
149Programming Massively Parallel Processors. DOI:
Copyright © David B. Kirk/NVIDIA Corporation and Wen-mei W. Hwu. Published by Elsevier Inc. All rights reserved2017

http://dx.doi.org/10.1016/B978-0-12-811986-0.00007-8

Parallel patterns: convolution
An introduction to stencil computation 7

CHAPTER

CHAPTER OUTLINE

7.1 Background ...150
7.2 1D Parallel Convolution—A Basic Algorithm ..153
7.3 Constant Memory and Caching ..156
7.4 Tiled 1D Convolution with Halo Cells ...160
7.5 A Simpler Tiled 1D Convolution—General Caching ...165
7.6 Tiled 2D Convolution with Halo Cells ...166
7.7 Summary ...172
7.8 Exercises ...173

In the next several chapters, we will discuss a set of important patterns of parallel
computation. These patterns are the basis of a wide range of parallel algorithms that
appear in many parallel applications. We will start with convolution, which is a popu-
lar array operation that is used in various forms in signal processing, digital record-
ing, image processing, video processing, and computer vision. In these application
areas, convolution is often performed as a filter that transforms signals and pixels
into more desirable values. Our image blur kernel is such a filter that smooths out the
signal values so that one can see the big-picture trend. For another example, Gaussian
filters are convolution filters that can be used to sharpen boundaries and edges of
objects in images.

In high-performance computing, the convolution pattern is often referred to as
stencil computation, which appears widely in numerical methods for solving dif-
ferential equations. It also forms the basis of many force calculation algorithms in
simulation models. Convolution typically involves a significant number of arithmetic
operations on each data element. For large data sets such as high-definition images
and videos, the amount of computation can be very large. Each output data element
can be calculated independently of each other, a desirable trait for parallel comput-
ing. On the other hand, there is substantial level of input data sharing among output
data elements with somewhat challenging boundary conditions. This makes convo-
lution an important use case of sophisticated tiling methods and input data staging
methods.

150 CHAPTER 7 Parallel patterns: convolution

7.1 BACKGROUND
Convolution is an array operation where each output data element is a weighted sum
of a collection of neighboring input elements. The weights used in the weighted sum
calculation are defined by an input mask array, commonly referred to as the convolu-
tion kernel. Since there is an unfortunate name conflict between the CUDA kernel
functions and convolution kernels, we will refer to these mask arrays as convolu-
tion masks to avoid confusion. The same convolution mask is typically used for all
elements of the array.

In audio digital signal processing, the input data are in 1D form and represent
sampled signal volume as a function of time. Fig. 7.1 shows a convolution example for
1D data where a 5-element convolution mask array M is applied to a 7-element input
array N. We will follow the C language convention where N and P elements are indexed
from 0 to 6 and M elements are indexed from 0 to 4. The fact that we use a 5-element
mask M means that each P element is generated by a weighted sum of the N element at
the corresponding position, two N elements to the left and two N elements to the right.

For example, the value of P[2] is generated as the weighted sum of N[0]
(i.e., N[2-2]) through N[4] (i.e., N[2+2]). In this example, we arbitrarily assume
that the values of the N elements are 1, 2, 3, …,7. The M elements define the weights,
whose values are 3, 4, 5, 4, 3 in this example. Each weight value is multiplied to the
corresponding N element values before the products are summed together. As shown
in Fig. 7.1, the calculation for P[2] is as follows:

P[2] = N[0]*M[0] + N[1]*M[1] + N[2]*M[2] + N[3]*M[3] + N[4]*M[4]
 = 1*3 + 2*4 + 3*5 + 4*4 + 5*3
 = 57

In general, the size of the mask tends to be an odd number, which makes the
weighted sum calculation symmetric around the element being calculated. That is, an
odd number of mask elements defines the weighted sum to include the same number
of elements on each side of the element being calculated. In Fig. 7.1, the mask size is

N[0] PN[3]N[1] N[2] N[5]N[4] N[6] P[0] P[3]P[1] P[2] P[5]P[4] P[6]N

3 8 57 16 151 2 3 4 5 6 7 3 3

M[0] M[3]M[1] M[2] M[4]M
3 4 5 4 3 3 8 15 16 15

FIGURE 7.1

A 1D convolution example, inside elements.

1517.1 Background

5 elements. Each output element is calculated as the weighted sum of the correspond-
ing input element, two elements on the left, and two elements on the right.

In Fig. 7.1, the calculation for P[i] can be viewed as an inner product between the
subarray of N that starts at N[i-2] and the M array. Fig. 7.2 shows the calculation for
P[3]. The calculation is shifted by one N element from that of Fig. 7.1. That is, the
value of P[3] is the weighted sum of N[1] (i.e., N[3-2]), through N[5] (i.e., N[3 + 2]).
We can think of the calculation for P[3] as follows:

P[3] = N[1]*M[0] + N[2]*M[1] + N[3]*M[2] + N[4]*M[3] + N[5]*M[4]
 = 2*3 + 3*4 + 4*5 + 5*4 + 6*3
 = 76

Because convolution is defined in terms of neighboring elements, boundary con-
ditions naturally arise for output elements that are close to the ends of an array. As
shown in Fig. 7.3, when we calculate P[1], there is only one N element to the left
of N[1]. That is, there are not enough N elements to calculate P[1] according to our
definition of convolution. A typical approach to handling such boundary condition
is to define a default value to these missing N elements. For most applications, the

N[0] PN[3]N[1] N[2] N[5]N[4] N[6] P[0] P[3]P[1] P[2] P[5]P[4] P[6]N

3 8 57 76 151 2 3 4 5 6 7 3 3

M[0] M[3]M[1] M[2] M[4]M
3 4 5 4 3 6 12 20 20 18

FIGURE 7.2

1D convolution, calculation of P[3].

N PN[0] N[3]N[1] N[2] N[5]N[4] N[6] P[0] P[3]P[1] P[2] P[5]P[4] P[6]

3 38 57 16 151 2 3 4 5 6 7 3 30

Filled in

M M[0] M[3]M[1] M[2] M[4]

3 4 5 4 3 0 4 10 12 12

FIGURE 7.3

1D convolution boundary condition.

152 CHAPTER 7 Parallel patterns: convolution

default value is 0, which is what we used in Fig. 7.3. For example, in audio signal
processing, we can assume that the signal volume is 0 before the recording starts and
after it ends. In this case, the calculation of P[1] is as follows:

P[1] = 0 * M[0] + N[0]*M[1] + N[1]*M[2] + N[2]*M[3] + N[3]*M[4]
 = 0 * 3 + 1*4 + 2*5 + 3*4 + 4*3
 = 38

The N element that does not exist in this calculation is illustrated as a dashed box
in Fig. 7.3. It should be clear that the calculation of P[0] will involve two missing N
elements, both will be assumed to be 0 for this example. We leave the calculation of
P[0] as an exercise. These missing elements are typically referred to as “ghost cells”
or “halo cells” in literature. There are also other types of ghost cells due to the use of
tiling in parallel computation. These ghost cells can have significant impact on the
effectiveness and/or efficiency of tiling. We will come back to this point soon.

Also, not all applications assume that the ghost cells contain 0. For example,
some applications might assume that the ghost cells contain the same value as the
closest valid data element.

For image processing and computer vision, input data are typically two-
dimensional arrays, with pixels in an x-y space. Image convolutions are therefore
2D convolutions, as illustrated in Fig. 7.4. In a 2D convolution, the mask M is a 2D
array. Its x- and y-dimensions determine the range of neighbors to be included in the
weighted sum calculation. In Fig. 7.4, we use a 5 × 5 mask for simplicity. In general,

N P

1 2 3 4 5 6 7

2 3 4 5 6 7 8

1 2 3 4 5

2 3 4 5 62 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 5 6

2 3 4 5 6

3 4 321 6 7

4 5 6 7 84 5 6 7 8 5 6

5 6 7 8 5 6 7

6 7 8 9 0 1 2

4 5 6 7 8

5 6 7 8 5

7 8 9 0 1 2 3

1 2 3 2 1
2 3 4 3 2
3 4 5 4 3

1 4 9 8 5

4 9 16 15 12

9 16 25 24 21

M

3 4 5 4 3
2 3 4 3 2
1 2 3 2 1

9 16 25 24 21

8 15 24 21 16

5 12 21 16 55 12 21 16 5

FIGURE 7.4

A 2D convolution example.

1537.2 1D parallel convolution—a basic algorithm

the mask does not have to be a square array. To generate an output element, we take
the subarray whose center is at the corresponding location in the input array N. We
then perform pairwise multiplication between elements of the mask array and those
of the image array. For our example, the result is shown as the 5 × 5 product array
below N and P in Fig. 7.4. The value of the output element is the sum of all elements
of the product array.

The example in Fig. 7.4 shows the calculation of P2,2. For brevity, we will use Ny,x
to denote N[y][x] in addressing a C array. Since N and P are most likely dynamically
allocated arrays, we will be using linearized indices in our actual code examples.
The subarray of N for calculating the value of P2,2 spans from N0,0 to N0,4 in the x or
horizontal direction and N0,0 to N4,0 in the y or vertical direction. The calculation is
as follows:

P2,2 = N0,0*M0,0 + N0,1*M0,1 + N0,2*M0,2 + N0,3*M0,3 + N0,4*M0,4
 + N1,0*M1,0 + N1,1*M1,1 + N1,2*M1,2 + N1,3*M1,3 + N1,4*M1,4
 + N2,0*M2,0 + N2,1*M1,1 + N2,2*M2,2 + N2,3*M2,3 + N2,4*M2,4
 + N3,0*M3,0 + N3,1*M3,1 + N3,2*M3,2 + N3,3*M3,3 + N3,4*M3,4
 + N4,0*M4,0 + N4,1*M4,1 + N4,2*M4,2 + N4,3*M4,3 + N4,4*M4,4
 = 1*1 + 2*2 + 3*3 + 4*2 + 5*1
 + 2*2 + 3*3 + 4*4 + 5*3 + 6*2
 + 3*3 + 4*4 + 5*5 + 6*4 + 7*3
 + 4*2 + 5*3 + 6*4 + 7*3 + 8*2
 + 5*1 + 6*2 + 7*3 + 8*2 + 5*1
 = 1 + 4 + 9 + 8 + 5
 + 4 + 9 + 16 + 15 + 12
 + 9 + 16 + 25 + 24 + 21
 + 8 + 15 + 24 + 21 + 16
 + 5 + 12 + 21 + 16 + 5
 = 321

Like 1D convolution, 2D convolution must also deal with boundary conditions.
With boundaries in both the x and y dimensions, there are more complex boundary con-
ditions: the calculation of an output element may involve boundary conditions along a
horizontal boundary, a vertical boundary, or both. Fig. 7.5 illustrates the calculation of a
P element that involves both boundaries. From Fig. 7.5, the calculation of P1,0 involves
two missing columns and one missing horizontal row in the subarray of N. Like in 1D
convolution, different applications assume different default values for these missing N
elements. In our example, we assume that the default value is 0. These boundary condi-
tions also affect the efficiency of tiling. We will come back to this point soon.

7.2 1D PARALLEL CONVOLUTION—A BASIC ALGORITHM
As we mentioned in Section 7.1, the calculation of all output (P) elements can be
done in parallel in a convolution. This makes convolution an ideal problem for par-
allel computing. Based on our experience in matrix–matrix multiplication, we can

154 CHAPTER 7 Parallel patterns: convolution

quickly write a simple parallel convolution kernel. For simplicity, we will start with
1D convolution.

The first step is to define the major input parameters for the kernel. We assume
that the 1D convolution kernel receives five arguments: pointer to input array N,
pointer to input mask M, pointer to output array P, size of the mask Mask_Width, and
size of the input and output arrays Width. Thus, we have the following setup:

__global__ void convolution_1D_basic_kernel(float *N, float *M,
float *P,
 int Mask_Width, int Width) {
 // kernel body
}

The second step is to determine and implement the mapping of threads to output
elements. Since the output array is 1D, a simple and good approach is to organize
the threads into a 1D grid and have each thread in the grid to calculate one output
element. The reader should recognize that this is the same arrangement as the vector
addition example as far as output elements are concerned. Therefore, we can use the
following statement to calculate an output element index from the block index, block
dimension, and thread index for each thread:

 int i = blockIdx.x*blockDim.x + threadIdx.x;

N
P

1 2 3 4 5 6 7 1 2 3 4 5

2 3 4 5 6 7 8

3 4 5 6 7 8 9

112 3 4 5 6

3 4 5 6 7

5 6 7 8 5 6

5 6 7 8 5 6 7

6 7 8 9 0 1 2

4 5 6 7 8

5 6 7 8 5

4

M

0 1 2

7 8 9 0 1 2 3

1 2 3 2 1
2 3 4 3 2
3 4 5 4 3

0 0 0 0 0

0 0 4 6 6

0 0 10 12 123 4 5 4 3
2 3 4 3 2
1 2 3 2 1

0 0 10 12 12

0 0 12 12 10

0 0 12 10 60 0 12 10 6

FIGURE 7.5

A 2D convolution boundary condition.

1557.2 1D parallel convolution—a basic algorithm

Once we determined the output element index, we can access the input N elements
and the mask M elements using offsets to the output element index. For simplicity,
we assume that Mask_Width is an odd number and the convolution is symmetric,
i.e., Mask_Width is 2*n + 1 where n is an integer. The calculation of P[i] will use
N[i-n], N[i-n+1],…, N[i-1], N[i], N[i+1], N[i+n-1], N[i+n]. We can use a
simple loop to do this calculation in the kernel:

 float Pvalue = 0;
 int N_start_point = i - (Mask_Width/2);
 for (int j = 0; j < Mask_Width; j++) {
 if (N_start_point + j >= 0 && N_start_point + j < Width) {
 Pvalue += N[N_start_point + j]*M[j];
 }
 }
 P[i] = Pvalue;

The variable Pvalue will allow all intermediate results to be accumulated in a
register to save DRAM bandwidth. The for loop accumulates all the contributions
from the neighboring elements to the output P element. The if statement in the loop
tests if any of the input N elements used are ghost cells, either on the left side or the
right side of the N array. Since we assume that 0 values will be used for ghost cells,
we can simply skip the multiplication and accumulation of the ghost cell element and
its corresponding N element. After the end of the loop, we release the Pvalue into the
output P element. We now have a simple kernel in Fig. 7.6.

We can make two observations about the kernel in Fig. 7.6. First, there will be
control flow divergence. The threads that calculate the output P elements near the left
end or the right end of the P array will handle ghost cells. As we showed in Section
7.1, each of these neighboring threads will encounter a different number of ghost cells.
Therefore, they will all be somewhat different decisions in the if statement. The thread
that calculates P[0] will skip the multiply-accumulate statement about half of the time

__global__ void convolution_1D_basic_kernel(float *N, float *M, float *P,
int Mask Width int Width) {int Mask_Width, int Width) {

int i = blockIdx.x*blockDim.x + threadIdx.x;

float Pvalue = 0;
int N_start_point = i - (Mask_Width/2);
for (int j = 0; j < Mask_Width; j++) {
if (N_start_point + j >= 0 && N_start_point + j < Width) {
Pvalue += N[N_start_point + j]*M[j];

}}
}
P[i] = Pvalue;

}

FIGURE 7.6

A 1D convolution kernel with boundary condition handling.

156 CHAPTER 7 Parallel patterns: convolution

whereas the one that calculates P[1] will skip one fewer times, and so on. The cost of
control divergence will depend on Width the size of the input array and Mask_Width the
size of the mask. For large input arrays and small masks, the control divergence only
occurs in a small portion of the output elements, which will keep the effect of control
divergence small. Since convolution is often applied to large images and spatial data,
we typically expect that the effect of convergence to be modest or insignificant.

A more serious problem is memory bandwidth. The ratio of floating-point arithmetic
calculation to global memory accesses is only about 1.0 in the kernel. As we have seen
in the matrix–matrix multiplication example, this simple kernel can only be expected to
run at a small fraction of the peak performance. We will discuss two key techniques for
reducing the number of global memory accesses in the next two sections.

7.3 CONSTANT MEMORY AND CACHING
There are three interesting properties of the way the mask array M is used in convo-
lution. First, the size of the M array is typically small. Most convolution masks are
less than 10 elements in each dimension. Even in the case of a 3D convolution, the
mask typically contains only less than 1000 elements. Second, the contents of M are
not changed throughout the execution of the kernel. Third, all threads need to access
the mask elements. Even better, all threads access the M elements in the same order,
starting from M[0] and move by one element a time through the iterations of the for
loop in Fig. 7.6. These two properties make the mask array an excellent candidate for
constant memory and caching (Fig. 7.7).

Grid

Block (0, 0)

Shared Memory/L1 cache

Block (1, 0)

Shared Memory/L1 cache

Registers Registers Registers Registers

Global Memory

Thread (0, 0) Thread (1, 0) Thread (0, 0) Thread (1, 0)

Host

Constant Memory

FIGURE 7.7

A review of the CUDA Memory Model.

1577.3 Constant memory and caching

As we discussed in Chapter 5, Performance Considerations, the CUDA program-
ming model allows programmers to declare a variable in the constant memory. Like
global memory variables, constant memory variables are also visible to all thread
blocks. The main difference is that a constant memory variable cannot be changed
by threads during kernel execution. Furthermore, the size of the constant memory is
quite small, currently at 64KB.

In order to use constant memory, the host code needs to allocate and copy con-
stant memory variables in a different way than global memory variables. To declare
an M array in constant memory, the host code declares it as a global variable as
follows:

 #define MAX_MASK_WIDTH 10
 __constant__ float M[MAX_MASK_WIDTH];

This is a global variable declaration and should be outside any function in the
source file. The keyword__constant__ (two underscores on each side) tells the com-
piler that array M should be placed into the device constant memory.

Assume that the host code has already allocated and initialized the mask in a
mask M_h array in the host memory with Mask_Width elements. The contents of the
M_h can be transferred to M in the device constant memory as follows:

 cudaMemcpyToSymbol(M, M_h, Mask_Width*sizeof(float));

Note that this is a special memory copy function that informs the CUDA runt-
ime that the data being copied into the constant memory will not be changed dur-
ing kernel execution. In general, the use of cudaMemcpyToSymble() function is
as follows:

 cudaMemcpyToSymbol(dest, src, size)

where dest is a pointer to the destination location in the constant memory, src
is a pointer to the source data in the host memory, and size is the number of bytes
to be copied.

Kernel functions access constant memory variables as global variables. Thus,
their pointers do not need to be passed to the kernel as parameters. We can revise our
kernel to use the constant memory as shown in Fig. 7.8. Note that the kernel looks
almost identical to that in Fig. 7.6. The only difference is that M is no longer accessed
through a pointer passed in as a parameter. It is now accessed as a global variable
declared by the host code. Keep in mind that all the C language scoping rules for
global variables apply here. If the host code and kernel code are in different files, the
kernel code file must include the relevant external declaration information to ensure
that the declaration of M is visible to the kernel.

Like global memory variables, constant memory variables are also located in
DRAM. However, because the CUDA runtime knows that constant memory varia-
bles are not modified during kernel execution, it directs the hardware to aggressively
cache the constant memory variables during kernel execution. In order to under-
stand the benefit of constant memory usage, we need to first understand more about
modern processor memory and cache hierarchies.

158 CHAPTER 7 Parallel patterns: convolution

As we discussed in Chapter 5, Performance considerations, the long latency and
limited bandwidth of DRAM has been a major bottleneck in virtually all modern
processors. In order to mitigate the effect of memory bottleneck, modern proces-
sors commonly employ on-chip cache memories, or caches, to reduce the number
of variables that need to be accessed from the main memory (DRAM) as shown
in Fig. 7.9.

Unlike CUDA shared memory, or scratch memories in general, caches are “trans-
parent” to programs. That is, in order to use CUDA shared memory, a program needs
to declare variables as__shared__ and explicitly move a global memory variable
into a shared memory variable. On the other hand, when using caches, the program

__global__ void convolution_1D_ba sic_kernel(float *N, float *P, int Mask_Width,
int Width) {

int i = blockIdx.x*blockDim.x + threadIdx.x;

float Pvalue = 0;
int N_start_point = i - (Mask_Width/2);
for (int j = 0; j < Mask_Width; j++) {
if (N start point + j >= 0 && N start point + j < Width) {if _ _ _
Pvalue += N[N_start_point + j]*M[j];

}
}
P[i] = Pvalue;

}

FIGURE 7.8

A 1D convolution kernel using constant memory for M.

The chip

Processor

regs

L1 Cache

L2 Cache

Main Memory

FIGURE 7.9

A simplified view of the cache hierarchy of modern processors.

1597.3 Constant memory and caching

simply accesses the original variables. The processor hardware will automatically
retain some of the most recently or frequently used variables in the cache and remem-
ber their original DRAM addresses. When one of the retained variables is used later,
the hardware will detect from their addresses that a copy of the variable is available
in cache. The value of the variable will then be provided from the cache, eliminating
the need to access DRAM.

There is a tradeoff between the size of a memory and the speed of a memory.
As a result, modern processors often employ multiple levels of caches. The num-
bering convention for these cache levels reflects the distance to the processor. The
lowest level, L1 or Level 1, is the cache that is directly attached to a processor
core. It runs at a speed very close to the processor in both latency and bandwidth.
However, an L1 cache is small in size, typically between 16KB and 64KB. L2
caches are larger, in the range of 128KB to 1MB, but can take tens of cycles to
access. They are typically shared among multiple processor cores, or SMs in a
CUDA device. In some high-end processors today, there are even L3 caches that
can be several MB in size.

A major design issue with using caches in a massively parallel processor is
cache coherence, which arises when one or more processor cores modify cached
data. Since L1 caches are typically directly attached to only one of the processor
cores, changes in its contents are not easily observed by other processor cores. This
causes a problem if the modified variable is shared among threads running on dif-
ferent processor cores. A cache coherence mechanism is needed to ensure that the
contents of the caches of the other processor cores are updated. Cache coherence is
difficult and expensive to provide in massively parallel processors. However, their
presence typically simplifies parallel software development. Therefore, modern
CPUs typically support cache coherence among processor cores. While modern
GPUs provide two levels of caches, they typically do without cache coherence to
maximize hardware resources available to increase the arithmetic throughput of
the processor.

Constant memory variables play an interesting role in using caches in massively
parallel processors. Since they are not changed during kernel execution, there is no
cache coherence issue during the execution of a kernel. Therefore, the hardware can
aggressively cache the constant variable values in L1 caches. Furthermore, the design
of caches in these processors is typically optimized to broadcast a value to a large
number of threads. As a result, when all threads in a warp access the same constant
memory variable, as is the case of M, the caches can provide tremendous amount of
bandwidth to satisfy the data needs of threads. Also, since the size of M is typically
small, we can assume that all M elements are effectively always accessed from caches.
Therefore, we can simply assume that no DRAM bandwidth is spent on M accesses.
With the use of constant memory and caching, we have effectively doubled the ratio
of floating-point arithmetic to memory access to 2.

As it turns out, the accesses to the input N array elements can also benefit from
caching in more recent GPUs. We will come back to this point in Section 7.5.

160 CHAPTER 7 Parallel patterns: convolution

7.4 TILED 1D CONVOLUTION WITH HALO CELLS
We will now address the memory bandwidth issue in accessing N array element with
a tiled convolution algorithm. Recall that in a tiled algorithm, threads collaborate to
load input elements into an on-chip memory and then access the on-chip memory for
their subsequent use of these elements. For simplicity, we will continue to assume
that each thread calculates one output P element. With up to 1024 threads in a block
we can process up to 1024 data elements. We will refer to the collection of output
elements processed by each block as an output tile. Fig. 7.10 shows a small example
of 16-element 1D convolution using four thread blocks of four threads each. In this
example, there are four output tiles. The first output tile covers N[0] through N[3],
the second tile N[4] through N[7], the third tile N[8] through N[11], and the fourth
tile N[12] through N[15]. Keep in mind that we use four threads per block to keep
the example small. In practice, there should be at least 32 threads per block for the
current generation of hardware. From this point on, we will assume that M elements
are in the constant memory.

We will discuss two input data tiling strategies for reducing the total number of
global memory accesses. The first one is the most intuitive and involves loading all
input data elements needed for calculating all output elements of a thread block into
the shared memory. The number of input elements to be loaded depends on the size
of the mask. For simplicity, we will continue to assume that the mask size is an odd
number equal to 2*n+1. That is each output element P[i] is a weighted sum of the
input element at the corresponding input element N[i], the n input elements to the
left (N[i−n], … N[i−1]), and the n input elements to the right (N[i+1], … N[i+n]).
Fig. 7.10 shows an example where Mask_Width=5 and n=2.

Threads in the Block 0 calculate output elements P[0] through P[3]. They col-
lectively require input elements N[0] through N[5]. Note that the calculation also

0

N

Tile 0

Tile 1

Tile 2

Tile 3

1 2 3 4 5

0 1 2 3 4 5

432 5 6 7 8 9

876 9 10 11 12 13

121110 13 14 15

6 7 8 9 10 11 12 13 14 15

FIGURE 7.10

A 1D tiled convolution example.

1617.4 Tiled 1d convolution with halo cells

requires two ghost cell elements to the left of N[0]. This is shown as two dashed
empty elements on the left end of Tile 0 of Fig. 7.6. These ghost elements will be
assumed have default value of 0. Tile 3 has a similar situation at the right end of input
array N. In our discussions, we will refer to tiles like Tile 0 and Tile 3 as boundary
tiles since they involve elements at or outside the boundary of the input array N.

Threads in Block 1 calculate output elements P[4] through P[7]. They collec-
tively require input elements N[2] through N[9], also shown in Fig. 7.7. Note that
elements N[2] and N[3] belong to two tiles and are loaded into the shared memory
twice, once to the shared memory of Block 0 and once to the shared memory of Block
1. Since the contents of shared memory of a block are only visible to the threads of
the block, these elements need to be loaded into the respective shared memories for all
involved threads to access them. The elements that are involved in multiple tiles and
loaded by multiple blocks are commonly referred to as halo cells or skirt cells since
they “hang” from the side of the part that is used solely by a single block. We will refer
to the center part of an input tile that is used solely by a single block the internal cells
of that input tile. Tile 1 and Tile 2 are commonly referred to as internal tiles since they
do not involve any ghost elements at our outside the boundaries of the input array N.

We now show the kernel code that loads the input tile into shared memory. We first
declare a shared memory array N_ds to hold the N tile for each block. The size of the
shared memory array must be large enough to hold the left halo cells, the center cells,
and the right halo cells of an input tile. We assume that Mask_Width is an odd number.
Assume that the constant MAX_MASK_WIDTH specifies the maximal possible value of
Mask_Width. The maximal possible size of the shared memory array is TILE_SIZE +
MAX_MASK_WIDTH - 1, which is used in the following declaration in the kernel:

 __shared__ float N_ds[TILE_SIZE + MAX_MASK_WIDTH - 1];

We then load the left halo cells, which include the last n = Mask_Width/2 center
elements of the previous tile. For example, in Fig. 7.6, the left halo cells of Tile 1
consist of the last 2 center elements of Tile 0. In C, assuming that Mask_Width is an
odd number, the expression Mask_Width/2 will result in an integer value that is the
same as (Mask_Wdith-1)/2. We will use the last (Mask_Width/2) threads of the
block to load the left halo element. This is done with the following two statements:

 int halo_index_left = (blockIdx.x - 1)*blockDim.x +
threadIdx.x;
 if (threadIdx.x >= blockDim.x - n) {
 N_ds[threadIdx.x - (blockDim.x - n)] =
 (halo_index_left < 0) ? 0 : N[halo_index_left];
 }

In the first statement, we map the thread index to element index into the previous
tile with the expression (blockIdx.x-1)*blockDim.x+threadIdx.x. We then pick
only the last n threads to load the needed left halo elements using the condition in
the if statement. For example, in Fig. 7.6, blockDim.x equals 4 and n equals 2; only
thread 2 and thread 3 will be used. Thread 0 and thread 1 will not load anything due
to the failed condition.

162 CHAPTER 7 Parallel patterns: convolution

For the threads used, we also need to check if their halo cells are actually ghost
cells. This can be checked by testing if the calculated halo_index_left value is
negative. If so, the halo cells are actually ghost cells since their N indices are negative,
outside the valid range of the N indices. The conditional C assignment will choose 0
for threads in this situation. Otherwise, the conditional statement will use the halo_
index_left to load the appropriate N elements into the shared memory. The shared
memory index calculation is such that left halo cells will be loaded into the shared
memory array starting at element 0. For example, in Fig. 7.6, blockDim.x-n equals 2.
So for block 1, thread 2 will load the left most halo element into N_ds[0] and thread
3 will load the next halo element into N_ds[1]. However, for block 0, both thread 2
and thread 3 will load value 0 into N_ds[0] and N_ds[1].

The next step is to load the center cells of the input tile. This is done by mapping
the blockIdx.x and threadIdx.x values into the appropriate N indices, as shown in the
following statement. The reader should be familiar with the N index expression used:

 N_ds[n + threadIdx.x] = N[blockIdx.x*blockDim.x +
threadIdx.x];

Since the first n elements of the N_ds array already contain the left halo cells, the
center elements need to be loaded into the next section of N_ds. This is done by adding n
to threadIdx.x as the index for each thread to write its loaded center element into N_ds.

We now load the right halo elements, which is quite similar to loading the left
halo. We first map the blockIdx.x and threadIdx.x to the elements of next output
tile. This is done by adding (blockIdx.x+1)*blockDim.x to the thread index to form
the N index for the right halo cells. In this case, we are loading the beginning n ele-
ments of the next tile.

 int halo_index_right = (blockIdx.x + 1)*blockDim.x +
threadIdx.x;
 if (threadIdx.x < n) {
 N_ds[n + blockDim.x + threadIdx.x] =
 (halo_index_right >= Width) ? 0 : N[halo_index_right];
 }

Now that all the input tile elements are in N_ds, each thread can calculate their
output P element value using the N_ds elements. Each thread will use a different
section of the N_ds. Thread 0 will use N_ds[0] through N_ds[Mask_Width-1];
thread 1 will use N_ds[1] through N[Mask_Width]. In general, each thread will use
N_ds[threadIdx.x] through N[threadIdx.x+Mask_Width-1]. This is implemented
in the following for loop to calculate the P element assigned to the thread:

 float Pvalue = 0;
 for(int j = 0; j < Mask_Width; j++) {
 Pvalue += N_ds[threadIdx.x + j]*M[j];
 }
 P[i] = Pvalue;

1637.4 Tiled 1d convolution with halo cells

However, one must not forget to do a barrier synchronization using __syncthreads()
to make sure that all threads in the same block have completed loading their assigned
N elements before anyone should start using them from the shared memory.

Note that the code for multiply and accumulate is simpler than the base algo-
rithm. The conditional statements for loading the left and right halo cells have placed
the 0 values into the appropriate N_ds elements for the first and last thread block.

The tiled 1D convolution kernel is significantly longer and more complex than
the basic kernel. We introduced the additional complexity in order to reduce the num-
ber of DRAM accesses for the N elements. The goal is to improve the arithmetic to
memory access ratio so that the achieved performance is not limited or less limited by
the DRAM bandwidth. We will evaluate improvement by comparing the number of
DRAM accesses performed by each thread block for the kernels in Figs. 7.8 and 7.11.

In Fig. 7.8, there are two cases. For thread blocks that do not handle ghost cells,
the number of N elements accessed by each thread is Mask_Width. Thus, the total
number of N elements accessed by each thread block is blockDim.x*Mask_Width or
blockDim.x*(2n+1). For example, if Mask_Width is equal to 5 and each block con-
tains 1024 threads, each block access a total of 5120 N elements.

__global__ void convolution_1D_tiled_kernel(float *N, float *P, int Mask_Width,

int Width) {

int i = blockIdx.x*blockDim.x + threadIdx.x;

__shared__ float N_ds[TILE_SIZE + MAX_MASK_WIDTH - 1];

int n = Mask_Width/2;

int halo_index_left = (blockIdx.x - 1)*blockDim.x + threadIdx.x;

if (threadIdx.x >= blockDim.x - n) {

N_ds[threadIdx.x - (blockDim.x - n)] =

(halo_index_left < 0) ? 0 : N[halo_index_left];

}

N_ds[n + threadIdx.x] = N[blockIdx.x*blockDim.x + threadIdx.x];

int halo_index_right = (blockIdx.x + 1)*blockDim.x + threadIdx.x;
if (threadIdx.x < n) {

N_ds[n + blockDim.x + threadIdx.x] =

(halo_index_right >= Width) ? 0 : N[halo_index_right];

}

__syncthreads();

float Pvalue = 0;

for(int j = 0; j < Mask_Width; j++) {

Pvalue += N_ds[threadIdx.x + j]*M[j];

}

P[i] = Pvalue;

}

FIGURE 7.11

A tiled 1D convolution kernel using constant memory for M.

164 CHAPTER 7 Parallel patterns: convolution

For the first and the last blocks, the threads that handle ghost cells do not perform
memory access for the ghost cells. This reduces the number of memory accesses. We
can calculate the reduced number of memory accesses by enumerating the number of
threads that use each ghost cell. This is illustrated with a small example in Fig. 7.12.
The leftmost ghost cell is used by one thread. The second left ghost cell is used by
two threads. In general, the number of ghost cells is n and the number of threads that
use each of these ghost cells, from left to right is 1, 2, … n. This is a simple series
with sum n(n+1)/2, which is the total number of accesses that were avoided due to
ghost cells. For our simple example where Mask_Width is equal to 5 and n is equal to
2, the number of accesses avoided due to ghost cells is 2*3/2 = 3. A similar analysis
gives the same results for the right ghost cells. It should be clear that for large thread
blocks, the effect of ghost cells for small mask sizes will be insignificant.

We now calculate the total number of memory accesses for N elements by the tiled
kernel in Fig. 7.11. All the memory accesses have been shifted to the code that loads the N
elements into the shared memory. In the tiled kernel, each N element is only loaded by one
thread. However, 2n halo cells will also be loaded, n from the left and n from the right, for
blocks that do not handle ghost cells. Therefore, we have the blockDim.x+2n elements
loaded by the internal thread blocks and blockDim+n by boundary thread blocks.

For internal thread blocks, the ratio of memory accesses between the basic and
the tiled 1D convolution kernel is:

(blockDim.x*(2n+1)) / (blockDim.x+2n)

whereas the ratio for boundary blocks is:

(blockDim.x*(2n+1) – n(n+1)/2) / (blockDim.x+n)

For most situations, blockDim.x is much larger than n. Both ratios can be approx-
imated by eliminating the small terms n(n+1)/2 and n:

(blockDim.x*(2n+1)/ blockDim.x = 2n+1 = Mask_Width

N

0 N[0] N[3]N[1] N[2] N[5]N[4] N[6]0 00

P[0]

P[1]

P[2]

P[3]

P[4]

P[5]

P[6]

FIGURE 7.12

A small example of accessing N elements and ghost cells.

1657.5 A simpler tiled 1d convolution—general caching

This should be quite an intuitive result. In the original algorithm, each N ele-
ment is redundantly loaded by approximately Mask_Width threads. For example, in
Fig. 7.12, N[2] is loaded by the 5 threads that calculate P[2], P[3], P[4], P[5],
and P[6]. That is, the ratio of memory access reduction is approximately propor-
tional to the mask size.

However, in practice, the effect of the smaller terms may be significant and can-
not be ignored. For example, if blockDim.x is 128 and n is 5, the ratio for the internal
blocks is:

(128*11 – 10) / (128 + 10) = 1398 / 138 = 10.13

whereas the approximate ratio would be 11. It should be clear that as the
blockDim.x becomes smaller, the ratio also becomes smaller. For example, if block-
Dim is 32 and n is 5, the ratio for the internal blocks becomes:

(32*11 – 10) / (32+10) = 8.14

The readers should always be careful when using smaller block and tile sizes.
They may result in significantly less reduction in memory accesses than expected.
In practice, smaller tile sizes are often used due to insufficient amount of on-chip
memory, especially for 2D and 3D convolution where the amount of on-chip memory
needed grows quickly with the dimension of the tile.

7.5 A SIMPLER TILED 1D CONVOLUTION—
GENERAL CACHING
In Fig. 7.11, much of the complexity of the code has to do with loading the left and
right halo cells in addition to the internal elements into the shared memory. More
recent GPUs such as Fermi provide general L1 and L2 caches, where L1 is private
to each streaming multiprocessor and L2 is shared among all streaming multiproces-
sors. This leads to an opportunity for the blocks to take advantage of the fact that
their halo cells may be available in the L2 cache.

Recall that the halo cells of a block are also internal cells of a neighboring block.
For example, in Fig. 7.10, the halo cells N[2] and N[3] of Tile 1 are also internal
elements of Tile 0. There is a significant probability that by the time Block 1 needs
to use these halo cells, they are already in L2 cache due to the accesses by Block 0.
As a result, the memory accesses to these halo cells may be naturally served from L2
cache without causing additional DRAM traffic. That is, we can leave the accesses
to these halo cells in the original N elements rather than loading them into the N_ds.
We now present a simpler tiled 1D convolution algorithm that only loads the internal
elements of each tile into the shared memory.

In the simpler tiled kernel, the shared memory N_ds array only needs to hold
the internal elements of the tile. Thus, it is declared with the TILE_SIZE, rather than
TILE_SIZE+Mask_Width-1.

 __shared__ float N_ds[TILE_SIZE];

166 CHAPTER 7 Parallel patterns: convolution

Loading the tile becomes very simple with only one line of code:

 N_ds[threadIdx.x] = N[blockIdx.x*blockDim.x+threadIdx.x];

We still need a barrier synchronization before using the elements in N_ds. The
loop that calculates P elements, however, becomes more complex. It needs to add
conditions to check for use of both halo cells and ghost cells. The handling of ghost
cells is done with the same conditional statement as that in Fig. 7.6. The multiply-
accumulate statement becomes more complex, shown in Fig. 7.13.

The variables This_tile_start_point and Next_tile_start_point hold the
starting position index of the tile processed by the current block and that of the tile
processed by the next in the next block. For example, in Fig. 7.10, the value of This_
tile_start_point for Block 1 is 4 and the value of Next_tile_start_point is 8.

The new if statement tests if the current access to the N element falls within tile
by testing it against This_tile_start_point and Next_tile_start_point. If the
element falls within the tile, that is, it is an internal element for the current block,
it is accessed from the N_ds array in the shared memory. Otherwise, it is accessed
from the N array, which is hopefully in the L2 cache. The complete tiled kernel using
general caching is shown in Fig. 7.14.

7.6 TILED 2D CONVOLUTION WITH HALO CELLS
Now that we have learned how to tile a parallel 1D convolution computation, we
can extend our knowledge to 2D quite easily. For a little more fun, we will use an
example based on a class of 2D image format that is frequently encountered in image
libraries and applications.

As we have seen in Chapter 3, Scalable Parallel Execution, real-world images
are represented as 2D matrices and come in all sizes and shapes. Image processing

__syncthreads();

 int This_tile_start_point = blockIdx.x * blockDim.x;
int Next_tile_start_point = (blockIdx.x + 1) * blockDim.x;

 int N_start_point = i - (Mask_Width/2);
float Pvalue = 0;
for (int j = 0; j < Mask_Width; j++) {
int N_index = N_start_point + j;
 if (N_index >= 0 && N_index < Width) {

if ((N_index >= This_tile_start_point)
&& (N_index < Next_tile_start_point)) {

 Pvalue += N_ds[threadIdx.x+j-(Mask_Width/2)]*M[j];
} else {
Pvalue += N[N_index] * M[j];

}
}

}
P[i] = Pvalue;

FIGURE 7.13

Using general caching for halo cells.

1677.6 Tiled 2d convolution with halo cells

libraries typically store these images in row-major layout when reading them from
files into memory. If the width of the image in terms of bytes is not a multiple of
the DRAM burst size, the starting point of row 1 and beyond can be misaligned
from the DRAM burst boundaries. As we have seen in Chapter 5, Performance
Considerations, such misalignment can result in poor utilization of DRAM band-
width when we attempt to access data in one of the rows. As a result, image libraries
often also convert images into a padded format when reading them from files into
memory, as illustrated in Fig. 7.15.

__global__ void convolution_1D_tiled_caching_kernel(float *N, float *P, int
 Mask_Width,int Width) {

int i = blockIdx.x*blockDim.x + threadIdx.x;

__shared__ float N_ds[TILE_SIZE];

N_ds[threadIdx.x] = N[i];

__syncthreads();

int This_tile_start_point = blockIdx.x * blockDim.x;

int Next_tile_start_point = (blockIdx.x + 1) * blockDim.x;

int N_start_point = i - (Mask_Width/2);

float Pvalue = 0;

for (int j = 0; j < Mask_Width; j++) {

int N_index = N_start_point + j;

if (N_index >= 0 && N_index < Width) {

if ((N_index >= This_tile_start_point)

&& (N_index < Next_tile_start_point)) {

Pvalue += N_ds[threadIdx.x+j-(Mask_Width/2)]*M[j];

} else {

Pvalue += N[N_index] * M[j];

}

}

}

P[i] = Pvalue;

}

FIGURE 7.14

A simpler tiled 1D convolution kernel using constant memory and general caching.

Height

Width

M0,0 M0,1 M0,2

M1,0 M1,1 M1,2

M2,0 M2,1 M2,2

Padded
elements

Pitch

FIGURE 7.15

A padded image format and the concept of pitch.

168 CHAPTER 7 Parallel patterns: convolution

In Fig. 7.15, we assume that the original image is 3x3. We further assume that
each DRAM burst encompasses 4 pixels. Without padding, M1,0 in row 1 would
reside in one DRAM burst unit whereas M1,1 and M1,2 would reside in the next
DRAM burst unit. Accessing row 1 would require two DRAM bursts and wasting
half of the memory bandwidth. To address this inefficiency, the library pads one
element at the end of each row. With the padded elements, each row occupies an
entire DRAM burst size. When we access row 1 or row 2, the entire row can now be
accessed in one DRAM burst. In general, the images are much larger; each row can
encompass multiple DRAM bursts. The padded elements will be added such that
each row ends at the DRAM burst boundaries.

With padding, the image matrix has been enlarged by the padded elements.
However, during computation such as image blur (see Chapter: Scalable Parallel
Execution), one should not process the padded elements. Therefore, the library data
structure will indicate the original width and height of the image as shown in Fig.
7.15. However, the library also has to provide the users with the information about
the padded elements so that the user code can properly find the actual starting posi-
tion of all the rows. This information is conveyed as the pitch of the padded matrix.

Fig. 7.16 shows how the image pixel elements can be accessed in the row-major
layout of the padded image matrix. The lower layout shows the linearized order.
Note that the padded elements are at the end of each row. The top layout shows the
linearized 1D index of pixel elements in the padded matrix. As before, the three
original elements, M0,1, M0,2, M0,3 of row 0 become M0, M1, and M2 in the linearized
1D array. Note that the padded elements become “dummy” linearized elements M3,
M7, and M11. The original elements of row 1, M1,1, M1,2, M1,3, have their linearized
1D index as M4, M5, and M6. That is, as shown in the top of Fig. 7.16, to calculate

M

M

M0

M0,0 M0,1

M0,0 M0,1 M0,2

M1,0 M1,1 M1,2

M2,0 M2,1 M2,2

M0,2

Padded
elements

M1,0 M1,1 M1,2 M2,0 M2,1 M2,2

M1 M2 M3 M4

Row*Pitch+Col = 2*4+1 = 9

M5 M6 M7 M8 M9 M10 M11

FIGURE 7.16

Row-major layout of a 2D image matrix with padded elements.

1697.6 Tiled 2d convolution with halo cells

the linearized 1D index of the pixel elements, we will use pitch instead of width in
the expression:

Linearized 1D index = row * pitch + column

However, when we iterate through a row, we will use width as the loop bound to
ensure that we use only the original elements in a computation.

Fig. 7.17 shows the image type that we will be using for the kernel code example.
Note the channels field indicates the number of channels in the pixel: 3 for an RGB
color image and 1 for a greyscale image as we have seen in Chapter 2, Data parallel
computing. We assume that the value of these fields will be used as arguments when
we invoke the 2D convolution kernel.

We are now ready to work on the design of a tiled 2D convolution kernel. In
general, we will find that the design of the 2D convolution kernel is a straightforward
extension of the 1D convolution kernel presented in Section 7.5. We need to first
design the input and output tiles to be processed by each thread block, as shown in
Fig. 7.18. Note that the input tiles must include the halo cells and extend beyond their
corresponding output tiles by the number of halo cells in each direction. Fig. 7.19
shows the first part of the kernel:

// Image Matrix Structure declaration

//
typedef struct {

} * wbImage_t;

int width;
int height;

int pitch;
int channels;
float* data;

FIGURE 7.17

The C type structure definition of the image pixel element.

row_i and col_i for
Thread (0,0)

row_o and col_o for
Thread (0,0)

FIGURE 7.18

Starting element indices of the input tile versus output tile.

170 CHAPTER 7 Parallel patterns: convolution

Each thread of the kernel first calculates the y and x indices of its output element.
These are the col_o and row_o variables of the kernel. The index values for thread0,0 of
the thread block (which is responsible for the output element at the upper left corner) is
shown in Fig. 7.18. Each thread then calculates the y and x indices of the input element it
is to load into the shared memory by subtracting (Mask_Width/2) from row_o and col_o
and assigning the results to row_i and col_i, also shown in Fig. 7.18. Note that the input
tile element to be loaded by thread0,0 is also shown in Fig. 7.18. To simply the tiling code
over the kernel in Fig. 7.14, we will configure each thread block to be of the same size as
the input tile. In this design, we can simply have each thread to load one input N element.
We will turn off some of the threads when we calculate the output since there are more
threads in each block than the number of data elements in each output tile.

We are now ready to load the input tiles into the shared memory (Fig. 7.20). All
threads participate in this activity but each of them needs to check if the y and x indi-
ces of its input tile elements are within the valid range of the input. If not, the input
element it is attempting to load is actually a ghost element and a 0.0 value should be
placed into the shared memory. These threads belong in the thread blocks that calcu-
late the image tiles that are close to the edge of the image. Note that we use the pitch
value when we compute the linearized 1D index from the y and x index of the pixel.
Also note that this code only works for the case where the number of channels is 1.
In general, we should use a for-loop to load all the pixel channel values based on the
number of channels present.

__global__ void convolution_2D_tiled_kernel(float *P, float *N, int height, int width,
int pitch, int channels, int Mask_Width,

int tx = threadIdx.x;
int ty = threadIdx.y;
int row_o = blockIdx.y*O_TILE_WIDTH + ty;

int row_i = row_o - Mask_Width/2;
int col_i = col_o - Mask_Width/2;

int col_o = blockIdx.x*O_TILE_WIDTH + tx;

{
const float __restrict__ *M)

FIGURE 7.19

Part 1 of a 2D convolution kernel.

if((row_i >= 0) && (row_i < height) &&

N_ds[ty][tx] = data[row_i * pitch + col_i];

N_ds[ty][tx] = 0.0f;
}

} else{

(col_i >= 0) && (col_i < width)) {

__shared__ float N_ds[TILE_SIZE+MAX_MASK_WIDTH-1]
 [TILE_SIZE+MAX_MASK_HEIGHT-1];

FIGURE 7.20

Part 2 of a 2D convolution kernel.

1717.6 Tiled 2d convolution with halo cells

The last part of the kernel, shown in Fig. 7.21, computes the output value using
the input elements in the shared memory. Keep in mind that we have more threads in
the thread block than the number of pixels in the output tile. The if-statement ensures
that only the threads whose indices are both smaller than the O_TILE_WIDTH
should participate in the calculation of output pixels. The doubly nested for-loop
iterates through the mask array and performs the multiply and accumulate operation
on the mask element values and input pixel values. Since the input tile in the shared
memory N_ds includes all the halo elements, the index expressions N_ds[i+ty][j+tx]
gives the N_ds element that should be multiplied with M[i][j]. The reader should
notice that this is a straightforward extension of the index expression in correspond-
ing for-loop in Fig. 7.11. Finally, all threads whose output elements are in the valid
range write their result values into their respective output elements.

To assess the benefit of the 2D tiled kernel over a basic kernel, we can also extend
the analysis from 1D convolution. In a basic kernel, every thread in a thread block
will perform (Mask_Width)2 accesses to the image array. Thus, each thread block
performs a total of (Mask_Width)2*(O_TILE_WIDTH)2 accesses to the image array.

In the tiled kernel, all threads in a thread block collectively load one input tile.
Therefore, the total number of accesses by a thread block to the image array is
(O_TILE_WIDTH+Mask_Width-1)2. That is, the ratio of image array accesses between
the basic and the tiled 2D convolution kernel is:

(Mask_Width)2*(O_TILE_WIDTH)2/ (O_TILE_WIDTH+Mask_Width-1)2

The larger the ratio, the more effective the tiled algorithm in reducing the number
of memory accesses as compared to the basic algorithm.

Fig. 7.22 shows the trend of the image array access reduction ratio as we vary
O_TILE_WIDTH, the output tile size. As O_TILE_WIDTH becomes very large, the size of
the mask becomes negligible compared to tile size. Thus, each input element loaded
will be used about (Mask_Width)2 times. For Mask_Width value of 5, we expect that
the ratio will approach 25 as the O_TILE_SIZE becomes much larger than 5. For
example, for O_TILE_SIZE=64, the ratio is 22.1. This is significantly higher than the

float output = 0.0f;

for(i = 0; i < MASK_WIDTH; i++) {
for(j = 0; j < MASK_WIDTH; j++) {
output += M[i][j] * N_ds[i+ty][j+tx];

if(ty < O_TILE_WIDTH && tx < O_TILE_WIDTH){

}

}

}
}

if(row_o < height && col_o < width){
data[row_o*width + col_o] = output;

FIGURE 7.21

Part 3 of a 2D convolution kernel.

172 CHAPTER 7 Parallel patterns: convolution

ratio of 11.1 for O_TILE_WIDTH=8. The important takeaway point is that we must have
a sufficiently large O_TILE_WIDTH in order for the tiled kernel to deliver its potential
benefit. The cost of a large O_TILE_WIDTH is the amount of shared memory needed
to hold the input tiles.

For a larger Mask_Width, such as 9 in the bottom row of Fig. 7.22, the ideal ratio
should be 92=81. However, even with a large O_TILE_WIDTH such as 64, the ratio is
only 64. Note that O_TILE_WIDTH=64 and Mask_Width=9 translate into input tile size
of 722=5184 elements or 20,736 bytes assuming single precision data. This is more
than the amount of available shared memory in each SM of the current generation of
GPUs. Stencil computation that is derived from finite difference methods for solving
differential equation often require a Mask_Width of 9 or above to achieve numerical
stability. Such stencil computation can benefit from larger amount of shared memory
in future generations of GPUs.

7.7 SUMMARY
In this chapter, we have studied convolution as an important parallel computation
pattern. While convolution is used in many applications such as computer vision and
video processing, it also represents a general pattern that forms the basis of many
parallel algorithms. For example, one can view the stencil algorithms in partial dif-
ferential equation solvers as a special case of convolution. For another example, one
can also view the calculation of grid point force or potential value as a special case
of convolution.

We have presented a basic parallel convolution algorithm whose implementa-
tions will be limited by DRAM bandwidth for accessing both the input N and mask
M elements. We then introduced the constant memory and a simple modification
to the kernel and host code to take advantage of constant caching and eliminate
practically all DRAM accesses for the mask elements. We further introduced a
tiled parallel convolution algorithm that reduces DRAM bandwidth consumption
by introducing more control flow divergence and programming complexity. Finally
we presented a simpler tiled parallel convolution algorithm that takes advantage of
the L2 caches.

TilLE_WIDTH

Reduction
Mask_Width = 5

11.1 16 19.7 22.1

Reduction
Mask_Width = 9

20.3 36 51.8 64

8 16 32 64

FIGURE 7.22

Image array access reduction ratio for different tile sizes.

1737.8 Exercises

Although we have shown kernel examples for only 1D convolution, the tech-
niques are directly applicable to 2D and 3D convolutions. In general, the index cal-
culation for the N and M arrays are more complex due to higher dimensionality. Also,
one will have more loop nesting for each thread since multiple dimensions need to
be traversed when loading tiles and/or calculating output values. We encourage the
reader to complete these higher dimension kernels as homework exercises.

7.8 EXERCISES
 1. Calculate the P[0] value in Fig. 7.3.
 2. Consider performing a 1D convolution on array N = {4,1,3,2,3} with mask

M = {2,1,4}. What is the resulting output array?
 3. What do you think the following 1D convolution masks are doing?

a. [0 1 0]
b. [0 0 1]
c. [1 0 0]
d. [−1/2 0 1/2]
e. [1/3 1/3 1/3]

 4. Consider performing a 1D convolution on an array of size n with a mask of
size m:
a. How many halo cells are there in total?
b. How many multiplications are performed if halo cells are treated as

multiplications (by 0)?
c. How many multiplications are performed if halo cells are not treated as

multiplications?
 5. Consider performing a 2D convolution on a square matrix of size nxn with a

square mask of size mxm:
a. How many halo cells are there in total?
b. How many multiplications are performed if halo cells are treated as

multiplications (by 0)?
c. How many multiplications are performed if halo cells are not treated as

multiplications?
 6. Consider performing a 2D convolution on a rectangular matrix of size n1xn2

with a rectangular mask of size m1xm2:
a. How many halo cells are there in total?
b. How many multiplications are performed if halo cells are treated as

multiplications (by 0)?
c. How many multiplications are performed if halo cells are not treated as

multiplications?
 7. Consider performing a 1D tiled convolution with the kernel shown in Fig. 7.11

on an array of size n with a mask of size m using a tiles of size t:
a. How many blocks are needed?
b. How many threads per block are needed?

174 CHAPTER 7 Parallel patterns: convolution

c. How much shared memory is needed in total?
d. Repeat the same questions if you were using the kernel in Fig. 7.13.

 8. Revise the 1D kernel in Fig. 7.6 to perform 2D convolution. Add more width
parameters to the kernel declaration as needed.

 9. Revise the tiled 1D kernel in Fig. 7.8 to perform 2D convolution. Keep in
mind that the host code also needs to be changed to declare a 2D M array in
the constant memory. Pay special attention to the increased usage of shared
memory. Also, the N_ds needs to be declared as a 2D shared memory array.

 10. Revise the tiled 1D kernel in Fig. 7.11 to perform 2D convolution. Keep in
mind that the host code also needs to be changed to declare a 2D M array in
the constant memory. Pay special attention to the increased usage of shared
memory. Also, the N_ds needs to be declared as a 2D shared memory array.

