences for our users.

TensorFlow has become a preferred deep learning library at Uber for a variety of reasons. To
start, the framework is one of the most widely used open source frameworks for deep learning,
which makes it easy to onboard new users. It also combines high performance with an ability to
tinker with low-level model details—for instance, we can use both high-level APIs, such as
Keras, and implement our own custom operators using NVIDIA’s CUDA toolkit. Additionally,
TensorFlow has end-to-end support for a wide variety of deep learning use cases, from
conducting exploratory research to deploying models in production on cloud servers, mobile
apps, and even self-driving vehicles.

Last month, Uber Engineering introduced Michelangelo, an internal ML-as-a-service platform
that democratizes machine learning and makes it easy to build and deploy these systems at
scale. In this article, we pull back the curtain on Horovod, an open source component of
Michelangelo’s deep learning toolkit which makes it easier to start—and speed up—distributed
deep learning projects with TensorFlow.

Going distributed
As we began training more and more machine learning models at Uber, their size and data
consumption grew significantly. In a large portion of cases, the models were still small enough
to fit on one or multiple GPUs within a server, but as datasets grew, so did the training times,
which sometimes took a week—or longer!—to complete. We found ourselves in need of a way to
train using a lot of data while maintaining short training times. To achieve this, our team turned
to distributed training.

We began by testing the standard distributed TensorFlow technique. After trying it out on a few
models, it became apparent that we needed to make two adjustments.

First, after following the documentation and code examples, it was not always clear which code
modifications needed to be made to distribute their model training code. The standard
distributed TensorFlow package introduces many new concepts: workers, parameter servers,
tf.Server(), tf.ClusterSpec(), tf.train.SyncReplicasOptimizer(), and
tf.train.replicas_device_setter() to name a few. While beneficial for certain
scenarios, this also introduced hard-to-diagnose bugs that slowed training.

The second issue dealt with the challenge of computing at Uber’s scale. After running a few
benchmarks, we found that we could not get the standard distributed TensorFlow to scale as
well as our services required. For example, we lost about half of our resources due to scaling
inefficiencies when training on 128 GPUs.

https://www.tensorflow.org/
https://keras.io/
https://developer.nvidia.com/cuda-downloads
http://eng.uber.com/michelangelo
https://github.com/uber/horovod
https://www.tensorflow.org/deploy/distributed
http://eng.uber.com/wp-content/uploads/2017/10/image4-1.png
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Figure 1: When comparing images processed per second while running the standard TensorFlow

benchmarking suite on NVIDIA Pascal GPUs (ranging from 1 to 128) with both the Inception V3 and ResNet-

101 TensorFlow models to theoretically ideal scaling (computed by multiplying the single-GPU rate by the

number of GPUs), we were unable to take full advantage of our hardware resources.

When we ran the standard TensorFlow benchmarking suite on 128 NVIDIA Pascal GPUs,
showcased in Figure 1, above, we observed that both the Inception V3 and ResNet-101 models
were were unable to leverage nearly half of our GPU resources.

Motivated to make the most of our GPU capacity, we became even more excited about
distributed training after Facebook published their paper, “Accurate, Large Minibatch SGD:
Training ImageNet in 1 Hour,” demonstrating their training of a ResNet-50 network in one hour
on 256 GPUs by combining principles of data parallelism with an innovative learning rate
adjustment technique. This milestone made it abundantly clear that large-scale distributed
training can have an enormous impact on model developer productivity.

Leveraging a different type of algorithm

http://eng.uber.com/wp-content/uploads/2017/10/image4-1.png
https://github.com/tensorflow/benchmarks
https://research.fb.com/wp-content/uploads/2017/06/imagenet1kin1h5.pdf
https://en.wikipedia.org/wiki/Data_parallelism
http://eng.uber.com/wp-content/uploads/2017/10/image2-1.png
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Figure 2: The “data parallel” approach to distributed training involves splitting up the data and training on

multiple nodes in parallel. In synchronous cases, the gradients for different batches of data are calculated

separately on each node but averaged across nodes to apply consistent updates to the model copy in each

node.

After this realization, we started looking for a better way to train our distributed TensorFlow
models. Since our models were small enough to fit on a single GPU, or multiple GPUs in a single
server, we tried using Facebook’s data parallel approach to distributed training.

Conceptually, the data-parallel distributed training paradigm is straightforward:

1. Run multiple copies of the training script and each copy:
a) reads a chunk of the data

b) runs it through the model

c) computes model updates (gradients)

2. Average gradients among those multiple copies

3. Update the model

4. Repeat (from Step 1a)

The standard distributed TensorFlow package runs with a parameter server approach to
averaging gradients. In this approach, each process has one of two potential roles: a worker or a
parameter server. Workers process the training data, compute gradients, and send them to
parameter servers to be averaged.

http://eng.uber.com/wp-content/uploads/2017/10/image2-1.png
http://eng.uber.com/wp-content/uploads/2017/10/image8.png
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Figure 3: The parameter server model for distributed training jobs can be configured with different ratios of

parameter servers to workers, each with different performance profiles.

While this approach improved our performance, we encountered two challenges:

Identifying the right ratio of worker to parameter servers: If one parameter server is used,
it will likely become a networking or computational bottleneck. If multiple parameter servers
are used, the communication pattern becomes “all-to-all” which may saturate network
interconnects.

Handling increased TensorFlow program complexity: During our testing, every user of
distributed TensorFlow had to explicitly start each worker and parameter server, pass around
service discovery information such as hosts and ports of all the workers and parameter
servers, and modify the training program to construct tf.Server() with an appropriate
tf.ClusterSpec(). Additionally, users had to ensure that all the operations were placed
appropriately using tf.train.device_replica_setter() and code is modified to use
towers to leverage multiple GPUs within the server. This often led to a steep learning curve
and a significant amount of code restructuring, taking time away from the actual modeling.

In early 2017, Baidu published an article, “Bringing HPC Techniques to Deep Learning,”
evangelizing a different algorithm for averaging gradients and communicating those gradients
to all nodes (Steps 2 and 3 above), called ring-allreduce, as well as a fork of TensorFlow through
which they demonstrated a draft implementation of this algorithm. The algorithm was based
on the approach introduced in the 2009 paper “Bandwidth Optimal All-reduce Algorithms for
Clusters of Workstations” by Patarasuk and Yuan.

Figure 4: The ring-allreduce algorithm allows worker nodes to average gradients and disperse them to all

nodes without the need for a parameter server.

http://eng.uber.com/wp-content/uploads/2017/10/image8.png
https://www.tensorflow.org/tutorials/using_gpu#using_a_single_gpu_on_a_multi-gpu_system
http://research.baidu.com/bringing-hpc-techniques-deep-learning/
https://github.com/baidu-research/tensorflow-allreduce
http://www.cs.fsu.edu/~xyuan/paper/09jpdc.pdf
http://eng.uber.com/wp-content/uploads/2017/10/image4-2.png
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In the ring-allreduce algorithm, each of N nodes communicates with two of its peers 2*(N-1)
times. During this communication, a node sends and receives chunks of the data buffer. In the
first N-1 iterations, received values are added to the values in the node’s buffer. In the second
N-1 iterations, received values replace the values held in the node’s buffer. Baidu’s paper
suggests that this algorithm is bandwidth-optimal, meaning that if the buffer is large enough,
it will optimally utilize the available network.

In addition to being network-optimal, the allreduce approach is much easier to understand and
adopt. Users utilize a Message Passing Interface (MPI) implementation such as Open MPI to
launch all copies of the TensorFlow program. MPI then transparently sets up the distributed
infrastructure necessary for workers to communicate with each other.  All the user needs to do
is modify their program to average gradients using an allreduce() operation.

Introducing Horovod
The realization that a ring-allreduce approach can improve both usability and performance
motivated us to work on our own implementation to address Uber’s TensorFlow needs. We
adopted Baidu’s draft implementation of the TensorFlow ring-allreduce algorithm and built
upon it. We outline our process below:

1. We converted the code into a stand-alone Python package called Horovod, named after a
traditional Russian folk dance in which performers dance with linked arms in a circle, much
like how distributed TensorFlow processes use Horovod to communicate with each other.
At any point in time, various teams at Uber may be using different releases of TensorFlow.
We wanted all teams to be able to leverage the ring-allreduce algorithm without needing
to upgrade to the latest version of TensorFlow, apply patches to their versions, or even
spend time building out the framework. Having a stand-alone package allowed us to cut
the time required to install Horovod from about an hour to a few minutes, depending on
the hardware.

2. We replaced the Baidu ring-allreduce implementation with NCCL. NCCL is NVIDIA’s library
for collective communication that provides a highly optimized version of ring-allreduce.
NCCL 2 introduced the ability to run ring-allreduce across multiple machines, enabling us
to take advantage of its many performance boosting optimizations.

3. We added support for models that fit inside a single server, potentially on multiple GPUs,
whereas the original version only supported models that fit on a single GPU.

4. Finally, we made several API improvements inspired by feedback we received from a
number of initial users. In particular, we implemented a broadcast operation that enforces
consistent initialization of the model on all workers. The new API allowed us to cut down
the number of operations a user had to introduce to their single GPU program to four.

Next, we discuss how you can use Horovod for your team’s machine learning use cases, too!

Distributing your training job with Horovod
Whereas the parameter server paradigm for distributed TensorFlow training often requires

http://mpi-forum.org/
https://www.open-mpi.org/
https://arxiv.org/abs/1802.05799
https://github.com/uber/horovod
https://developer.nvidia.com/nccl


06/10/2022, 08:41 Meet Horovod: Uber's Open Source Distributed Deep Learning Framework | Uber Blog

https://www.uber.com/en-IN/blog/horovod/ 7/15

p p g g q
careful implementation of significant boilerplate code, Horovod needs just a few new lines.
Below, we offer an example of a TensorFlow program distributed using Horovod:

import tensorflow as tf 

import horovod.tensorflow as hvd 

 

# Initialize Horovod 

hvd.init() 

 

# Pin GPU to be used to process local rank (one GPU per process) 

config = tf.ConfigProto() 

config.gpu_options.visible_device_list = str(hvd.local_rank()) 

 

# Build model… 

loss = … 

opt = tf.train.AdagradOptimizer(0.01) 

 

# Add Horovod Distributed Optimizer 

opt = hvd.DistributedOptimizer(opt) 

 

# Add hook to broadcast variables from rank 0 to all other processes during 

# initialization. 

hooks = [hvd.BroadcastGlobalVariablesHook(0)] 

 

# Make training operation 

train_op = opt.minimize(loss) 

 

# The MonitoredTrainingSession takes care of session initialization, 

# restoring from a checkpoint, saving to a checkpoint, and closing when done 

# or an error occurs. 

with

tf.train.MonitoredTrainingSession(checkpoint_dir=“/tmp/train_logs”, 

                                      config=config,

                                      hooks=hooks) as mon_sess: 

 while not mon_sess.should_stop(): 

   # Perform synchronous training. 

   mon_sess.run(train_op)

https://www.tensorflow.org/deploy/distributed#putting_it_all_together_example_trainer_program
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In this example, bold text highlights the changes necessary to make single-GPU programs
distributed:

1. hvd.init() initializes Horovod.

2. config.gpu_options.visible_device_list = str(hvd.local_rank()) assigns a
GPU to each of the TensorFlow processes.

3. opt=hvd.DistributedOptimizer(opt)wraps any regular TensorFlow optimizer with
Horovod optimizer which takes care of averaging gradients using ring-allreduce.

4. hvd.BroadcastGlobalVariablesHook(0) broadcasts variables from the first process
to all other processes to ensure consistent initialization. If the program does not use
MonitoredTrainingSession, users can run the
hvd.broadcast_global_variables(0) operations instead.

User can then run several copies of the program across multiple servers using the mpirun
command:

$ mpirun -np 16 -x LD_LIBRARY_PATH -H  
server1:4,server2:4,server3:4,server4:4 python train.py

The mpirun command distributes train.py to four nodes and runs it on four GPUs per node.

Horovod can also distribute Keras programs by following the same steps.  (You can find
examples of scripts for both TensorFlow and Keras on the Horovod GitHub page.)

Horovod’s ease of use, debugging efficiency, and speed makes it a highly effective sidekick for
engineers and data scientists interested in distributing a single-GPU or single-server program.
Next, we introduce Horovod Timeline, a means of providing a high level of understanding of the
states of worker nodes during a distributed training job.

Horovod Timeline

As we onboarded users to Horovod, we realized that we needed a way for them to easily identify
bugs in their code, an issue commonly faced when dealing with complex distributed systems.
In particular, it was difficult to use native TensorFlow timelines or the CUDA Profiler because
users are required to collect and cross-reference profiles from the various servers.

With Horovod, we wanted to created a way to provide a high-level understanding of operation
timelines across nodes. To do so, we built Horovod Timeline, a Horovod-focused profiling tool
compatible with Chrome’s about:tracing trace event profiling viewer. Users can use Horovod
Timelines to view exactly what each node was doing at each time step throughout a training
job. This helps identify bugs and debug performance issues. Users can enable timelines by

setting a single environment variable and can view the profiling results in the browser through
chrome://tracing. 

https://keras.io/
https://github.com/uber/horovod/blob/master/examples/
http://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://github.com/uber/horovod/blob/master/docs/timeline.md
https://www.chromium.org/developers/how-tos/trace-event-profiling-tool
http://eng.uber.com/wp-content/uploads/2017/10/image5-1.png
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Figure 5: Horovod Timeline depicts a high level timeline of events in a distributed training job in Chrome’s

trace event profiling tool.

 Tensor Fusion

After we analyzed the timelines of a few models, we noticed that those with a large amount of
tensors, such as ResNet-101, tended to have many tiny allreduce operations. As noted earlier,
ring-allreduce utilizes the network in an optimal way if the tensors are large enough, but does
not work as efficiently or quickly if they are very small.  We asked ourselves: what if multiple tiny
tensors could be fused together before performing ring-allreduce on them?

Our answer: Tensor Fusion, an algorithm that fuses tensors together before we call Horovod’s
ring-allreduce.  As we experimented with this approach, we observed up to 65 percent
improvement in performance on models with a large number of layers running on an
unoptimized transmission control protocol (TCP) network. We outline how to use Tensor
Fusion, below:

1. Determine which tensors are ready to be reduced. Select the first few tensors that fit in the
buffer and have the same data type.

2. Allocate a fusion buffer if it was not previously allocated. Default fusion buffer size is 64
MB.

3. Copy data of selected tensors into the fusion buffer.

4. Execute the allreduce operation on the fusion buffer.

5. Copy data from the fusion buffer into the output tensors.

6. Repeat until there are no more tensors to reduce in the cycle.

With Horovod, Tensor Fusion, and other features built on top of Michelangelo, we can increase
the efficiency, speed, and ease-of-use across our machine learning systems. In our next
section, we share real world benchmarks that showcase Horovod’s performance.

Horovod benchmarks

http://eng.uber.com/wp-content/uploads/2017/10/image5-1.png
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://eng.uber.com/wp-content/uploads/2017/10/image6.png
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Figure 6: A comparison of images processed per second with standard distributed TensorFlow and Horovod

when running a distributed training job over different numbers of NVIDIA Pascal GPUs for Inception V3 and

ResNet-101 TensorFlow models over 25GbE TCP.

We re-ran the official TensorFlow benchmarks modified to use Horovod and compared the
performance with regular distributed TensorFlow. As depicted in Figure 6, above, we observed
large improvements in our ability to scale; we were no longer wasting half of the GPU resources
—in fact, scaling using both Inception V3 and ResNet-101 models achieved an 88 percent
efficiency mark. In other words, the training was about twice as fast as standard distributed
TensorFlow.

Figure 7: A comparison of the images processed per second of the Horovod over plain 25GbE TCP and the

Horovod with 25GbE RDMA-capable networking when running a distributed training job over different

numbers of NVIDIA Pascal GPUs for Inception V3, ResNet-101 and VGG-16.

Since both MPI and NCCL support remote direct memory access (RDMA) capable networking
(e.g., via InfiniBand or RDMA over Converged Ethernet), we ran additional sets of benchmarking
tests using RDMA network cards to determine if they helped us enhance efficiency compared
to TCP networking.

For the Inception V3 and ResNet-101 models, we found that RDMA did not significantly improve
our performance and only achieved a three to four percent increase over TCP networking.
RDMA, however, did help Horovod exceed 90 percent scaling efficiency on both models.

http://eng.uber.com/wp-content/uploads/2017/10/image6.png
https://github.com/alsrgv/benchmarks/tree/horovod
http://eng.uber.com/wp-content/uploads/2017/10/image7.png
https://en.wikipedia.org/wiki/Remote_direct_memory_access
https://en.wikipedia.org/wiki/InfiniBand
https://en.wikipedia.org/wiki/RDMA_over_Converged_Ethernet
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Meanwhile, the VGG-16 model experienced a significant 30 percent speedup when we
leveraged RDMA networking. This can be explained by VGG-16’s high number of model
parameters, caused by the use of fully connected layers combined with its small number of
layers. These characteristics sfhited the critical path from GPU computation to communication
and created a networking bottleneck.

These benchmarks demonstrate that Horovod scales well on both plain TCP and RDMA-
capable networks, although users with RDMA networking will be able to squeeze out optimal
performance and experience a significant efficiency gain when using models with a high
number of model parameters, such as the VGG-16.

With Horovod, we have only scratched the surface when it comes to exploring performance
optimizations in deep learning; in the future, we intend to continue leveraging the open source
community to extract additional performance gains with our machine learning systems and
frameworks.

Next steps
Earlier this year, we open sourced Horovod to bring accessible, scalable machine learning
models to everyone. There are a few areas that we are actively working on to improve Horovod,
including:

1. Making it easier to install MPI:  While it is relatively easy to install MPI on a workstation,
installation of MPI on a cluster typically requires some effort; for instance, there are
number of workload managers available and different tweaks should be made depending
on network hardware. We are developing reference designs for running Horovod on a
cluster; to do so, we hope to work with the MPI community and network hardware vendors
to develop instructions for installing MPI and relevant drivers.

2. Collecting and sharing learnings about adjusting model parameters for distributed
deep learning: Facebook’s paper “Accurate, Large Minibatch SGD: Training ImageNet in 1
Hour” describes the adjustments needed to model hyperparameters to achieve the same
or greater accuracy in a distributed training job compared to training the same model on a
single GPU, demonstrating the feasibility of training a TensorFlow model on 256 GPUs. We
believe this area of deep learning research is still in its early stages and hope to collaborate
with other teams about approaches to further scale deep learning training.

3. Adding examples of very large models: Horovod currently supports models that fit into
one server but may span multiple GPUs. We are eager to develop more examples for large
models spanning multiple GPUs, and encourage others to test Horovod on these types of
models as well.

We hope the simplicity of Horovod enables others to adopt distributed training and better
leverage their compute resources for deep learning. We welcome feedback and contributions:
please report any issues you encounter, share speed-ups, and send pull requests.

https://github.com/uber/horovod
https://research.fb.com/publications/imagenet1kin1h/
https://arxiv.org/abs/1802.05799
https://github.com/uber/horovod
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If you are interested in working with Uber to democratize machine learning at scale, consider
applying for a role on our team!

Alex Sergeev

Alex Sergeev is a deep learning engineer on the Machine Learning
Platform team.

Posted by Alex Sergeev, Mike Del Balso
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