
Pthreads and OpenMP
Pacheko Chapters 4 and 5

Pthreads vs. OpenMP helloworld.c

$gcc -g -Wall -o pth_helloworld pth_helloworld.c -lpthread

$gcc -g -Wall -fopenmp -o omp_hello omp_hello.c

Maintaining correctness vs. performance

1. Histogram computation in CUDA, trapezoidal area computation in Pacheko, pi
computation in Pacheko, are good candidates for parallelization, as summation is
commutative and does not depend on order of threads. But manipulating the
global sum forms critical section

2. Long busy wait with a single global sum variable accessed by all threads for all
additions, short busy wait with private sum variables for each thread and only as
many accesses to the global sum variable as number of threads, mutex to free
CPU cores while waiting for the lock — all maintain correctness, with increasing
performance

3. Message passing program mutual exclusion not enough, source thread should
complete writing before destination thread reads — accomplished with binary
semaphore protecting per thread’s array entry

OpenMP has multiple primitives for thread synchronization - critical, atomic, locks, barrier ……

Concurrent Data Structures

Insertion and deletion operations

Multiple correctness alternatives vs. performance

Potential thread issues: fairness, deadlocks, mixed primitives

1. Is fairness necessary?
a. Not for pi, trapezoid, histogram as summation is commutative and order of threads doesn’t matter
b. For client server programs, fairness among threads might be needed to improve client satisfaction

The busy-wait programs ensured fairness among threads, as they passed control
from thread to thread by design, mutex doesn’t ensure fairness as some threads
might starve

2. Deadlocks with multiple critical sections that threads enter in opposite order.
3. Mixed primitives give no synchronization.

OpenMP automated parallelization of for loops

OpenMP automated parallelization of for loops

Restrictions on for loops for automated parallelization
● Only loops for which the number of iterations can be determined from the for statement

itself and prior to execution of the loop.

● The variable index must have integer or pointer type (e.g., it can’t be a float).
● The expressions start, end, and incr must have a compatible type. For example, if index is

a pointer, then incr must have integer type.
● The expressions start, end, and incr must not change during execution of the loop.
● During execution of the loop, the variable index can only be modified by the “increment

expression” in the for statement.

Fair work division among threads for automated for loop

Guided schedule

Different schedules in OpenMP

● Schedule clause has the form schedule(<type> [, <chunksize>])
● Type can be any one of the following:

○ static: The iterations can be assigned to the threads before the loop is executed. ○
○ dynamic or guided: The iterations are assigned to the threads while the loop is executing, so

after a thread completes its current set of iterations, it can request more from the run-time
system.

○ auto: The compiler and/or the run-time system determine the schedule.
○ runtime: The schedule is determined at run-time.

● Chunksize is a positive integer.
○ A chunk of iterations is a block of iterations that would be executed consecutively in the serial

loop. The number of iterations in the block is the chunksize.
○ Only static, dynamic, and guided schedules can have a chunksize. This determines the details

of the schedule, but its exact interpretation depends on the type.

Runtime bugs with loop carried dependencies
● OpenMP compilers don’t check for dependences among iterations in a loop

that’s being parallelized with a parallel for directive. It’s up to us, the
programmers, to identify these dependencies.

● A loop in which the results of one or more iterations depend on other
iterations cannot, in general, be correctly parallelized by OpenMP.

● Example: 1 1 2 3 5 8 13 21 34 55 or 1 1 2 3 5 8 0 0 0 0 can both be output
from parallelizing the Fibonacci for loop

Dependencies for the same thread are fine

Program order is maintained for the same thread.

Handling loop dependencies across threads

Still buggy due to variable scope issues

Non for loop parallelization: dependencies and latencies

Causes of incorrectness/issues in parallel programs
1. Global variables form critical sections requiring mutual exclusion

2. Ordering might be needed across threads -> produce before consume

3. All threads might need to wait for an event before proceeding

4. Mixing synchronization primitives

5. Deadlocks with multiple critical sections

6. Fairness issues across threads

7. Loop carried dependencies

8. Incorrect scope of variables for different threads

busy-wait, mutex

semaphore

barrier

acquire multiple locks in order

stick to one primitive

default(none) private(var1, var2 ….)

break with code change

programmatically create orders to acquire locks, load balance

Causes of incorrectness/issues in parallel programs
1. Global variables form critical sections requiring mutual exclusion

2. Ordering might be needed across threads -> produce before consume

3. All threads might need to wait for an event before proceeding

4. Mixing synchronization primitives

5. Deadlocks with multiple critical sections

6. Fairness issues across threads

7. Loop carried dependencies

8. Incorrect scope of variables for different threads

busy-wait, mutex

semaphore

barrier

acquire multiple locks in order

stick to one primitive

default(none) private(var1, var2 ….)

break with code change

programmatically create orders to acquire locks, load balance

M
easure perform

ance and see if the trouble is w
orth the gain.

