
DRAFT 1.6
7 Parallel Algorithms and Techniques

Question: What do parallel algorithms
look like?

Question: How do parallel algorithms
differ from sequential algorithms?

This chapter introduces some general principles of parallel algorithm
design. We will consider a few case studies to illustrate broad ap-
proaches to parallel algorithms. As already discussed in Chapter 5,
the underlying goal for these algorithms is to pose the solution into
parcels of relatively independent computation, with occasional in-
teraction. In order to abstract the details of synchronization, we will
assume the PRAM or the BSP model to describe and analyze these
algorithms. It is a good time for the reminder that getting from, say,
a PRAM algorithm to one that is efficient on a particular architecture
requires refinement and careful design for a particular platform. This
is particularly true when ‘constant time’ concurrent read and write
operations are assumed. Concurrent read and writes are particularly
inefficient for distributed-memory platforms, and are inefficient for
shared-memory platforms as well. It requires synchronization of
processors’ views of the shared memory, which can be expensive.

Recall that PRAM models focus mainly on the computational
aspect of algorithm, whereas practical algorithms also require close
attention to memory, communication, and synchronization overheads.
PRAM algorithms may not always be practical, but they are easier
to design than those for more general models. In reality, PRAM
algorithms are only the first step towards more practical algorithms,
particularly on distributed-memory systems.

Parallel algorithm design often seeks to maximize parallelism
and minimize the time complexity. Even if the number of actually
available processors is limited, higher parallelism translates to higher
scalability in practice. Nonetheless, the work-time scheduling prin-
ciple (Section 3.5) indicates that low work complexity is paramount
for fast execution in practice. In general, if the best sequential com-
plexity of solving the given problem is, say, To(n), we would like the
parallel work complexity to be O(To(n)). It is a common algorithm
design pattern to assume up to To(n) processors and then try to
minimize the time complexity. With maximal parallelism, the target
time complexity using To(n) processors is O(1). This is not always
achievable, and there is often a trade-off between time and work

DRAFT 1.6
236 an introduction to parallel programming

complexity. We then try to reduce the work complexity to O(To(n)),
without significantly increasing the time complexity. Sometimes we
start by assuming an even higher number of processors, which is not
O(To(n)), e.g., T2

o (n). This is not a practical algorithm on its own, but
it can sometimes be useful as a subroutine executed on small subsets
of the input.

Once the algorithm is ready, we rely on the work-time scheduling
principle to manage its execution on the available hardware. A
caveat: the work-time scheduling principle is designed for PRAM
algorithms, and very much like PRAM algorithms, it focuses on the
computational aspect of the solution. Directly applying this principle
to map a PRAM algorithm onto a limited number of processors
does not always exhibit the best performance. For example, in the
context of the BSP model, communication overheads are lower if the
virtual processors that inter-communicate substantially are mapped
onto the same physical processor. For shared-memory machines,
different PRAM algorithms can lead to different synchronization
overheads. This can make an algorithm that is apparently faster on
paper actually slower in practice. Hence, even though the theoretical
algorithm may naturally suggest a task decomposition, it may need
to be adjusted to account for the hardware architecture.

While the focus of this chapter is on parallel algorithmic style of
thinking and ab-initio design, it also presents a few cases of oppor-
tunistically finding inherently parallel steps in known sequential
algorithms.

We have already discussed the reduction algorithm in Section
1.6, which is an example of a parallel algorithm organized as a bi-
nary tree of computations. This is an oft-occurring paradigm, where
each processor performs some computation independently of others,
creating a partial result. The processors then combine the partial
results pair-wise into the final result, going up a tree. In its simplest
form, this paradigm yields a work complexity of O(n) and a time
complexity of O(log n).1 It works well for problems that have an O(n) 1 At the risk of being repetitive, the

base of log is assumed to be 2, unless
explicitly listed.

sequential solution. We begin with an example slightly more complex
than the addition algorithm of Section 1.6. It demonstrates the com-
mon algorithmic technique called the Binary Tree computation, which
is a special case of the well-known Divide and Conquer paradigm.

7.1 Divide and Conquer: Prefix-Sum

Formally, the prefix-sum of a list of data items: di, i 2 0..n is another
list si, i 2 0..n such that

si =
i

Â
j=0

dj,

DRAFT 1.6
parallel algorithms and techniques 237

where a..b indicates the range a to b, both inclusive. A sequential
algorithm to compute the prefix-sum is simply:

Listing 7.1: Sequential Prefix-Sum
// Compute in s the prefix-sum of d

s[0] = d[0]

for(i=0; i<=n; i++) {

s[i] = s[i-1] + d[i]

}

This is an efficient sequential algorithm – it takes O(n) steps, and no
algorithm may take fewer steps asymptotically. However, each step
depends on the previous computation, precluding any meaningful
parallelism.

Prefix-sum is a good example of problems where an efficient
sequential algorithm does not admit parallelism, but a fresh parallel
design affords significant parallelism. Trying to factor out and reuse
common computation is an important tool in sequential algorithm
design. That is precisely what causes the dependency, however.
Instead, a parallel algorithm is designed to subdivide a problem into
independent parts, even if those parts repeat some computation.

For the prefix-sum problem, the main question is how to com-
pute s[i] without the help of s[i � 1]. An extreme way to break the
dependency is as follows.

Listing 7.2: Trivial Parallel Prefix-Sum
// Compute in s the prefix-sum of d

forall processor i in 0..n

s[i] = d[i]

for(j=0; j<=i; j++) {

s[i] += d[j]

}

This method is not particularly useful. The slowest processor now
takes the same time that the single processor algorithm takes. The
total time remains O(n). The work complexity unnecessarily jumps
to O(n2), well short of the optimal O(n). This is not surprising, as
there were too many dependencies broken above: O(n2), in fact.
The computation at each iteration depends transitively on all earlier
iterations.

For some problems, it may be possible to break dependencies
entirely at a small cost. For most, there is a trade-off between the
parallelism obtained and the work complexity achieved. There are
two general approaches to break such a chain of dependencies:
top-down or bottom-up. The first subdivides a long dependency
chain into smaller chains, breaking the dependency of each chain on

DRAFT 1.6
238 an introduction to parallel programming

other chains. For example, it may be possible to carry out a partial
computation of s[i] independently of s[i � 1], say, for some i. This
is then followed by a subsequent step to compute the final s[i] in
parallel for different i. The second – bottom-up – approach computes
in parallel partial results in small groups of i, followed by processing
the dependency chain on these partial group-results. This yields a
smaller version of the original problem, and hence a smaller chain.
The following examples explain these approaches.

Parallel Prefix-Sum: Method 1

We first break the dependency chain only between s[n
2] and s[n

2 + 1],
allowing s[n

2 + 1] to start to be computed before s[n
2] is available. This,

in turn, breaks the dependency of all s[i], i > n
2 , on any s[i], i n

2 .

Listing 7.3: Partial Prefix-Sum: breaking dependency
// Compute in s the prefix-sum only of d[1+n/2..n]

s[1+n/2] = d[1+n/2]

for(i=2+n/2; i<=n; i++) {

s[i] = s[i-1] + d[i]

}

Clearly, this does not compute the full prefix-sum, but a partial
one. We will see that this works because it is simple to compute
the full prefix-sums from this partial prefix sum later. The partial
computation above can proceed in parallel with the computation of
the prefix-sum for values of i n

2 . It is clear that the work complexity
of computing the prefix-sum of the first half of s and that of the
partial prefix-sum of the second half are equal to each other. Once
both halves are computed, the full prefix-sum for i > n

2 remains to be
computed. However, now that the correct value of s[n

2] is known, the
partial sums can be completed in a single parallel step in O(1) time
with O(n) work as follows,

Listing 7.4: Partial Prefix-Sum: breaking dependency
// Update prefix-sum of the second half of s

forall processor p in (1+n/2)..n

s[p] += s[n/2]

as long as s[n
2] is accessible in parallel to all processors (of Listing

7.4).
By itself, the trick above does not lead to an improved complexity,

because the prefix-sum still needs to be computed for each half,
within which the dependencies remain unbroken. One sequential
problem has been subdivided into two sequential problems, each of a
smaller size. Using the divide and conquer paradigm, one can divide

DRAFT 1.6
parallel algorithms and techniques 239

the problem recursively until the size of the remaining problem
reduces to 1 (or a constant number). The recurrence relations for the
time and work complexity, respectively, are then:

t(n) = t
⇣n

2

⌘
+ O(1)

W(n) = 2W
⇣n

2

⌘
+ O(n)

with t(1) = O(1) and W(1) = O(1). Hence, t(n) = O(log n) and
W(n) = O(n log n), which is not optimal. This analysis assumes that
s[n

2] can be accessed by all processors concurrently. This analysis
holds for CREW PRAM model and other models allowing concurrent
read. Exclusive read, as in EREW PRAM, or a broadcast of s[n

2] to all
n
2 virtual processors, as in BSP, would require additional time. (See
Exercise 7.2.)

Parallel Prefix-Sum: Method 2

An alternate way to break the dependencies is to break many of them
at one go. For example, we might break all dependencies between
odd and even indexes.

Listing 7.5: Partial Prefix-Sum: odd-even separation
1 // Compute in s the prefix-sum of d

2 in parallel

3 Recursively Compute prefix-sum considering only even index i

4 Recursively Compute prefix-sum considering only odd index j

5 forall processor p in 1..n

6 s[p] += s[p-1]

Once the two partial prefixes are known, they can derive the full sum
quickly from each other, as on line 6 above. This variant of top-down
interleaved decomposition has the same time and work complexity
as the previous block decomposition. (See Exercise 7.3.) However, it
does not suffer from the bottleneck of broadcasting s[n

2] to the entire
second half. Please note that the recursive structure of the overall
algorithm (as of all the algorithms in this section) is similar to that of
Method 1.

Parallel Prefix-Sum: Method 3

Let us discuss the bottom-up approach next.

Listing 7.6: Partial Prefix-Sum: odd-even separation
// Compute in s the prefix-sum of d

forall processor p, 0<pn and odd p

s[p] = d[p]+d[p-1] // Pre sum pairs

DRAFT 1.6
240 an introduction to parallel programming

Recursively compute prefix-sum on odd indexes of s

forall processor p, 0<pn

s[p] += s[p-1] // Post sum

The first f orall sums the input values in pairs. The next step recur-
sively computes the prefix-sum on these pair-wise sums, which are
n
2 in number. This recursion will also proceed in the same bottom-up
fashion. The second f orall computes the final prefix-sum from the
prefix-sum of the pairs. The structure of the algorithm is depicted in
Figure 7.1. In Method 3, the dependencies are removed by reducing
the input set first (in parallel, of course). The recurrence relations for

Figure 7.1: Recursive Prefix-Sum. Each
row of boxes denotes the state of the
array s after each step. The numbers
in the bottom row constitute the input
values. The first and last steps are each
fully parallel and completed in O(1) by
O(n) processors.

time and work complexity for this algorithm are

t(n) = t
⇣n

2

⌘
+ O(1)

W(n) = W
⇣n

2

⌘
+ O(n)

This yields the optimal work complexity of O(n), while retaining the
time complexity of O(log n). An unrolling of the recursive statement
shows that the structure of the solution is similar to the binary-tree
based computation of Section 1.6: a reduction going up the tree
followed by the completion step going down the tree, as shown in
Listing 7.7 and Figure 7.2.

Listing 7.7: Partial Prefix-Sum: odd-even separation
// Compute in s the prefix-sum of d

for step = 0..(logn - 1)

j = 2step

forall processor i in 1..(n/j)

s[2*j*i-1] += s[j*(2*i-1)-1] // Reduce up the tree

for step = (logn - 1)..0

j = 2step

forall processor i in 1..(j-1)

s[j*(2*i+1)-1] += s[2*j*i-1] // Complete down the tree

Figure 7.2(a) shows the steps of the upward reduction pass, and
Figure 7.2(b) shows the downward completion pass. Each level is
shown as a row of boxes, which depict the values in the array after
each step. In the upward pass, pairs are summed at each step, with

DRAFT 1.6
parallel algorithms and techniques 241

the number of such sums halving at each step. The sum so produced
at the last step of the upward pass is the sum of all values, which
is also the prefix-sum s[n]. In the downward pass, the prefix-sum
values are computed at each level from the prefix-sum evaluated
at the level above. The bottom-most level then computes the final
prefix-sum.

(a) Upward pass (b) Downward pass Figure 7.2: Prefix-Sum algorithm in
two passes up and down a binary tree.
The values in the dark font are the
ones updated at that step. Hence, the
number of active processors at each step
are indicated by the number of values
in the dark font in that row.

Having found an efficient algorithm to reduce the dependency
in the prefix-sum, we will soon see that prefix-sum can, in turn,
be used as a subroutine to break similar dependencies in other
problems. Prefix-sum is more generically called a Scan, which has no
connotation of summing. Exclusive scan is defined as a scan where the
ith element is not included in the ith result, i. e.,

si =
i�1

Â
j=0

dj.

Scan algorithms can easily be modified to compute exclusive scan.
This is left as an exercise (Exercise 7.4).

7.2 Divide and Conquer: Merge Two Sorted Lists

We take another example of a Divide and Conquer algorthm. Merg-
ing of two sorted lists into a single sorted list is an important tool for
sorting and other problems. (For this discussion, assume sorting is
in increasing order.) The sequential algorithm to merge two lists, say,
list1 and list2, comprising n elements each, is as follows:

Listing 7.8: Sequential Merge
1 i = j = 0

2 while(i < n and j < n)

3 if(list1[i] < list2[j])

4 output list1[i++]

5 else

6 output list2[i++]

7 while(i < n)

8 output list1[i++]

DRAFT 1.6
242 an introduction to parallel programming

9 while(j < n)

10 output list2[j++]

Let the output list be called list3. This algorithm takes O(n) steps.
It is inherently sequential because only after the result of the compar-
ison of the pair list1[i] and list2[j] is known at line 3 in an iteration,
that the pair to compare in the next iteration is determined.

Parallel Merge: Method 1

We first consider breaking this dependency similarly to the previous
section. The standard binary subdivision of list1 and list2 into two
halves each, followed by the merger of each pair does not yield two
independent sub-problems. However, for each half, it is easy to
determine the block of the other list that it needs to merge with, so
that the recursive sub-problems do become independent.

Figure 7.3: Recursive Parallel Merge 1:
m1 is the middle element of list1. rank1
is the positions of m1 in list2. Elements
smaller than m1 in each list can be
merged with each other, the remaining
can be merged with each other. m1
need not participate in either merge.

Let the rank of element x in list, i. e., Rank(x, list), be the number
of elements in list that are less than x.2 Let us use the shorthand 2 Note that this usage of the term is

slightly different from that in Chapter 6.rank1 for Rank(m1, list2), the rank of m1 in list2. m1 here is the
middle element of list1. A single processor can find rank1 through
binary search for m1 in list2 in O(log n) time. This means, rank1
elements of list2 are smaller than m1, just as n

2 elements of list1 are
smaller than m1. The remaining elements are greater than m1 (see
Figure 7.3). Hence, the two smaller sets of elements are the smallest
rank1 + n

2 elements of list3. This implies that the first part of list3
can be obtained by merging the first n

2 elements of list1 with the first
rank1 elements of list2. The second part of list3 can be obtained by
merging the remaining elements of list1 with the remaining elements
of list2. These are two independent merge sub-problems. The lists
to merge need not have the same length any more. In the following
listing, we assume list to have n1 and n2 elements, respectively. The
merged list is produced in list3.

Listing 7.9: Parallel merge 1: Top Down dependency breaking
ni = max(n1, n2)

nj = min(n1, n2)

listi = longer of(list1, list2) // either if n1 == n2

listj = the other list

ranki = Search listi[n/2] in listj

in parallel

DRAFT 1.6
parallel algorithms and techniques 243

list3[0..ni/2+ranki-1] =

Merge listi[0..ni/2-1] with listj[0..ranki-1]

list3[n/2+rank..n1+n2] =

Merge listi[ni/2..ni] with listj[ranki..nj]

There is a shortcoming of the subdivision described above. If ranki ⌧
ni
2 , the second merger possibly has too much work remaining – one

list has ni
2 elements but the other may have as many as nj elements of

listj. The recurrence relations for the algorithm in Listing 7.9 for the
EREW PRAM model is:

t(n) t
✓

3n
4

◆
+ log n

W(n) W
✓

3n
4

◆
+ W

⇣n
4

⌘
+ log n

This implies t(n) = O(log2 n) and W(n) = O(n). In practice,
given a certain number of, say, shard-memory processors, one would
allocate more processors to the larger subproblem. Of course, one
might consider subdividing into more balanced sub-problems. (See
Exercise 7.12.)

Parallel Merge: Method 2

The other manner of breaking dependency in the Prefix-sum case
can also be employed for merging. Note that merging is equivalent
to finding the ranks of all elements of list1 in list2 and all elements
of list2 in list1. The final rank in list3 of, say, element list1[i] is i +
Rank(list1[i], list2).

Let Ranklist(listx, listy) denote the list of the ranks Rank(listx[i], listy)

for all elements listx[i] of listx. Once Ranklist(list1, list2) is given as
the list of ranks Rank1 and Ranklist(list2, list1) is given as the list
Rank2, we can compute list3 as follows:

Listing 7.10: Merge by rank
in parallel

forall processor p, 0 p < n

list3[p+Rank1[p]] = list1[p]

forall processor q, 0 q < n

list3[q+Rank2[q]] = list2[q]

In the first step of the rank computation algorithm, we recur-
sively merge only the even positioned elements of list1 with the
even positioned elements of list2. In other words, we find the rank
of list1[i] for even values of i in list2e. We will use the shorthand
liste to denote the even sublist, meaning liste[j] = list[2j], for
0 j < n

2 . We do not need to create a separate liste, but instead

DRAFT 1.6
244 an introduction to parallel programming

use the term to restrict consideration to the even indexes of list.
Once Ranklist(list1e, list2e) and Ranklist(list2e, list1e) are known, we
use them to find Ranklist(list1, list2) and Ranklist(list2, list1). We
will use the shorthand Ranke1 for the rank of elements of list1e in
list2e, and Ranke2 for those of elements of list2e in list1e. Figure 7.4

Figure 7.4: Recursive Parallel Merge
2: the value of list1[i] is xi , and that of
list2[j] is yj. list1e comprises the even
positions of list1, and list2e comprises
the even positions of list2. Ranke1 and
Rankee2 are the rank lists with respect
to list1e and list2e.

demonstrates how to compute Rank1 and Rank2 from Ranke1 and
Ranke2. Ranke1 and Ranke2 may be computed recursively, or simi-
larly to the bottom-up variant of the parallel prefix-sum algorithm.
Say, Ranke1[i] = re is the rank of element list1[2i] in list2e. The fig-
ure shows this element as x2i. This implies that re elements of list2e

are smaller than xi, meaning list2[0..2re � 1] are smaller than xi and
list2[2re] > xi. Hence, Rank(xi, list2) is also 2re if xi < list2[2re � 1]
and 2re + 1 otherwise. (Note that list2[2re � 1] is not included in list2e,
and hence it was not compared in the recursive merging of list1e and
list2e.) Ranks of all elements of list1e in list2 and those of elements
of list2e in list1 can be computed in this manner in parallel with each
other, taking O(1) time under CREW PRAM model. Thus, the work
complexity to compute Ranklist(list1e, list2) and Ranklist(list2e, list1),
given Ranklist(list1e, list2e) and Ranklist(list2e, list1e) is O(n) . Con-
current read is required because, say, Rank(xi+1, list2e) may also be re.
In that case, list[2re � 1] would be required in the computation of both
Rank(xi+1, list2) and Rank(xi, list2).

We next compute the ranks of the odd-index elements of list1 and
list2. These are at list1[2i + 1] for index i of list1e, and similarly for
list2. (Note that 2i + 1 may reach beyond the end of list1; these edge
effects are easy to handle, but we ignore them here for simplicity of
description. One may assume the value • at such indexes.) Rank1[2i +
1], which is a shorthand for Rank(list1[2i + 1], list2), can be computed
from Rank1[2i] and Rank1[2i + 1], which are known from the previous
step. Recall that list1 is sorted, and hence list1[2i] < list1[2i + 1] <

DRAFT 1.6
parallel algorithms and techniques 245

list1[2i + 2]. Suppose Rank1[2i] and Rank1[2i] are equal; call them r.
This means Rank1[2i + 1] must also be r, since list2[r � 1] < list1[2i]
and list2[r] > list1[2i + 2] and hence list2[r � 1] < list1[2i + 1] <
list2[r]. We may not always be so lucky though. For example, in
Figure 7.4, Rank(x6, list2) is 3, and Rank(x8, list2) is much higher, say
n. To find Rank(x7, list2), we must find which elements in the range
y3..yn�1 are smaller than x7. A binary search would find that index
but would take too long; we seek an O(1) algorithm.

Realize, however, that we already know the ranks of elements
Rank(yj, list1) for all even j, 3 j < n. These ranks are all either
7 or 8 in the example. In fact, we are looking for the index k such
that Rank(yj, list1) = 7 for j k and Rank(yj, list1) = 8 for j > k.
In this example, k = 8. Thus k can be computed in O(1) time if
processor j for each even value of j checks if Rank(yj, list1) + 1 equals
Rank(yj+1, list1). The processor – and there is exactly one – that finds
it true may now compute Rank(yj + 1, list1) as well as Rank(x7, list2)
in this example, and more generally Rank(xr1, list1), where r1 is
Rank(yj, list1). Rank(xr1, list2) needs to be computed only if r1 is
even. This is detailed in Listing 7.11.

Listing 7.11: Parallel merge 2: "Bottom Up?" dependency breaking

Merge(list1e, list2e) // Create Rank1e and Rank2e
in parallel // First compute rank of even elements from Ranke

forall processor p, 0 <= p < n and p%2==0

if(list2[Rank1[p]+1] < list1[p])

Rank1[p] = 2*Rank1[p] + 1

else

Rank1[p] = 2*Rank1[p]

forall processor q, 0 <= q < n and q%2==0

if(list1[Rank2[q]+1] < list1[q])

Rank1[q] = 2*Rank1[q] + 1

else

Rank1[q] = 2*Rank1[q]

in parallel // Now compute the ranks of odd elements

forall processor p, 0 <= p < n and p%2==0

if(Rank1[p] == Rank1[p+2])

Rank1[p+1] = Rank1[p]

else if(Rank1[p]+1 == Rank1[p+2]) and Rank1[p]%2 == 1

if(list2[Rank1[p]] > list1[p+1])

Rank2[Rank1[p]] = p+2

else

Rank2[Rank1[p]] = p+1

forall processor q, 0 <= q < n and q%2==0

if(Rank2[q] == Rank2[q+2])

Rank2[q+1] = Rank2[q]

else if(Rank2[q]+1 == Rank2[q+2]) and Rank2[q]%2 == 1

if(list1[Rank2[q]] > list2[q+1])

Rank1[Rank2[q]] = q+2

DRAFT 1.6
246 an introduction to parallel programming

else

Rank1[Rank2[q]] = q+1

The recurrence relations for the algorithm in Listing 7.11 for the
CREW PRAM model is:

t(n) t
⇣n

2

⌘
+ O(1)

W(n) W
⇣n

2

⌘
+ O(n)

This implies t(n) = O(log n) and W(n) = O(n). Work is optimal, but
can time complexity be improved? Let us investigate.

Parallel Merge: Method 3

Recall that the main task is to compute the ranks of every element of
list1 and list2 in each other. Each rank can be potentially computed
independently of the other ranks. One natural way to partition this
task is to subdivide one of the lists, say list1, into sublists list1m, 0
m < P, for a given P. Employing P = n processors, each processor
may complete its ‘merger’ in O(log n) time by performing a binary
search for the singleton element of list1m in list2. Partitioning a
problem into sub-problems to solve is a common parallel algorithm
design technique.

Listing 7.12: Parallel Merge 3

forall processor p in 0..n-1

Rank1[p] = find list1[p] in list2

forall processor q in 0..n-1

Rank2[q] = find list2[q] in list1

This algorithm also performs concurrent reads, as all binary searches
proceed in parallel. The time complexity remains O(log n), since the
2n rank computations are all independent of each other, and each
performs a binary search through a list of n elements. The work
complexity, however, increases to O(n log n), which is sub-optimal.
While this algorithm is simpler in structure than the previous one,
the performance is worse. This suggests that processors replicate too
much computation, and we should try to factor out some repeated
computation.

A closer inspection indicates that Rank(list1m, list2) Rank(listm+1, list2).
Separate binary searches for list1m and list1m+1 disregard this rela-
tionship, each proceeding independently of the other. On the other
hand, we do not want the search for list1m+1 to wait until that for
list1m is complete. On the other side, trying to reduce the time com-
plexity further by performing faster searches for list1m may require

DRAFT 1.6
parallel algorithms and techniques 247

multiple processors per search, leading to an even higher work
complexity. We will see that such inexpensive algorithms may be
usable on small sub-problems. Let us explore this further through the
following digression.

As a sidetrack, consider searching of element x in a sorted list Aside: Parallel P-ary Search

using P processors. Let’s say we want to find Rank(x, list). Extending
binary search, we subdivide list into P + 1 blocks, with nP = n

P
elements in each block. (The last block may have fewer elements.) In
effect, listP[i] = list[np ⇤ i]. Processor p determines if listP[p � 1]
x < listP[p]. This condition is true for at most one value of p, given
that elements in list are unique. If the condition does not hold for
any processor p, it implies x > listP[P � 1], i. e., x lies in the last block.
In O(1) time with O(P) work, we thus determine the block of list in
which x may lie. We recursively allow all P processors to find the
rank of x in that block next. This extends the sequential binary search
into a P-ary search.

Listing 7.13: P-ary search
// Find rank of x in range L..R with P processors

if x < list[L]

return Rank(x) = L

n_p = (R-L+1)/P

if(n_p <= 1) // Terminate recursion. No need to subdivide.

if x > list[R]

return Rank(x) = R

forall processors p in 1..(R-L)

if list[L+(p-1)] < x < list[L+p]

return Rank(x) = L+p

return success // Some other processor will complete Rank

if x > list[L+P*n_p]

with P processors: Search in range {L+p*n_p}..R

else

forall processor p in 1..P-1

if list[L+(p-1)*n_p] < x < list[L+p*n_p] // Test for equality to find x

with P processors: Search in range {L+(p-1)*n_p}..{L+p*n_p}

// x not in this processor’s block. Return.

Each processor performs O(1) comparisons per invocation of the
function above. There are O(logP n) invocations. Hence, the total
time complexity is O(logP n), and the work complexity is O(P logP n).
This is O(log n) only for a constant P. In general, this means that
the efficiency with P processors is proportional to O(log P

P). Nonethe-
less, this algorithm scales up to P = n, and takes time O(1) with n
processors, which equals what brute-force search would take with n
processors.

The P-ary search algorithm above demonstrates one other algorith-
mic technique. It generalizes the binary-tree computation structure,

DRAFT 1.6
248 an introduction to parallel programming

which parallel merge method 3 uses, for example: it recursively con-
siders the even indexes, reducing the problem size by half at each
level. Some problems are amenable to partitioning into more than
two sub-problems at a time, allocating an appropriate number of pro-
cessors to each sub-problem. Many of these partitioning problems do
not require any post-recursion operation – each sub-problem simply
generates a known subset of the solution. The P-ary search is one
such example.

Applying partitioning to the merging problem, we may select
every kth element of list1 into list1k, meaning list1k[i] = list1[ik]. A
large value of k reduces the size of the recursive sub-problem. On the
other hand, a large k also leave a large number of ranks remaining to
be computed after the sub-problem is solved.

Suppose k =
p

n. list1k and list2k are each of size
p

n. As a
result, we can find the rank of each element of list1k in list2 using

p
n

processors for each search:

Listing 7.14: Parallel Merge 4:
p

n subdivision
// Rank

p
n elements of list1 in list2

rootn =
p
n

forall processor p in 0..rootn-1

with rootn processors P-ary Search list1[p*rootn] in list2[0..n-1]

p
n processors can find Rank(list1k[i], list2) for any i in O(1) time

using O(
p

n) work. Since there are
p

n elements in list1k, n proces-
sors can compute all of Ranklist(list1k, list2) in O(1) time, with O(n)
work. We can similarly compute Ranklist(list2k, list1) in O(1) time,
with O(n) work. This seems good; except much work remains – we
do not yet know the ranks of (n �

p
n) elements of each list. We can

compute these ranks by recursively solving smaller merge problems.
See the illustration in Figure 7.5 to understand how.

Figure 7.5: Recursive Parallel Merge 3:
Each list is subdivided into blocks ofp

n elements. The rank of the first ele-
ment of each block, depicted as circles,
is computed first. These ranks help sub-
divide the merging problem into up to
2
p

n smaller merging problems. Three
of these sub-problems are highlighted –
the first pair with horizontal hatching,
the second with oblique, and the third
with vertical hatching.

Consider two consecutive elements of list1 that are included in
list1k, say list1[i

p
n] and list1[(i + 1)

p
n]. The ranks of these elements

DRAFT 1.6
parallel algorithms and techniques 249

in list2 are known after the P-ary search. Call them ri and ri+1. We
know that ranks of all elements list1[x], where i

p
n < x < (i + 1)

p
n,

are also in the range ri..ri+1. This means that we can decompose the
merger into smaller mergers: Merge list1[i

p
n..(i + 1)

p
n � 1] with

list2[ri..ri+1 � 1]. This sub-problem can be large if ri ⌧ ri+1.
However, in that case, just as in parallel merge method 2, the

range list2[ri..ri+1] contains elements from list2k whose rank in list1
are known. Those elements delineate blocks with no more than

p
n

elements each. Moreover, their ranks in list1 are not more than
p

n
apart, as they all lie in the range (i

p
n)..((i + 1)

p
n � 1). This ensures

that we may now independently merge pairs of blocks of list1 and
list2, respectively. The number of such pairs is at most 2

p
n as at

least one block of each pair has
p

n elements. Thus the recurrence
relation for complexity is:

t(n) = t(
p

n) + O(1)

W(n) =
p

nW(
p

n) + O(n)

This means that t(n) = O(log log n) and W(n) = O(n log log n). This
W(n) is not optimal, even if the time complexity is now lower. A
subtle point to note: each recursive sub-problems computes the ranks
only with respect to its block of elements. For example, in Figure 7.5,
the recursive sub-problem computes the rank of list2[k + 1], the ele-
ment shown as ⌅, in the part of list1 marked by $. If this computed
rank is srank, Rank(list2[k + 1], list1) is srank + Rank(list2[k], list1).

Parallel Merge: Method 4

The last algorithmic technique we discuss in this section reduces the
work complexity of an algorithm with high work complexity but
low time complexity by combining it with another that has low work
complexity. The main idea is to create sub-problems that are small
enough that the first algorithm’s work complexity does not have a
limiting effect on the overall work complexity.

Let us see how this works for the merging problem. Here, we use
the faster algorithm to merge list1k and list2k, carefully selecting
k. Note that algorithm Merge Method 3 merges two lists of size n
each using O(n log log n) work. If list1k and list2k have n

k elements
each, they can be merged using O(n

k log log n
k) work. This amounts

to O(n) if we choose k = log log n. In particular, it implies that if
list1 and list2 have n elements each, list1k and list2k can be merged
in O(log log n) time using O(n) work.

Given Ranklist(list1k, list2k) and Ranklist(list2k, list1k) com-
puted recursively, we can now compute Ranklist(list1k, list2) and
Ranklist(list2k, list1) also in O(log log n) time using O(n) work (k

DRAFT 1.6
250 an introduction to parallel programming

remains log log n). Recall that if Rank(list1k[i], list2k) is r, list1k[i] =
list1[ik] lies between list2k[r � 1] and list2k[r], i. e., between list2[(r �
1)k] and list2[rk]. There are only k � 1 elements between list2[(r � 1)k]
and list2[rk], and hence a single processor can locate list1k[i] in O(k)
steps. n

k processors can, in parallel, compute the ranks of n
k elements

of list1k in list2. In parallel with these processors, n
k processors can

compute Ranklist(list2k, list1) in O(k) time.
Similar to Merge Method 3, we now have 2 n

k pairs of lists to merge,
each with no more than k elements. With k = log log n, each of these
mergers can be completed by a single processor in O(log log n) time,
requiring O(n) total work.

Thus the total time complexity of the optimal merge algorithm is
O(log log n), and its work complexity is O(n) on CREW PRAM. This
is work-time optimal. Time complexity of any work-optimal PRAM
algorithm to merge two sorted lists with n elements is W(log log n).
In fact, the lower bound to merge sorted lists on an EREW PRAM is
W(log n). 3. 3 T. Hayashi, K. Nakano, and S. Olariu.

Work-time optimal k-merge algorithms
on the pram. IEEE Transactions on Parallel
and Distributed Systems, 9(3):275–282,
1998

7.3 Accelerated Cascading: Find Minima

This section demonstrates a technique called Accelerated Cascading,
which is designed to first reduce the depth of the computation tree,
leading to an algorithm with lower time complexity at the cost of
increased work complexity. That algorithm can then be combined
with a work-efficient algorithm, which may have a slightly higher
time complexity. It works by recursively partitioning the problem
into sub-problems. It is a generalization of the binary tree computa-
tion structure and partitioning, except the number of sub-problems is
not two (or a fixed number), but a function of the problem size itself.
For example, one may partition a problem of size n equally into

p
n

sub-problems at each level.
We will use accelerated cascading to solve the problem of finding

the minima of an unsorted list of values. (Assume these values are
comparable to each other.) The regular binary-tree structure works
well for this problem:

Listing 7.15: Parallel Minima
// Find the minima of list of n elements in O(log n) time

forall processor p in 0..(n-1)

minima[p] = list[p]

for step in 1..log n

forall processor p in 0..(n-1), p %(2step) == 0

minima[p] += minima[p+2step�1]

Listing 7.15 requires O(log n) time and O(n) work. Work complex-

DRAFT 1.6
parallel algorithms and techniques 251

ity is optimal, as the best sequential algorithm is O(n). Does there
exist an algorithm with lower time complexity? Quite like the merge
algorithms we discussed in the previous section, we can try to check
for each element list[i] if it is the minima. If constant time-common
write is allowed (as in CRCW PRAM), n � 1 processors can in parallel
determine in O(1) time if list[i] is the minima.

Listing 7.16: Parallel Minima

// Find if list[i] is the minima

smallerthan[i] = false

forall processor p in 0..(n-1), p != i

if(list[i] > list[p]) // Found a smaller element

smallerthan[i] = true

smallerthan is a variable more than one processors may attempt to
write simultaneously. All three versions of CRCW PRAM model
support this operation – any writing processor writes true, and the
algorithm is correct if any of the writes succeeds. Note that these
writes cannot complete in O(1) time in the EREW PRAM model, nor
the BSP model.

To complete the algorithm in parallel for all indexes i, the list
smallerthan contains for each i, whether any element of list is smaller
than list[i]. This would take a total of O(n2) work, and O(1) time.
If smallerthan[i] is false, list[i] is the minima. The following listing
produces this minima value in O(1) time with O(n) additional work.

Listing 7.17: Parallel Minima

// Produce the minima in smallerthan

forall processor p in 0..(n-1)

if(smallerthan[i] == false)

minima = index[i]

This algorithm, call it Minima0, works for Common-CRCW PRAM
if the minima is unique, i. e., only one element is strictly less than all
others.

Let us try applying the technique discussed in the previous section
to combine this non-optimal O(n2) work algorithm with the optimal
O(n) algorithm in Listing 7.15, to improve the time complexity. Recall
that Merge Method 3 has a work complexity of O(n log log n), slightly
higher than the optimal work complexity O(n). The non-optimal
minima finding algorithm is O(n2), significantly higher than the
optimal O(n). To maintain the bound of O(n) work, we would have
to partition list into blocks of size

p
n. This two step algorithm

would find the minima of each block first, in parallel with each other.
This requires O(n) work per block. With

p
n blocks, the total work

DRAFT 1.6
252 an introduction to parallel programming

is O(n
p

n), with the time remaining O(1). In the second step, the
minima of the

p
n block minima can be computed by repeating the

same algorithm. The second step requires O(1) time and performs
O(n) work. Let us call this algorithm Minima1.

Minima1 computes the minima of a list containing n elements in
O(1) time with O(n1+ 1

2) work. Minima1 was derived by employing
the more work-expensive algorithm on smaller blocks of the data.
Can we reduce this further by re-applying the same idea? The answer
is yes. We call this general technique accelerated cascading.

Suppose we employ Minima1 on blocks of size
p

n. The first step
requires n

1
2 parallel invocations of Minima1 on blocks of size n

1
2 each.

The second step finds the minima of the n
1
2 block-minima, again

using Minima1. The resulting total work is n
1
2 n

3
4 = n1+ 1

4 . The time
taken is that in two invocations of Minima1. This is the Minima2
algorithm.

This could go on. After k successive operations, the work com-

plexity achieved is n1+ 1
2k . But, can this really go on indefinitely? Let

us take a closer look. If we use Minima2 on the original problem,
we require running

p
n instances of Minima1 in parallel, each on a

block of
p

n elements. Each instance of Minima1, in turn, divides itsp
n elements into

pp
n blocks of size

pp
n each. This looks like the

binary tree algorithm structure, except the number of sub-problems
created at each level is not a fixed 2. Rather, it is the square-root of
the size of the problem at that level. Each of those sub-problem’s size
is also the square-root of the levels’ problem size.

Figure 7.6: Find Minima with Acceler-
ated Cascading. The numbers in the
boxes are the number of processors
used to compute the minima of the
output of the level below, one element
per arrow.

We continue this recursion until the problem size is less than
2 (or a higher constant). The number of levels in this recursion is
O(log log n). Since we can find minima on common-CRCW PRAM
in O(1) time, we know the O(log log n) levels can each be computed
in O(1) given sufficient processors at each level. Note that there are
n
2 computation nodes at step 0 (leaf level) and 1 node at the root. In
general, there are n

22l computation nodes at level l, with 22l elements

processed per node. Given that (n2) work is required to find the
minima of n items, (22l

)2 work is required to find the minima of (22l
)

DRAFT 1.6
parallel algorithms and techniques 253

items at each node on Common-CRCW PRAM. This adds up to O(n)
work at each level.

This leads to a total time complexity of O(log log n) and a total
work complexity of O(n log log n). We will call this algorithm the
fast minima method. Now that we have an algorithm requiring
O(n log log n) work, we can resort to the technique from the previous
section.

Divide list into n
log log n blocks with log log n elements per block.

We can compute the minima of each block in O(log log n) time se-
quentially. One processor block add up to O(log log n) work. We next
apply the fast minima algorithm on the n

log log n block minima, taking
O(log log n) time and O(n) work. That is work-optimal and has a
better time complexity than the algorithm with the basic binary tree
structure.

7.4 Recursive Doubling: List Ranking

Solutions to List ranking in this section and Euler tour and Con-
nected components in the next sections demonstrate the parallel
algorithmic technique known variously as Pointer Jumping or Recur-
sive Doubling. It is particularly useful for traversal of paths in lists
and graphs.

Such traversal starts at a “root node” and follows pointers until a
specific node, or the end of the path, is encountered. For example, to
find connected components in a graph, one may perform a breadth-
first or a depth-first search starting at some arbitrary node, labeling
all reached nodes with the starting node’s label. The main idea is to
start exploring paths from all nodes in parallel, later Short-circuiting
the paths that have already been explored.

Let us consider the linked-list ranking problem as a simple exam-
ple. The linked-list ranking problem is to compute the link-rank of
all nodes. The link-rank of a node is the number of links one must
traverse to reach that node from the first node. The linked-list is not
known to be sorted in any order. A sequential solution is as follows:

Listing 7.18: Sequential Linked-list ranking
// Find the rank of all nodes. headnode is the first node of a linked list

current = headnode

rank = 0

while(current != NULL) {

current.rank = currentrank

current = current.next

currentrank = currentrank + 1

}

DRAFT 1.6
254 an introduction to parallel programming

If the only way to access the nodes is by following next references
starting at headnode, no parallelism is available. Instead, a parallel
algorithm requires a different data structure, one that allows direct
access to different nodes. Consider nodelist, a list of references to
nodes in an arbitrary order, i. e., nodelist[i] for i 2 0..n is a node
in the liked list, and nodelist[i].next does not necessarily refer to
nodelist[i + 1]. Now consider the following parallel algorithm:

Listing 7.19: Parallel Linked-list ranking
// Find the rank of all n nodes. headnode is the first node of a linked list

forall processor p in 1..(n-1)

if(nodelist[p] == headnode)

nodelist[p].rank[p] = 0

else

nodelist[p].rank[p] = 1

skipnext[p] = nodelist[p].next

for step = 0..log(n-1)

forall processor p in 0..n

if(skipnext[p] != NULL)

nodelist[skipnext[p]].rank = nodelist[skipnext[p]].rank + nodelist[p].rank

skipnext[p] = skipnext[skipnext[p]]

skipnext is initially a copy of the next reference of each node. This
copy is required because we later modify this reference to short-
circuit certain nodes, and do not want to destroy the original linked-
list. There are log n steps in the main loop of Listing 7.19. At each
step, all processors update the currently estimated rank of its next
node with reference to its own rank’s current estimate. Then, each
processor short-circuits its next reference by ‘jumping’ it to its next
node’s next reference.

Figure 7.7 demonstrates this jumping algorithm. At step i, the
ranks of nodes with ranks 0..2i � 1 are known. (Try proving this by
induction on i.) Thus, there are log n steps taken by each of the n
processors. The time complexity is O(log n), and the work complexity
is (n log n).

Figure 7.7: Parallel Linked-list ranking.
nextlist is depicted by arrows, the
values of rank are shown for every
index after each step. These nodes are
drawn in the order of the linked-list
and not the order of the indexes.

DRAFT 1.6
parallel algorithms and techniques 255

7.5 Recursive Doubling: Euler Tour

List ranking and pointer jumping are useful in graph traversal as
well. Often graph traversal is simply a way to reach all graph vertices
or edges. A parallel graph representation allows processors direct
access to any vertex or any edge. Breadth-first or Depth-first traversal
is not necessary in such a context. In other settings, the path taken
by graph traversal is meaningful. Such traversal may appear to be
sequential by nature. However, they may not truly be sequential.
For example, in breadth-first traversal, all children of a node may be
traversed in parallel with each other.

In this section, we consider a depth-first traversal, particularly of
a binary tree. This traversal is also called an Euler tour of the binary
tree. It proceeds as follows:

Listing 7.20: Euler tour of a binary tree

// traverse a tree whose root is given

return if root == null

pre-visit(root)

traverse(left-subtree)

in-visit(root)

traverse(right-subtree)

post-visit(root)

The functions pre-visit, in-visit, and post-visit are application depen-
dent. The order in which pre-visit is called on nodes is called the
pre-order. Similarly, in-visit’s and post-visit’s orders are called in-order
and post-order, respectively. This order is inherently sequential, but it
does not have to be. For example, the position of node i in in-order,
i. e., its rank, may be computed in parallel with other node’s ranks.
We will determine the rank by turning the binary tree structure
into a veritable list, which encodes the traversal order. As Figure

Figure 7.8: Treating a binary tree (left)
as a list (right). Proxies for a node and
and an edge are shown by the curved
arrows.

7.8 demonstrates, we divide each internal node into three proxies,
and each edge into two. The node proxies are labeled pre, in, and

DRAFT 1.6
256 an introduction to parallel programming

post, depending on their position in the traversal. This need not be a
physical separation of the data structure, it is simply a logical view
of the same nodes. If ‘parent’ references are maintained, those refer-
ences can implicitly double as proxies. This transformation converts
a tree into a list. The rank of (the proxy) nodes within this list is the
Euler tour positions of each node. The time and work complexity are
similar to that of list ranking – O(log n) and O(n log n), respectively.

If only, say, the in-order rank is required. The list ranking algorithm
does not count the proxies marked pre and post by simply setting the
initial values of rank to 0 for these nodes (see Listing 7.19).

7.6 Recursive Doubling: Connected Components

Let us next see how to use pointer jumping to derive a simple algo-
rithm to find connected components in an undirected graph. (The
basic idea also applies to directed graphs.) Let us assume that graph
G is given as a list of edges edgelist, where ith edge edgelist[i] is a pair
(u, v), where u and v are integers identifying two vertices, respec-
tively. Let us call the number of edges m, and the number of vertices
n.

The goal of the problem to find connected components is to as-
sign a label label[u] to each vertex u, which identifies its connected
component. If vertex u has a path to vertex v, they are in the same
connected component. If there is no such path, they are in different
components. In other words, for all edges (u, v), label[u] = label[v].
Further, no such edge (u, v) may exist that label[u] is different from
label[v]. Vertices in different components have different labels. (Can
you make labels be a component ID? See Exercise 7.19.)

Our first algorithm uses this property. It iteratively relabels each
vertex until all the vertices of a connected component have the same
label. For each edge (u,v), it assigns the same label to u and v. Of
course, this must proceed in a controlled manner. Otherwise, labels
may continue to change indefinitely. One way to control relabeling is
to enforce asymmetry: a vertex’s label is given to its neighbor only if
that neighbor’s label is larger.

Listing 7.21: Compute Connected Components I
forall processor p in 0..n

label[p] = p

Repeat until any label changes

forall processor p in 0..m

(u,v) = edgelist[p]

if(label[u] > label[v])

label[u] = label[v]

DRAFT 1.6
parallel algorithms and techniques 257

Note that processors for two edges incident on a vertex u may both
write two different values to label[u] in the same step. An arbitrary-
CRCW PRAM would allow any one of these writes to succeed. List-
ing 7.21 works under this model. It terminates with a correct labeling.
The relabeling stops only when all edges have the same label on both
its vertices. Since all vertices start with unique labels, and no edge
exists between any pair of vertices in two different connected compo-
nents, no such pair may have the same label. Also, if vertices u and
v in the same component have different labels, it means at least two
adjacent vertices on the path u to v have different labels. However, no
two vertices connected by an edge are allowed to have different labels
by the algorithm above.

How many steps are required before labels converge? At each
edge where there is no convergence yet, the label of higher-labeled
vertex reduces by one. The initially smallest labeled vertex of each
component never changes its label. Call that vertex the root of the
component. The root’s label is taken by its immediate neighbors
first and then by their neighbors until it diffuses through the entire
component. This process might suggest that the root’s label reaches
the entire components in O(P) steps , where P is the maximum
length of the path from the root to any vertex in its component.
This is not strictly true because root’s label does not necessarily
reach its neighbor u in one step, since another edge’s processor may
succeed writing its value in label[u]. Note, however, that the label
can only reduce to a neighbor’s label. Hence, in at most d(u) steps,
label[u] changes to label[root], where d(u) is the degree of u. This is
true for any vertex v along the path from the root. Hence, the total
complexity is O(P + d(G)), where d(G) is the degree of the graph.
Since all m processors may be active for all steps, the total work
complexity is O(m(P + d(G))).

Ignoring the effect of the degree, the progress of label along dif-
ferent paths from the root appears to be similar to list ranking. It
is reasonable to expect a similar pointer jumping would take time
logarithmic in the length of the path. The difference here is that the
graph is not a linear structure like a list, and we need to determine
which way to jump. The labels we generate impose a direction to
jump. Let the label-tree be formed by directed label-edge from vertex
u to vertex label[u]. This is a forest in general, and in the beginning,
each vertex is an isolated tree with the vertex’s label set to itself.

In the next algorithm, processors are associated with graph edges.
For simplicity, we associate processors for both edges (u, v) and
(v, u). Each processor attempts to merge two adjacent label-trees
corresponding to its associated edge (if certain conditions are met).
A pair of label trees T1 and T2 are said to be adjacent if there is an

DRAFT 1.6
258 an introduction to parallel programming

edge (u, v) such that u 2 T1 and v 2 T2. In the label tree, we call
vertex v the parent of vertex u if label[u] is v. u is a root if label[u]
equals u; the root is its own parent. Further, a label-tree is called
a star if all its vertices have the same label, that of its root. A star
indicates a connected component. If no star is adjacent to any other,
the algorithm terminates.

Listing 7.22: Compute Connected Components

1 // Set label(u) == label(v), iff u and v are in the same component. Graph has m edges, n vertices

2 forall processor p in 0..n

3 label[p] = p

4 forall processor p in 0..m

5 active[p] = true

6 while(there is an active processor) {

7 forall p in 0..m, active[p] == true

8 (u,v) = edgelist[p]

9 if inStar(u) and label[u] > label[v] // See Listing 7.23

10 label[label[u]] = label[v] // Hook star’s root to the smaller root

11 if inStar(u) and label[u] != label[v]

12 label[label[u]] = label[v] // Hook star’s root to the other if not hooked on line 10

13 if not inStar(u)

14 label[u] = label[label[v]] // Pointer jumping

15 else

16 active[p] = false

17 }

The processor for edge (u, v) in the listing above first checks if u is
a part of a star. If it is a part of a star, it attempts to hook its parent,
i. e., its root, to the parent of neighbor v. v need not be in a star. The
processor accomplishes hooking by relabeling u’s parent to that of
v’s. This makes u’s root the child of v’s parent. Of course, if v is also
a part of a star, processor (w, u) may simultaneously hook v’s root
to u’s root if v and w belong to the same star. Asymmetry must be
imposed to prevent a cycle, just as in Listing 7.21. Hence, u hooks its
root to v’s root only if v’s label is smaller than u’s label.

The listing above ensures that all stars that can be hooked to
another tree are indeed hooked, even if they fail to hook on line 9
due to symmetry breaking. The reason a star may fail to hook on line
9 is that all its adjacent stars may have higher value roots. If a star
S1 remains a star at line 11, it may hook to any adjacent tree. That
adjacent tree must not be a star at 11, because any star that is hooked
ceases to be a star. Further, any star S2 adjacent to S1 at line 9 could
not remain unhooked on line 11 because S2 did have at least one
adjacent star with a smaller root: S1.

If a star has no adjacent tree, it does not hook. In that case, that
star is one of the graph’s final connected components. See Figure

DRAFT 1.6
parallel algorithms and techniques 259

Figure 7.9: Connected component
computation. The number within
the oval is the vertex identifier. Dark
arcs indicate the labels. For example,
label[2] is 1 in part (a). This part shows
three label trees, of which the first
one is not a star, and the other two
are stars. Graph edges are shown in
lighter dashed lines. Part (b) shows the
hooking of two stars. Part (c) shows one
step of pointer jumping, which yields a
single connected component with vertex
0 as the root.

7.9 for an illustration. The vertex identifiers are shown in the ovals.
Figure 7.9(a) shows the state of the algorithm at some step, when
there are three label-trees. The left-most tree is not a star, and the
other two are. Edges connect tree 2 to both tree 1 and tree 3; it is
adjacent to both trees. The processor associated with edge (7, 4)
attempts to hook tree 2 to tree 3, while the one associated with edge
(6, 3) attempts to hook it to tree 1. In arbitrary-CRCW PRAM, one of
the writes succeeds on line 9. Let’s say the second one. On that line,
tree 3 does not hook to tree 2 because tree 3 already has a smaller
label. Instead, it hooks to tree 2 on line 11. Note that before that line,
tree 2 becomes a part of tree 1. There is a single tree remaining after
the two hooks, and it is not a star. A single step of pointer jumping
on line 14 turns the tree into a star, which is the final connected
component. The algorithm terminates in the next iteration.

How does the algorithm terminate, though? Since common write
is allowed, processors may set a shared variable anyactive4 to false 4 We dispense with the $ suffix for

shared variables in this chapter; vari-
ables are shared by default in PRAM

at the beginning of every iteration on line 6. Every active processor
then sets anyactive to true at the end of the iteration. If no processor
sets anyactive, it remains false, and all processors terminate. The
other step that is not detailed in Listing 7.22 is how to determine if
vertex u is a part of a star. This step is described below.

Listing 7.23: Compute if vertex w is a part of a star

1 // inStar: True if all vertices in u’s current component have the same label.

2 star[u] = true // All vertices are in lock-step

3 if label[u] != label[label[u]] // u’s parent is not a root

DRAFT 1.6
260 an introduction to parallel programming

4 star[u] = false

5 star[label[label[u]]] = false // u’s grandparent is also not a star

6 star[u] = star[label[u]] // If its parent was marked non-star, u is not star

We seek to determine in parallel for every node if it is a part of a star.
A root that has any grandchild is not the root of a star. Hence, vertex
u whose parent is not the root (a root’s label is its own identifier) is a
proof that the tree it belongs to is not a star. Such a vertex marks the
grandparent as not a star. At the same time, root’s child-less children
may remain marked stars. However, if the root has even a single
grand-child, it is marked non-star on line 5. This is the evidence for
child-less children of the root to be marked star on line 6. Figure
7.9(a) demonstrates this. The processor for edge, say, (2, 1) marks
node 2 as non-star first on line 4. This processor next marks the
grandparent of node 2, i. e., node 0, non-star on line 5. Finally, node 3
is marked non-star by the processor for edge (3, 0) on line 6.

The algorithm terminates in time O(logP). The distance of each
node in a non-star tree to its root halves in each iteration (except that
of the root and its children). Once the tree becomes a star, it must
hook to another tree with a new root, and the distances continue
to halve. Since all m processor may remain active until the end, the
work complexity is O(m logP).

Sometimes it may be necessary to count the number of connected
components and assign contiguous identifiers instead of a root’s label.
This can be easily achieved by using a prefix-sum in O(log n) time
using O(n) work.

Listing 7.24: Relabel Connected components contiguously
// Assign in id[p] the connected component identifier for each node p

forall p in 0..(n-1)

if(label[p] == p)

id[p] = 1

else

id[p] = 0

exclusive prefix-sum (id)

forall p in 0..(n-1)

id[p] = id[label[p]]

7.7 Pipelining: Merge-sort

We will next discuss several sorting algorithms, each of them de-
signed to demonstrate an algorithmic technique. Parallel merge-sort
derives directly from parallel merge discussed earlier. Parallel radix-
sort is efficient for sorting integer-based elements. Parallel quick-sort
and sample-sort are also efficient for general cases.

DRAFT 1.6
parallel algorithms and techniques 261

We begin with an application of Pipelining in Merge-Sort.

Basic Merge-Sort

Recall from Section 7.2 that merge can be completed in O(log log n)
time with O(n) work on CREW PRAM. Merge-sorting a list of n com-
parable elements begins by merging n

2 pairs of singletons, followed
by n

4 pairs of 2-element lists, and so on until the last step merges 1
pair of n

2 -element lists. It proceeds as follows:

Listing 7.25: Relabel Connected components contiguously

1 // Sequentially Merge-sort a list with n element

2 for step = 0 to ceil(log(n))-1 // Assume n is a power of 2

3 numpair = 2log(n)�step�1

4 listlen = 2step // Adjust last pair’s len if n is not a power of 2

5 for pair = 0 to numpair-1

6 p0 = pair*2*listlen

7 merge list[p0..p0+listlen-1], list[p0+listlen..p0+2*listlen-1]

In this listing, the loop on line 5 can clearly be parallelized. This is
demonstrated in Figure 7.10, where steps proceed upward from the
bottom. Step i computes level i + 1 from level i. Level 0 comprises
one element per list. Merging different pairs at each step can proceed
independently of each other. If we assume n

2 processors for the entire
sort, these processors can all be allocated to one step at a time. At
step i, n

2i+1 pairs of lists are merged. The two lists in each pair at level
i have 2i elements each. Using 2i processors per pair-merge adds up
to n

2 total processors at each step.

Figure 7.10: Merge-tree for Merge-sort.
Steps proceed bottom-up. The number
of merges halves at each level, the
sizes of lists to merge (and produced)
double at each level. The number of
processors per merge operation also
doubles at each step, ensuring that the
total number of processors is constant
across steps.

On the other hand, it appears that the steps of the loop on line
2 must proceed sequentially. After all, the lists at level i are not
available until step i � 1 is complete. That would imply that log n
sequential iterations of line 2 are required. Step i requires O(log i + 1)
time and O(n) work overall. This results in a total time complexity
of O(log n log log n) and work complexity of O(n log n) to merge-sort
on CREW PRAM. The time complexity on EREW PRAM is O(log2 n).
This is a work-optimal algorithm. Is it also time-optimal? Not so,
it turns out. We introduce the algorithmic technique called Pipelin-

DRAFT 1.6
262 an introduction to parallel programming

ing that improves the parallelism, and hence the time complexity,
without increasing the work complexity.

Pipelining amounts to incrementally performing otherwise se-
quential steps by decomposing them into sub-steps. Sub-steps can be
performed on a part of the input, without waiting for the entire input.
Such pipeline is possible if the steps also produce the output incre-
mentally, a part at a time. Merging algorithms described in Section
7.2 satisfy this general requirement. Recall, for example, that Merge
Method 2 merges two sorted lists by first ranking the even elements
and then using the results to rank the odd elements. Thus it does
not need the values of the odd elements at the start. Consequently,
it produces the rank of the even elements first, and then the ranks
of the odd elements later. Further, the entire algorithm is recursively
applied, as illustrated in Figure 7.11 (for level 3 of Figure 7.10). The
part of the list that is processed exponentially evolves to the entire
list.

Figure 7.11: Active sublists at each
merger sub-step are marked. The even
positioned elements of the active sublist
are marked e, and the odd positioned
ones are o. The odd ones are the newly
activated elements at that sub-step.
Thus, the number of active elements
doubles at each sub-step. First, the
ranks of the already active members
are updated with respect to the other
updated sublist. Then, the ranks of the
newly active members are computed
(see Listing 7.11).

In general, since the lists merged at level i comprise 2i elements
each, there are log 2i sub-steps required at that level. At sub-step 0,
only one element of each list is active: the 0th element. In sub-step 1,
the first and the middle elements are active. They are, respectively,
the even and the odd elements at that sub-step. For each merger of
two lists, a sub-step computes the ranks of each list’s active elements
with respect to the active elements of the other list. In sub-step j, 2j

elements are active, doubling with each sub-step. The rank of all
active elements at sub-step j can be computed in O(1) from the ranks
computed in sub-step j � 1 (see Merge Method 2).

That opens up the possibility of pipelining sub-steps. The newly
active members required at sub-step j of level i may be produced by
level i � 1 any time before sub-step j of level i, and not necessarily
before its sub-step 0. The pipeline would be perfect if those active
members are produced by level i � 1 at sub-step j � 1. However, this
is not quite how Merge Method 2 proceeds. It does not guarantee, for
example, that the middle element of the merged list it produces for
the level above is known after sub-step 1 (or, any early sub-step). On
the other hand, it expects the middle elements of its two input lists to
be available at its sub-step 1.

DRAFT 1.6
parallel algorithms and techniques 263

An adjustment to the merge algorithm is necessary to pipeline it.
In particular, we relax the strict requirement of the order in which the
elements of the merged list must be produced, and rather use them
at the next level in the order they are actually produced. The main
question we need to answer is: what partial results to produce at
each sub-step and how to use them at the next level. The answer will
also indicate when level i + 1 can begin after level i begins, and when
it completes. Also note that pipelining implies that multiple levels
have active computation simultaneously. Work complexity analysis
and processor allocation must account for this. In the non-pipelined
version of the merge-sort algorithm, only one level is active at a time,
possibly simplifying processor allocation.

Pipelined Merges

We discuss the pipelined merge-sort algorithm5 next. For simplicity, 5 Richard Cole. Parallel merge sort.
SIAM Journal on Computing, 17(4):
770–785, 1988b

we will assume that n, the number of elements to sort, is a power of 2.
The algorithm works as well for non-power of 2 cases. The algorithm
itself is only slightly more complex than the one in Listing 7.25, but
its analysis is somewhat more cumbersome.

Let us agree on a terminology first. Sub-steps are in the con-
text of each merge-sort step. We will use the term tick to denote an
algorithm-wide sub-step numbering. Each node of the merge-tree
maintains an evolving list. This list is initially empty at all nodes
except the leaves, and completes when it contains all elements in the
subtree of that node (see Figure 7.10). At each tick, each active node
incrementally merges some of the data produced earlier by its chil-
dren into its evolving list. A node becomes active and starts merging
two ticks after elements start to appear in its children’s lists. Three
ticks after the children complete their lists, the parent also completes
its merger and deactivates. The activation and deactivation happen
level by level, from the leaf level to the root.

Thus level i activates at tick 2i + 1, and completes at tick 3i. This
means that 3 ticks after level i is complete, level i + 1 also completes.
Thus there are O(log n) ticks. We will see that the algorithm takes a
constant time per tick. The incremental merger is similar to Merge
Method 2, except a more general sublist is processed at each tick.
We will refer to the final list produced by node x by L(x). The two
children of a node at level i are nodes at level i � 1. We call these
children x.le f t and x.right, respectively.

In a slight abuse of notation, we will use the level i in place of
node, i. e., L(i), L(i.le f t), or L(i.right). Since the operation at all nodes
of a level is similar, our algorithmic description does not distinguish
between them. Read L(i) as the list produced by a generic node at

DRAFT 1.6
264 an introduction to parallel programming

level i. We do need to refer to a node’s children; hence, i.le f t and
i.right. We also need to account for the evolution of the list at each
node. We will denote the current list at any node at level i at tick t –
meaning just before tick t – by L(i, t). L(i, t + 1) is computed at tick t
by merging L(i.le f t, t), and L(i.right, t) with the help of L(i, t). L(i, t)
= null for t < 2i and L(i, t) = L(i) for t � 3i. L(0) = L(0, 0) is the
initial list at level 0. Each leaf node contains one element from the
full list to be sorted (see Figure 7.10).

Figure 7.12: Pipelined merge: ticks 3
to 11. Ticks 0-2 and 4 have no mergers
and are skipped. The state of the active
levels are shown. Inactive levels whose
lists are used by active levels are also
shown, but greyed out. The sublisting
of the children is indicated with L1, L2,
or L4. Children’s elements selected
in the sublists are shown with a dark
outline. The elements added to a level
at successive ticks are shown as circles,
triangles, and squares, respectively. At
tick 9, both levels 3 and 4 are active.
Note that the state of a level’s lists
is shown at the end of each tick. For
example, level 4 processors at tick
9 merge L4(3, 8), the sublists of the
children’s lists produced at tick 8, and
shown in the tick 8 figure.

At tick t, the 2i�1 processors assigned to a node at an active level i
compute

L(i, t + 1) = Merge(Lk(i.le f t, t), Lk(i.right, t)) using L(i, t) (7.1)

where Lk is the sublist of L, taking every kth element starting at
L[k � 1]. The value of k is 4 during the evolution of the children’s lists.
Once the children’s lists complete, k is set to 4, 2, then 1 at the next
three ticks. After that third tick, the parent’s list is complete, since it
produces a merger of the complete lists of its two children. Note that
setting k to 1 means that all elements of the children are included in
Lk. Specifically, in equation 7.1:

k = 4 if t < 3i � 1

k = 2 if t = 3i � 1

k = 1 if t > 3i � 1

(7.2)

The progression of ticks is demonstrated in Figure 7.12.
The important step of the actual merger at each tick at each level

remains to be discussed. The Merge on equation 7.1 is completed

DRAFT 1.6
parallel algorithms and techniques 265

in O(1) time using O(j) work, where j is the number of elements in
L(i, t). This is due to the choice of Lk: old elements at a level are well
interspersed among the new elements, even if they do not faithfully
alternate like odd and even. We need another digression to explain
this formally.

A sorted list L0 is called a c-cover of list L if two consecutive Aside: c-cover Merging

elements e1 and e2 of L0 have at most c elements of L between them.
In other words, there are c or fewer elements e in L such that e1 < e <
e2. If e2 is the first element of L0, we consider e1 = �•, and if e1 is
the last element, we let e2 = •.

Two sorted lists list1 and list2 with n elements each may be
merged in O(1) time using O(n) work if Ranklist(X, list1) and
Ranklist(X, list2) are given and X is a 4-cover for both list1 and
list2. We first “invert" X’s ranks by computing Ranklist(list1, X) and
Ranklist(list2, X). Listing 7.26 shows how to compute Ranklist(list, X).
given Ranklist(X, list). Since we know r = Rank(X[i], list) for ele-
ments of X, we also know Rank(list[r], X). We only need to derive
the ranks of the other elements near list[r] in list. An example is
shown in Figure 7.13, explaining the steps of Listing 7.26.

Listing 7.26: c-cover merge
1 // Compute rankx = Ranklist(list, X) given xrank = Ranklist(X, list),

2 forall processor p in 0..(n-1) // n elements in list

3 rankx[p] = -1 // Unfilled value

4 forall processor p in 0..(|X|-1) // |X| is the number of elements in X

5 if(i == 0 or xrank[i-1] != xrank[i])

6 if (list[xrank[p]] == X[p]) // Do not include X[p] in rank of list[xrank[p]]

7 rankx[xrank[p]] = p

8 else // Included X[p] is rank of list[xrank[p]]

9 rankx[xrank[p]] = p+1

10 if (p < n-1 and xrank[p+1] > xrank[p]+1) // Also rank the next element of list

11 rankx[xrank[p]+1] = p+1

12 forall processor p in 0..(n-1)

13 if (rankx[p] == -1) // Not filled yet

14 for i = p-1 to p-3 // Look up to 3 steps to the left for the first filled rank

15 if(xrank[i] != -1)

16 rankx[p] = rankx[i]

17 exitloop

18 if(i < 0) // No filled rank found (xrank[-1] is effectively 0)

19 xrank[p] = 0;

Like our prior assumption, the elements within each list remain
unique. However, X may have some elements that appear in list and
others that don’t. Since we define r = Rank(x, list) as the number
of elements in list that are strictly less than x, we must differentiate
between these two cases. If x == list[r], all elements to the left of x
in X are less than list[r], e.g., X[6] = 21 in Figure 7.13. On the other

DRAFT 1.6
266 an introduction to parallel programming

hand, the rank of X[1] = 9 is 4. list[4] is not equal to 9. This means
that all the elements to the left of 9 in X, as well as 9, are less than
list[4]. These cases are differentiated on line 6 of the listing. In either

Figure 7.13: Compute Ranklist(list, X)
given Ranklist(X, list) in O(c) time, if X
is a c-cover of list. The example shows
integer-valued lists X and list. The
values Ranklist(X, list) are shown above
X. These ranks indicate the position of
the corresponding elements of X in list.
The elements at those positions of list
are ranked in X at line 7 or 9 of Listing
7.26. These ranks are shown below list
in bold font. The ranks computed on
line 11 are shown in light font. Finally,
the ranks of the remaining elements
of list are computed at line 16 and are
shown above list.

case, list[r + 1] is greater than x. list[r + 1] is also less than the element
to the right of x in X, as long as that element has a rank different
from that of x. Hence, Rank(list[r + 1], X) is one more than the index
of x in X. Remember that two consecutive elements of X may have
the same rank, for they have 0 elements of list between them. For
example, the ranks of X[2] and X[3] are both 5. The listing lets the
processor associated with the last of these equal elements of X to set
the inverse rank (on line 5).

The processor associated with x also sets the ranks of list[r] and
list[r + 1] on line 11. All the elements to the right of list[r + 1] that do
not get a reverse rank in the previous step also have ranks equal to
that of list[r + 1]. For example, r = 1 for X[0]. list[r + 1] = list[2] has
rank 1 (one more than the index of X[0]). The rank of the element to
the right of X[0] has rank s = 4 in list, meaning list[s � 1] = list[3] is
definitely less than X[1]. However, all such elements to the right of
list[r + 1] until index s � 1 are greater than X[0]. Hence, they all must
have the same rank as that of list[r + 1]. This is completed on line 16
in Listing 7.26. This loop iterates at most c steps if X is a c-cover of
list, as s � r c.

Figure 7.14: Compute
Ranklist(list1, list2) given
Ranklist(list1, X) and Ranklist(X, list2)
in O(c) time, if X is a c-cover of
list2. The example shows integer-
valued lists list1, X and list2. The
values Ranklist(X, list1) are shown
above X, and Ranklist(X, list2) be-
low it. Ranklist(list1, X) is shown
above list1. Rank(list[3], X) is
1. Given that Rank(X[0], list2)
is 2 and Rank(X[1], list2) is 5,
2 Rank(list1[3], list2) < 5. Hence,
Rank(list1[4], list2) is 2+ the number
of elements of list2[2..4] that are less
than list1[3]. There are at most c such
elements, in general.

Ranklist(list1, X) and Ranklist(list2, X) can be computed in paral-
lel with each other. They both take O(1) time and perform O(n) for
a constant c is a constant. Recall that we are interested in computing

DRAFT 1.6
parallel algorithms and techniques 267

Ranklist(list1, list2) and Ranklist(list2, list1). If the rank of element
i of list1, Rank(list1[i], X) is xrank1, X[xrank1 � 1] < list1[i], and
X[xrank1] � list1[i]. All elements in list2 less than X[xrank1 �
1] are definitely less than list1[i]. There are Rank(X[xrank1[i �
1]], list2) of those. Additionally, some elements between the posi-
tions Rank(X[xrank1[i � 1]], list2) and Rank(X[xrank1[i]], list2) in
list2 may also be less than list[i]. See Figure 7.14 for an example.
xrank1 = Rank(list1[3], X) is 1. rankx2a = Rank(X[xrank1], list2)
is 2. This means that the first 2 elements of list2 are all less than
list1[3]. rankx2b = Rank(X[rank1 + 1], list2) = 5 implies that
list2[rankx2b] � list1[4]. Some elements between index rankx2a
and rankx2b may be smaller than list1[3], but there may be at most c
such elements; 3 in this example.

Hence, one processor allocated to position 3 of list1 may compute
its rank in O(c) time. If c is a constant, the work complexity is O(n).
This can be done in EREW PRAM with a bit of care. More than one
element of list1, e.g., list1[2] and list1[3], may have the same rank in
X: xrank1 = 1. The processors assigned to find their respective ranks
in list2, both read Rank(X[1], list2). Since there are at most c such
elements in list1, they may be serialized to eliminate any need for
concurrent read. This would require the processor assigned to every
position to determine its serial order. One way is to count the number
of elements to the left of its position in list1 that have the same rank
as its own. We skip those details here. The following is a simpler
CREW PRAM version.

Listing 7.27: Transitive c-cover merge

// Compute rank1 = Ranklist(list1, list2)

// given rankx1 = Ranklist(list1,X), xrank2 = Ranklist(X, list2),

forall processor p in 0..(n-1) // n elements in list1

i = xrank2[rankx1[p]-1]

while(i < min(n, xrank2[rankx1[p]]))

i = i+1

rank1[p] = i

The listing above indicates that these ranks can be computed tran-
sitively: Ranklist(L1, L3) can be computed from Ranklist(L1, L2) and
Ranklist(L2, L3). Further, if L1 and L2 have a c-cover relationship,
and so do L2 and L3, Ranklist(L1, L3) can be computed in constant
time with linear work. We say that two lists have a c-cover relation-
ship if one of them is a c-cover of the other.

DRAFT 1.6
268 an introduction to parallel programming

4-cover Property Analysis

We can now discuss the pipelined merger of equation 7.1. The goal is
to find and use c-covers for each merger. We will see that the list in a
node at the end of a tick is a 4-cover for the merger at its next tick.

⇧1: Lk(i, t � 1) is a 4-cover of Lk(i, t),
and Ranklist(Lk(i, t � 1), Lk(i, t)) is known before tick t.

⇧2: L(i, t) is 4-cover of Lk(i.le f t),
L(i, t) is 4-cover of Lk(i.right, t),

and Ranklist(L(i, t), Lk(i.le f t, t)) and
Ranklist(L(i, t), Lk(i.le f t, t)) are known before tick t.

Property ⇧2 ensures that Lk(i.le f t, t) and Lk(i.right, t) can be merged
in O(1) time with O(|L(i, t + 1)|) work at tick t using 4-cover merger.
We need property ⇧1 to find the Ranklists of ⇧2. We will prove the
following property, of which Properties ⇧1 and ⇧1 are corollaries:

⇧⇤: If L4(i, t) has m elements in some range l..r, L4(i, t + 1) has
no more than 2m in that range. This would imply that if a and b are
two consecutive elements of L4(i, t), meaning it has 2 elements in the
range a..b, L4(i, t + 1) has no more than 4. That would guarantee that
L4(i, t) is 4-cover of L4(i, t + 1) for any i and t.

The statement above can be proven by induction on i. Note that
once the lists at a node’s children are complete, the next three ticks
at the parent are similar to three steps of Merge Method 2. Every
22th, then every 21th, and finally every 20th element of the children’s
lists are merged. ⇧⇤ holds trivially in these cases. The following
proof, hence, focusses on the ticks when the children lists are not yet
complete when sublists are formed by every 4th element. We refer
to the elements selected in the sublist for merger as samples. The
non-selected elements will be called non-samples.

Figure 7.15: L4(i, t + 1) is 4-cover of
L4(i, t). Node i and its children are
shown. Filled circles depict samples.
Non-filled ones are non-samples.
Elements a and b are two consecutive
elements in L4(i, t). Hence, 5 elements
of L(i, t) are in the range a..b. Some
of these 5 come from the left and the
others from the right child’s sublist. In
these sublists, any sample in the range
a..b must be within the vertical bars. In
particular, a0 is definitely less than a,
and b0 is definitely greater than b. There
are 3 samples in the left child in a0..b0,
and 4 in the right. If no more than 6
and 8 elements appear after tick t in
children’s sublists, L(i, t + 1) may not
contain more than 14 elements in a..b.
Hence, at most 4 can be in L4(i, t + 1).

By induction, if the statement holds at the children before tick t, it
also holds at the parent after tick t (i. e., before tick t + 1). The base
case is easy to prove, as it holds trivially at all levels whose children
are complete. Figure 7.15 illustrates the inductive step of the proof.
The figure takes two consecutive elements of L4(i, t): a and b. (The
same argument holds for non-consecutive elements.)

DRAFT 1.6
parallel algorithms and techniques 269

Consider a node at level i. By the inductive hypothesis, L4(i � 1, t �
1) has a elements in the range a..b, L4(i � 1, t) has no more than 2a in
that range.

Since L4(i, t) has every fourth element of L(i, t), if L4(i, t) has m
elements in the range a..b, L(i, t) has 4m � 3 elements in that range.
Some of these 4m � 3 come from the left child’s sublist and the others
from the right child’s. Vertical bars in Figure 7.15 delineate the range
a..b in the children. There are fewer than 4m � 1 elements in the
two children’s sublists in the range a..b, we include two additional
samples that bound the non-samples that may lie in the range a..b.
Let s1 samples come from the left sublist L4(i.le f t, t � 1), and s2 from
L4(i.right, t � 1). s1 + s2 4m � 1. By the inductive hypothesis, no
more than 2s1 samples exist in L(i.le f t, t) in the range a..b, and no
more than 2s2 samples in L(i.right, t). Since L(i, t + 1) is formed by
merging L4(i.le f t, t) and L4(i.right, t), it cannot contain more than
2(s1 + s2) = 8m � 2 elements in the range a..b. This guarantees that
its sublist L4(i, t + 1) may not contain more than 2m elements in the
range a..b, and L4(i, t + 1) is a 4-cover of L4(i, t + 1).

Thus, we can say that property ⇧1 holds, and Lk(i, t) is a 4-cover
of Lk(i, t + 1) for all k in the pipelined merge progression. Since this
applies to all levels, clearly Lk(i.le f t, t � 1) is a 4-cover of Lk(i.le f t, t).

Further, considering that L(i, t) was formed at tick t � 1 by merg-
ing Lk(i.le f t, t � 1) and Lk(i.right, t � 1), we know that between
any pair of consecutive elements of L(i, t) there are no more than
two elements of Lk(i.le f t, t � 1) and no more than two elements
of Lk(i.right, t � 1). For example, consider consecutive elements
z and x in L(i, t) in Figure 7.15. There cannot be more than 2 el-
ements in Lk(i.le f t, t � 1) in the range z..x. Were z and x both in
Lk(i.le f t, t � 1), they would be its consecutive elements. If neither were
in Lk(i.le f t, t � 1), it must not contain any element in the range z..x. If
only one of z and x is in Lk(i.le f t, t � 1), it must be the only element
in z..x. For example, in Figure 7.15, x is in Lk(i.le f t, t � 1), and z is
not. In that case, the element immediately before x in Lk(i.le f t, t � 1),
a0 in this case, is definitely less than z, ensuring that there is only
one element in z..x. Given, then, that the Lk(i.le f t, t � 1) contains no
more than 2 elements in z..x, by property ⇧⇤, Lk(i.le f t, t) contains no
more than 4 in that range. Hence, L(i, t) is a 4-cover of Lk(i.le f t, t).
Similarly, L(i, t) is a 4-cover of Lk(i.right, t). That proves property ⇧2.

Merge Operation per Tick

At node i, at tick t, we merge Lk(i.le f t, t) and Lk(i.right, t). We know
L(i, t) is a 4-cover for both. If we have Ranklist(L(i, t), Lk(i.le f t, t))
and Ranklist(L(i, t), Lk(right, t)), we can directly invoke the c-cover

DRAFT 1.6
270 an introduction to parallel programming

merge algorithm described earlier. Ranklist(L(i, t), Lk(i.le f t, t)) can
be transitively computed from Ranklist(L(i, t), Lk(i.le f t, t � 1)) and
Ranklist(Lk(i.le f t, t � 1), Lk(i.le f t), t) in constant time with linear
work, as described next. Ranklist(L(i, t), Lk(i.right, t)) can be simi-
larly computed.

If L(i, t) is null, it means there were no elements in Lk(i.le f t, t � 1)
and Lk(i.le f t, t � 1), and this is the first time a child’s list contains k
elements. Since k 4, this merger can be done at each such node
in O(1) time with O(1) work. In the general case, when L(i, t) does
exist, this means it was a merger of sublists Lk(i.le f t, t � 1) and
Lk(i.right, t � 1), using X = L(i, t � 1) as 4-cover. This means we com-
puted Ranklist(L(i, t), Lk(i.le f t, t� 1)) and Ranklist(L(i, t), Lk(i.right, t�
1)). We store them in lists lrank, and rrank, respectively, at node i.
Also, since we use L(i, t � 1) as a cover for computing L(i, t), we com-
pute Ranklist(L(i, t � 1), L(i, t)) (see c-cover merger algorithm earlier).
This can provide, in O(1) time with O(Lk(i, t)) work, ranks for their
4-covers: Ranklist(Lk(i, t � 1), Lk(i, t)). We store them in erank at node
i.

In Listing 7.28, le f t.erank refers to the list erank of the left child
and right.erank to that of the right child. Note that unlike Merge
Method 2, the pipelined mergers cannot happen in-place. Multiple
rank arrays are required. Some consolidation is possible, and the
pipelined merger can be implemented on EREW PRAM. 4-cover
merge must be implemented in a way that the lrank, rrank, and erank
are read by all active processors first and then updated at the end.
We skip a detailed presentation of that.

Listing 7.28: Pipe-lined c-cover merge

// Merge Lk(x.left), Lk4(x.right)), given lrank, rrank and erank

forall node x at level 2*tick+1..3*tick

k = computek(level, tick) // See Eq 7.2

Using |L(x.left)/k| processors // |L(x.right)|==|L(x.right)|, assume

4-cover-merge(Lk(x.left), Lk(x.right, t), \

lrank, rrank, x.left.erank, x.right.erank)

Update rankl, rankr, erank

Many mergers happen in parallel in the pipelined scheme, each
completing in O(1) time. The nodes at level i of the merge-tree com-
plete their processing at tick 3i. This implies that all levels have
completed after 3 log n ticks, and the root node has the sorted re-
sult. The work at each level is also easy to count. Note that a level
deactivates when complete. A level is complete when it receives all
the elements of the list to be sorted. The lowest active level, call it l,
receives all n elements in a span of 3 next ticks. This means that up
to n

2 processors remain active at this level, for we merge two lists of

DRAFT 1.6
parallel algorithms and techniques 271

size 2l each using 2l processors at each node. No level below level l
is active. Levels above l all use k = 4. Thus level l + 1 uses up to n

8
processors, and so on, up to the highest active level, 3l

2 . This adds up
to O(n) active processors at any tick. Thus the total work complexity
is O(n log n).

7.8 Application of Prefix-sum: Radix-Sort

Among sequential sorting algorithms, Radix-sort is known to be
particularly efficient for sorting small integers. The main idea of the
algorithm is to divide each element, rather the sorting key, into small
parts. The algorithm iterates over parts, the least significant part
first. Each part takes a fixed number of values. For example, a 32-bit
integer naturally consists of 32 1-bit parts.

Suppose, in general, there are d parts, each taking D values. For
each part, the entire list is divided into D buckets, which can be
accomplished sequentially in O(n) time for a list of size n. The
sequential complexity to complete radix-sorting is O(dn). Radix-sort
relies on the different parts being sorted in a strict sequence. Hence,
the only step that may be parallelized is the sorting of n items into D
buckets.

Setting d = 32 for a 32-bit integer key, each of the d sorts amounts
to a single prefix sum.

Listing 7.29: Parallel Radix-sort

1 // Radix-Sort list n-place

2 for i = 0 to 31

3 bsum = parallel prefix-sum bit[i] using n processors // We count LSB as bit 0

4 forall processor p in 0..(n-1)

5 if(bit[i] of list[p] == 0)

6 rank[p] = p - bsum[p]

7 else

8 rank[p] = n - bsum[n-1] + bsum[p] - 1

9 list[rank[p]] = list[p]

This listing ensures that at iteration i, all elements with bit[i] = 0
move to the beginning of the list, and those with bit[i] = 1 move
to the end. Additionally, they move in a stable way: two elements
with bit[i] = 0 retain their order. Line 6 computes the rank for in the
elements with bit 0. As seen in section 7.9, bit 0 piggy-backs on the
prefix sum of bit 1. The number of elements with bit[i] = 0 before
list[p] is the total number of all elements before it, i. e., p, less the
ones with bit[i] = 1, i. e., bsum[p]. Similarly, the number of elements
with bit[i] = 1 before an element itself with bit[i] = 1 is simply its
prefix sum minus 1. Of course, the elements with bit[i] = 1 must all

DRAFT 1.6
272 an introduction to parallel programming

be ranked after all those with bit[i] = 0. The total number of elements
with bit[i] = 0 is n � bsum[n � 1]. This is shown on line 8.

Since each prefix sum takes O(log n) time with O(n) work, the
total time complexity for radix-sorting d-part keys is (d log n), and
the total work complexity is (dn).

Another version of Radix-sort iterates over the bits in the reverse
order, most significant part first. For certain platforms, that version
would be more suitable. In the most significant part first scheme, the
elements with bit[i] = 0 and bit[i] = 1 are recursively divided into
two buckets. Thus the first bit subdivides list into two buckets, the
next bit further subdivides each bucket into two, and so on. More
importantly, each bucket can be sorted independently of the other
buckets. Once a bucket becomes small enough, it may be sorted
sequentially, while other processors continue to subdivide buckets.
We leave those details as an exercise.

7.9 Exploiting Parallelism: Quick-Sort

The sequential quick-sort algorithm is organized quite like the se-
quential merge-sort algorithm, but there is no post-partition step. The
quick-sort algorithm first partitions the given list list1 into two lists
list1s and list1l in a way that all elements of list1l are greater than ev-
ery element of list1s. This generates two independent sub-problems
that can be solved independently. This is top-down partitioning and
follows a similar binary-tree structure as that of the merge-tree, but
proceeds top to down. If we accept computing down the tree sequen-
tially, the question that remains is: can we at least partition list1 in
parallel. Prefix-sum is the answer.

Listing 7.30: Quick-sort Partitioning

1 // Partition list1[a..b]

2 pivot = random value in a..b

3 forall processor p in 0..(n-1)

4 if(list1[p] < list1[pivot]) // Separate

5 side[p] = 1

6 else

7 side[p] = 0

8 index = Parallel Prefix--sum(side) using n processors

9 pdest = index[n-1]

10 forall processor p in 0..(n-1)

11 if(side[p] == 1)

12 index[p] = index[p]-1

13 else

14 if(p == pivot)

15 index[p] = pdest

16 else if(p > pivot) // For large elements after the pivot position,

DRAFT 1.6
parallel algorithms and techniques 273

17 index[p] = pdest + p - index[p]

18 else

19 index[p] = pdest + p - index[p] + 1

20 list1[index[p]] = list1[p]

Figure 7.16: Partition a list. Suppose in-
dex 6 is chosen as the pivot. Determine
which side of the pivot each element
lies on. Then, perform a prefix-sum on
the small side. The large side prefix-
sum can be derived from the small side,
which is shown in final index.

Partition for quick-sort amounts to asking for each element of list1,
if its less than the pivot (call them small) or greater than it (call them
large). The small and large sets are then sorted independently of
each other. The pivot, if it is a part of list1, goes in the middle. This is
trivially parallelizable with O(1) time and O(n) work. All processors
must agree on the pivot. This requires concurrent read capability to
complete in O(1).

It is not sufficient to know which set an element belongs in. These
sets must be formed as well. Quick-sort separates the two sets in-
place. We can do the same in parallel in the PRAM model. We need
to find non-conflicting indexes for elements to transfer to such that
all the elements smaller than the pivot get smaller indexes than the
rest. One can simply determine the rank of each element within its
set. Line 8 in Listing 7.30 computes the prefix-sum of the list side and
stores it in index. The elements less than the pivot have a 1 in side.
Thus, index[p] contains the number of small elements to the left of
position p, plus 1 for itself. index provides a contiguous numbering
for all small elements starting at 1: a small element at position p can
be transferred to position index[p]� 1 without any conflict.

We similarly need to compute the prefix-sum for the large ele-
ments. A separate scan is not required because there are only two
sets. The number of large elements to the left of position p is p minus
the number of small elements to its left. However, the numbering for
the large elements must start after the small elements and the pivot.
An offset of pdest achieves that. This is computed on line 16.

The total complexity of partitioning is dominated by prefix-sum.
Time complexity is O(log n), and work complexity is O(n). Retain-
ing the sequential quick-sort tree, there are O(log n) expected levels.
(Please refer to a textbook on data structures or algorithms for an
analysis of the number of expected levels.) The expected time com-
plexity is O(log2 n), and the expected work complexity is (n log n).

Note that the structure of the algorithm changes quite significantly
in the BSP model. Processors cannot directly transfer an element to
its proper side ‘in-place.’ Instead, each processor must send each ele-

DRAFT 1.6
274 an introduction to parallel programming

ment to the appropriate destination processor. Receiving processors
may receive the elements in a location of their choice. (See Exercise
7.14.)

Back to the PRAM model, let us see if the time complexity can be
reduced. Pipelining of prefix-sum could be an option, but no fast
pipelining prefix-sum is known. Could we completely do without
prefix-sum? We use it to separate the lists into small and large sub-
sets. It may be possible to get by without such separation. Knowing
the pivot v, each processor p knows the subset its element list1[p] is
in. Suppose, we simply let it use that information to determine how
to proceed. Depending on whether list1[p] is in list1s or list1l, If p
can determine its subset’s next pivot, it can test again. For example,
if list1[p] is in list1s, and the pivot for list1s is vs, p needs to compare
list1[p] with pivot vs next to determine which subset of list1s list1[p]
lies in. It can go down the tree, comparing with a sequence of pivots.
Thus, the initially small subset would be recursively divided into
small-small and small-large subsets, and so on. If we can continue
this process, labeling small as bit 0 and large as bit 1 at each test, the
smallest element will see a sequence 0, 0, 0 . . . and the largest would
see 1, 1, 1 The bit for the first partition appearing first. This pivot
itself is in neither set and may be assigned an end symbol indicating
the termination of its bit sequence. Processor p terminates when
list1[p] is chosen as the pivot. Questions remain:

• How does each process receive an appropriate pivot in each
round?

• How does the final rank of each element determined?

In principle, one may use any pivot. The ideal pivot for any set is
its median. We generally rely on ‘good’ pivots by randomly choosing
one of the elements in a set as its pivot. Pivots outside the range
of values in a set are ‘bad,’ as they lead to up to n levels in the
quicksort-tree. If we can find the minimum value m and the max-
imum values M within a set, M+m

2 may be a good choice. Section 7.3
explains how to find the minima in (1) time with O(n2) work with
the common write facility in CRCW PRAM. However, that algorithm
requires the knowledge of the full set, as each element is compared
with every other element of the set. Another possibility is to evolve
a consensus. If processor p knows the subset (or subsubset, etc.) its
element list1[p] is in, and a per-arranged location associated with
that subset, it may write its own value as a proposal for the pivot
of its subset. Concurrent write is required. In the arbitrary CRCW-
PRAM model, one of the proposers succeeds. In the next step, all
members of the set read the winning pivot value and use it to classify
themselves at the next level of the tree.

DRAFT 1.6
parallel algorithms and techniques 275

Figure 7.17: CRCW Quick-sort. For
levels 0 and 1, all writes are shown
as arcs. The winner is shown in a
dark color. In this example, processor
5 wins writing to root first. Hence
list[5] becomes pivot. Processors with
elements less than list[5] compete to
write to le f t[5]. Processor 7 wins, and
its element, 11, becomes the left child.
Similarly, processor 3 wins on the large
side. The losers on each side update
their parents to 7 and 3, respectively.
Processor 5, the parent processor, does
not lie on either side and, hence, does
not compete to write. The same process
continues at other levels.

How to pre-arrange the location per subset? One way to designate
unique location for each subset is its position in the quick-sort tree
itself. See Figure 7.17. We count the levels downward. The first
partition is at level 0, which creates two sublists, one contains all
elements in the left subtree of the parent (say, the small sublist) and
the other in the right subtree. Let parent[p], le f t[p], and right[p]
contain the indexes, respectively, of the parent, the left child, and
the right child for element list1[p]. parent[p] doubles as the pivot
for element list1[p]. Initially, all elements use the same pivot, and
parent[p] = root, one selected pivot. Once the sublists separate,
parent[p] changes accordingly.

As described above, parent[p] (i. e., pivot) is set by the arbitrary
write of CRCW-PRAM by processors of each sublist. Processors p
with elements smaller than list1[parent[p]] compete and write to the
le f t[parent[p]]. One succeeds. Processors with elements larger than
the pivot compete to become the right child. Again, one wins. All
the writers read back to check if they won writing. The winner is the
pivot. Losers need to continue the process. For simplicity, Listing
7.31 lets the chosen pivot also continue to process until the final
termination. However, they are the only elements in their list – so
they continue to repeat the same computation.

Listing 7.31: Arbitrary CRCW Quick-sort
1 //Quick-sort list

2 forall processor p in 0..(n-1)

3 root = p

4 parent[p] = root

5 done = 1

6 while(! done)

7 forall processor p in 0..(n-1)

8 done = 1

9 if(list[p] < list[parent[p])]

10 leftchild[parent[p]] = p // Write winner becomes the left child

11 if(leftchild[parent[p]] != p) // Lost write. Retry with new parent.

12 parent[p] = leftchild[parent[p]]

13 done = 0

DRAFT 1.6
276 an introduction to parallel programming

14 if(list[p] > list[parent[p]])

15 righttchild[parent[p]] = p // Write winner becomes the right child

16 if(leftchild[parent[p]] != p)

17 parent[p] = rightchild[parent[p]] // Lost write. Retry with new parent.

18 done = 0

The expected time complexity of Listing 7.31 is O(log n), as it takes
O(1) time per iteration, with n processors active. The number of
iterations is one more than the number of levels in the quicksort-tree.
One last iteration is required to ensure that no processor sets done to
0. Thus, the total work complexity is O(n log n). Recall that concur-
rent writes incur a cost even in modern shared-memory platforms.
Nonetheless, the algorithm described above is illustrative of a gen-
eral application of leader election (which is a form of the consensus
problem).

7.10 Fixing Processor Count: Sample-Sort

As mentioned earlier, concurrent PRAM operations do not translate
well to practical programming platforms. In a more practical setting,
P processors, each, hold n

P of the initial list that is to be sorted. As
described in Chapter 5, a good parallel design attempts to maximize
P relatively independent tasks, each performed sequentially at one of
the processors. In the context of merge-sort, one would locally sort
the n

P elements at each processor, and follow that up with a P-way
merge of the P sorted lists. Similarly, in the quick-sort variant, it may
be useful to partition the initial list into P sublists, with each sublist
getting elements larger than the previous sublist. Then, each sublist
can be sorted by one of the P processors independently of others.
Both of these methods are facilitated by sample-sort.

Sample-sort is based on the creation of a smaller list of size O(P),
which is a cover for the initial list, not unlike the pipelined merge-
sort. The main idea is to be able to find P disjoint ranges of values
{Ri, i 2 0..(P � 1)} so that the upper limit of range i is less than the
lower limit of range i + 1, and the total number of elements in each
range is roughly equal. Once {Ri} is known, it is trivial to determine
the range in which each element list[i] lies. Thus, in O(log P) time
and O(n log P) work, we can compute P lists r[j], j 2 0..(P � 1). r[j][k]
contains the range numbers that element k at processor [j] lies in.
Ranges are also called buckets.

Next, we collect all elements in bucket i at processor i. This is the
partition step of Quick-sort. Each bucket can then be independently
sorted. Alternatively, we can first sort the n

P elements at each proces-
sor, and then distribute one bucket per processor. The so collected

DRAFT 1.6
parallel algorithms and techniques 277

P sorted sublists at each processor are merged to complete the sort-
ing. Both schemes have similar communication requirements, and
both rely on creating ranges in a way that each bucket is equitably
distributed among all processors. This range creating follows the
method of sampling as follows:

Listing 7.32: Parallel Sampling

1 // Find well distributed samples of list

2 forall processor p in 0..(P-1)

3 locally sort list[p] containing n/P elements available at processor p

4 sublist[p] = {list[p][i*n/(P*P)]} i in 1..(P-1) // Take P-1 separators

5 slist = sort(subllist[p], p in 0..P-1) using P processors // All separators

6 range = {slist[i*(P-1)]} i in 1..(P-1) // P-1 evenly sampled splitters

Listing 7.32 assumes that the input list is equally distributed
among P processors; list[p] comprises the set of elements at processor
p. Each processor initially sorts its set to find well-separated samples.
Each chooses P � 1 separators. These P ⇤ (P � 1) total separators are
again sorted, possibly using all P processors, in order to next find
P � 1 globally well-separated splitters. These splitters are put in the
list range[0..(P � 2)]. Two consecutive elements define a range. We
may assume range[�1] = �•, and range[P � 1] = +• as default
splitters. Thus, there are P ranges. We also allow each range to
be open at its upper end to ensure that there is no overlap among
consecutive ranges.

Figure 7.18: Sampling a list. Assume
P = 5. list[0] and list[4] are shown after
local sorting. Filled circles stand for cho-
sen separators, P � 1 per processor. slist
shows all separators of all processors.
Again, filled circles in slist show the
chosen P � 1 splitters.

range is a 2n
P cover of list, meaning there are no more than 2n

P
elements in list between any consecutive elements of range. Figure
7.18 explains this. Note that between any two consecutive elements
of range, say a and b, there are P elements of slist, each of which is
a separator selected on line 4 of Listing 7.32. Suppose ni of these
separators come from processor i. These ni separators are necessarily
consecutive separators of processor i, and any separator just before
or just after these ni separators in list[p] (see x and y in the figure)
are not in the range a..b. Up to n

P2 � 1 non-separators just after x and

DRAFT 1.6
278 an introduction to parallel programming

up to n
P2 � 1 non-separators just before y, could be in the range a..b.

Counting them in, no more than (ni + 1) n
P2 � 1 elements in list[i] may

lie in the range a..b. That means there are never more than

P�1

Â
i=0

h
(ni + 1)

n
P2 � 1

i
=

n
P2

P�1

Â
i=0

(ni + 1)� P 2n
P

total elements in list in the range a..b, since Â ni = P.
Local sequential sorting at line 3 requires O(n

P log n
P) time and

O(n log n
P) work, with P processors performing each sort. Forming

sublist takes O(P) steps at each processor. The parallel sort of P
sorted lists, one per processor, and each of size P � 1, appears to be
similar to the original problem and may be performed recursively.
However, this step is not the bottleneck for the entire algorithm if P is
small compared to n. Pair-wise merge, as in the merge-tree of Figure
7.10, suffices. The height of the tree is log P. At level i, P

2i+1 processors
send 2i(P � 1) elements each to their siblings, and those P

2i+1 siblings
merge two lists of size 2i(P � 1) each.

The computation time at level i is O(2iP), and work is O(P2). For
the BSP model, O(P

2i+1) messages are sent at level i. Hence, the total
time complexity of merging at line 5 is O(P2), and work complexity
is O(P2 log P). O(P) messages are sent. Sampling slist into range at
one processor takes O(P) time.

Finally, to complete sample-sort, the list range is broadcast to all
processors requiring O(P) messages. After all the processors receive
range, they form P buckets each, taking O(n

P log P) time each. Then,
each processor sends its elements of bucket i (if any) to processor i.
In the BSP model, each processor sends a single message to possibly
all P � 1 other processors, leading to the communication cost of
P ⇤ (P � 1) = O(P2). After receiving its bucket from P � 1 other
processors, processor i, merges them in time O(n

P), since no bucket
has more than 2n

P elements.
Thus, the total time complexity is bounded by the initial local

sorting: O(n
P log n

P).

7.11 Exploiting Parallelism: Minimum Spanning Tree

We close this chapter with an example of discovering opportunities
for parallelization in sequential graph algorithms. An oft-required
task for weighted graphs is to find its skeleton – the minimum span-
ning tree. In this context, weighted graphs have weights associated
with their edges. The spanning tree of a graph is a tree that includes
all its vertices and a subset of its edges. The tree must be connected
and without any cycles by definition. (A cycle is a path that does
not repeat any vertex.) The weight of a spanning tree is the sum of

DRAFT 1.6
parallel algorithms and techniques 279

the weights of all its edges. Many spanning trees may be formed
in a graph. The minimum spanning tree (or MST) of a graph is one
whose weight is no greater than the others. Figure 7.19 shows the
edge-weights of an example graph. The MST is shown in solid edges.
Non-MST edges are in dashed lines.

Figure 7.19: Minimum Spanning Tree of
a Weighted Graph

Prim’s algorithm6 is a greedy sequential algorithm to compute 6 R. C. Prim. Shortest connection
networks and some generalizations.
The Bell System Technical Journal, 36(6):
1389–1401, 1957

MST of a given weighted undirected graph G with n vertices and
m edges. It incrementally builds MST by adding one vertex and its
connecting edge at a time, starting with an arbitrary vertex. At each
step, it selects the edge with the least weight among those connecting
any vertex v 2 MST constructed so far with any vertex w 2 G� MST.

In Listing 7.33, when vertex minv is added to MST, its neighbor in
the MST is specified by Parent[minv]. In other words, (Parent[minv],
minv) is the connecting edge. The first vertex added to the MST has
a null Parent. An auxiliary array Cost[w] maintains the weight of
the least-weight edge connecting vertex w to the evolving MST. Cost
is not known in the beginning, and an overestimate is maintained.
These estimates are lazily improved when a neighbor of w is included
in MST. When (Parent[minv], minv) is added to MST, the weight of
that edge, which is Cost[minv], is smaller than the weights of all
other edges connecting any vertex in MST with any vertex in G�
MST.

Inductively, if the current edges in MST are in the final MST,
edge (Parent[minv], minv) must also be in the final MST. Otherwise,
the path in the final MST from minv to Parent[minv] would have
to go through another edge (w, v) where w 2 G� MST and v 2
MST. However, then the cost of that final MST could be reduced by
replacing edge (w, v) with (Parent[minv], minv).

Listing 7.33: Prim’s MST algorithm

1 for v in 1..n // n = Number of vertices in G. We are counting from 1 here.

2 Cost[v] = •
3 Parent[v] = null

4 MST = null

5 GV = {Vertices in G}

6 for i in 1..n

7 minv = vertex with min Cost[v] 8 v 2 GV // Break tie arbitrarily

8 GV = GV - minv

9 MST = MST [(Parent[minv], minv)

DRAFT 1.6
280 an introduction to parallel programming

10 for each vertex adjacent to minv

11 if Cost[v] > EdgeWeight(minv, v)

12 Cost[v] = EdgeWeight(minv, v)

13 Parent[v] = minv

The time-consuming operations in this loop is the minimum cost
discovery on line 7 and the Cost updates on line 10. These are usu-
ally implemented with the help of a priority queue holding up to n
keys. This priority queue stands for GV. The cost reduction on line
12 requires up to deg[minv] decrease-key operations in the priority
queue, deg[minv] being the degree of vertex minv. Of course, these
deg[minv] edges connected to minv are updated only once when minv
is added to MST. Fibonacci Heaps7 require O(1) amortized time per 7 Michael L. Fredman and Robert Endre

Tarjan. Fibonacci heaps and their uses
in improved network optimization
algorithms. J. ACM, 34(3):596–615, jul
1987. ISSN 0004-5411. URL https:
//doi.org/10.1145/28869.28874

decrease. Relaxed Heaps8 can complete each decrease in O(1) time

8 James R. Driscoll, Harold N. Gabow,
Ruth Shrairman, and Robert E. Tarjan.
Relaxed heaps: An alternative to
fibonacci heaps with applications to
parallel computation. Commun. ACM, 31
(11):1343–1354, nov 1988

in the worst case. Both require O(log n) time for each extraction of
the minimum Cost vertex on line 7. This adds up to O(m + n log n)
sequential time for the entire algorithm. Note that for dense graphs
where, say, m > n log n, this time is bounded by O(m). For sparser
graphs, n log n dominates.

Let’s see how Prim’s algorithm admits parallelism. The initializa-
tion on line 1 can be completed on EREW PRAM in O(1) time and
O(n) work. The loop on line 6 is inherently sequential and requires n
iterations. Maybe, the priority queue operations can be parallelized: a
single extract-min operation and multiple decrease-key operations.

One option is to subdivide the queue among many processors.
Up to n processors could be used, with processor v associated with
maintaining Cost[v]. Thus, the time to build this ‘trivial’ queue is
O(1) with O(n) work. We can then resort to the minima-finding
algorithms discussed in Section 7.3. That would require O(log n) time
with O(n) work on EREW PRAM to extract the minimum cost vertex.
Decrease operations can be completed in O(log n) time with O(n)
work, with each processor v updating Cost[v] in parallel. Note that
O(log n) time would be required for each processor to read the value
of minv. If we allow CREW PRAM, the decrease operations would
complete in O(1) time. EdgeWeight(minv, v) can be located in O(1)
time by processor v with an adjacency matrix-based representation.
This is demonstrated in Listing 7.34.

Listing 7.34: Parallelized Prim’s MST algorithm

1 forall v in 1..n // n = Number of vertices in G

2 Cost[v] = •
3 Parent[v] = null

4 inMST[v] = false

5 MST = null

6 GV = Build Priority Queue on Cost // Sequential time complexity is $O(n)$

https://doi.org/10.1145/28869.28874
https://doi.org/10.1145/28869.28874

DRAFT 1.6
parallel algorithms and techniques 281

7 for i in 1..n

8 minv = ExtractMin (GV) // Break tie arbitrarily

9 inMST[minv] = true

10 Append (Parent[minv], minv) to MST

11 forall v in 1..n

12 if inMST[v] == false && Cost[v] > EdgeWeight[minv][v] // EdgeWeight stored in adjacency matrix

13 DecreaseKey(GV) for v from Cost[v] to EdgeWeight[minv][v]

14 Cost[v] = EdgeWeight[minv][v]

15 Parent[v] = minv

Listing 7.34 takes O(n log n) time and O(n2) work, given that all
n processors are busy for all n iterations. That is not efficient, partic-
ularly for sparse graphs. Maybe, a more specialized data structure
can help: a parallel priority queue based on Binomial Heaps9 allows 9 Gerth Stølting Brodal. Priority queues

on parallel machines. Parallel Computing,
25(8):987–1011, 1999

O(1)-time O(log n)-work extraction and decrease-key operations on
CREW PRAM (see Section 7.11).

The total time on line 8 is then O(n) with O(n log n) work. How-
ever, the inner loop on line 11 does not meet those bounds. We
need to restructure this loop to focus on the actual number of edges
incident on vertex minv, as in Listing 7.35. We assume that array
adj[v] (of size deg[v]) stores the identifier of every vertex w adjacent
to vertex v. Similarly, EdgeWeight[v][j] stores the weight of edge
(v, adj[v][j]).

Listing 7.35: Restructuring the Cost update loop at line 11 of Listing
7.34 Prim’s MST algorithm with Parallel Priority Queue

1 for j in 1..deg[minv]

2 v = adj[minv][j]

3 if inMST[v] == false && Cost[v] > EdgeWeight[minv][j]

4 DecreaseKey(GV) for v from Cost[v] to EdgeWeight[minv][j]

5 Cost[v] = EdgeWeight[minv][j]

6 Parent[v] = minv

The total number of decrease-key operations now is O(m), leading
to the total time O(m + n) and work O((m + n) log n). This is a
minor improvement over sequential time for sparse graphs. It is
worth noting that other graph algorithms, e.g., Dijkstra’s shortest
path algorithm10, also benefit similarly from parallel priority queue 10 E. W. Dijkstra. A note on two prob-

lems in connexion with graphs. Nu-
merische Mathematik, 1:269–271, 1959

operations similarly. That is left as an exercise.

Parallel Priority Queue

Binomial trees of rank r are defined recursively as follows:

1. Binomial tree of rank 0 is a single node. Call it B0.

2. Binomial tree of rank r, Br, is formed by two Binomial trees of
rank r � 1, B1r�1 and B2r�1 by making the root of one, say B1, a

DRAFT 1.6
282 an introduction to parallel programming

child of the other, B2. For example, in Figure 7.20(c), B2 is con-
structed by making the root of B21 the second child of the root of
B11.

In general, the children of the root of Br are respectively themselves
roots of B0, B1, .. Br�1, as seen in Figure 7.20(d). A simple induction
on rank shows that a Binomial tree of rank r has 2r nodes and depth
r. A Binomial heap stores keys at all nodes with the constraint that
the key at every node is smaller (or larger for max-Heap) than the
keys at its children. The parallel priority queue Q is represented as a

Figure 7.20: Examples of Binomial Trees
of rank 0 to rank 4 from left to right

forest of Binomial heaps with the constraint that there are between 1
and 3 binomial heaps of every rank r, r Qr, the rank of the priority
queue. In particular, let ni(Q) be the number of trees with rank i in
Q. ni(Q) = {1, 2, 3} for i = 0..Qr. This ensures the Qr (1 + log n) if
n items are stored in the queue. We associate the rank of a Binomial
heap also with its root, meaning the root of a rank r heap has rank
r. Also, among a given set of nodes, the one with the minimum key
is called the minimum node in short. The forest Q has the following
ordering property on the key values at its nodes.

Minimum Root: The minimum root of rank r in Q is smaller
than all roots of rank r0 � r.

By this property, the minimum key of the queue is always at the
minimum root among roots of rank 0. For simplicity, we assume
that the key values are unique, meaning all ties are broken. Let
Q.root[i] be the list of roots with rank i. Further, let node.child[i]
denote the list of children of any node. We refer to the key at a node
by node.key. Two operations Link and Unlink are defined, which help
maintain this property using multiple processors.

Link(h1, h2) links the root h2 of heap H2r as a child of h1, the root
of another heap H1r, each of rank r. For the heap order property,
h1.key< h2.key for this operation. This forms a new heap of rank r + 1
with root h. This linking is an O(1)-time operation by a single pro-
cessor assuming h2 can be appended to h1.child in O(1). In addition,
roots h1 and h2 must be removed from Q.root[r] and h appended
to Q.root[r + 1]. This can be accomplished by, say, using a linked
list structure for root and child. In principle, this requires O(1)-time

DRAFT 1.6
parallel algorithms and techniques 283

memory allocation. This can be handled by allocating P nodes per
invocation of Link when using P processors.

Unlink is the inverse of Link. Unlink(r) separates Hr+1, a heap of
rank r + 1 into two heaps of rank r each. This is accomplished by
nullifying the last child h1 of root h of Hr+1. After this, h is removed
from Q.roots[r + 1], and h and h1 are both added to Q.roots[r]. Again
Unlink(h) takes one processor O(1) time.

The following conditions allow Link and Unlink to maintain the
Priority queue properties.

1. One linking is done for the heaps of each rank, except the mini-
mum root of any rank r never participates in Link. This means that
linking is only carried out if at least 3 roots of rank r exist. This
ensures that the Minimum Root Property is not perturbed by Link.

2. Condition 1 also means that at most one pair of nodes of rank r
may be linked together. If this holds for all ranks, up to two trees
of each rank r may be removed by linking, and at most one tree
of rank r may be added (when two rank r � 1 trees are linked).
This means that if there are fewer than 3 trees of rank r before the
linkings, there can be at most 3 trees of rank r after the linking. On
the other hand, if there are more than 2 trees of rank r (nr(Q) can
temporarily reach 4) before the linkings, nr(Q) reduces by at least
1. Thus, nr(Q) 2 {1, 2, 3} for all r after the linkings.

3. Only the minimum root of any rank r, r > 0, is unlinked. After
the unliking, that minimum root becomes a root of rank r � 1. It
may become the minimum root of rank r � 1, or a smaller root of
rank r � 1 may already exist. Hence, the Minimum Root property
continues to hold.

4. Condition 3 also means that a root at each rank is unlinked. This
removes one root of rank r, but adds two roots of rank r, which
were unlinked from the erstwhile minimum root of rank r + 1,
unless r was the maximum rank. In that case, the maximum rabkn
reduces by 1. Thus, the net increase in nr(Q) is 1 for Qr > r > 0.
Since the roots of rank 0 cannot be unlinked, n0(Q) increases by 2
after the unlinkings.

The parallel linking and unlinking are specified in Listing 7.36 and
7.37.

Listing 7.36: Parallel Link
forall r in 0..b1 + log nc � 2

if(Q.root[r].size >= 3)

(max, nextmax) = Two largest roots of rank r

L = Link(Q.root[r][max], Q.root[r][nextmax])

DRAFT 1.6
284 an introduction to parallel programming

Remove(Q.root[r], max)

Remove(Q.root[r], nextmax)

Add(Q.root[r+1], L)

Listing 7.37: Parallel Unlink
forall r in 1..b1 + log nc � 1

if(Q.root[r].size >= 1)

min = Smallest roots of rank r

(L1, L2) = Unink(Q.root[r][min])

Remove(Q.root[r], min)

Add(Q.root[r-1], L1)

Add(Q.root[r-1], L2)

To insert an element to Q, a new singleton node e is created with
the element, and e is inserted to Q.root[0] and Parallel Link of Listing
7.36 is invoked on Q. The minimum element is always listed in
Q.root[0] (which can be kept sorted by the key). To remove the node
with the minimum element, call it Q.root[0][min], we simply remove
the node from Q.root[0]. However, this may violate the Minimum
Root property. The erstwhile second smallest root need not be in a
rank 0 tree. In that case, the minimum root at rank 1 must be the new
smallest, as it is guaranteed to be smaller than the smallest roots at
higher ranks. One invocation of Parallel Unlink of Listing 7.37 can
bring the new minima to rank 0. This can lead to 4 roots of rank 0,
however. One invocation of Parallel Link (Listing 7.36) brings it down
to 2.

MST with Parallel Priority Queue

Although it is possible to also decrease keys on O(1) time using a
pipelined version of Link and Unlink11, for MST computation, it 11 Gerth Stølting Brodal. Priority queues

on parallel machines. Parallel Computing,
25(8):987–1011, 1999

is sufficient to simply insert the new Cost[v]. This allows multiple
entries for v to co-exist, but the new cost is always lower, and it will
be extracted first. This would imply that those stale larger key values
could be extracted later. We can use the inMST[v] marker to discard
such extraction. Since at most m edges exist in the graph, up to m
entries may now exist in the priority queue, and up to m extractions
could occur on line 1 of Listing 7.34 (see Listing 7.38). That amounts
to O(m) total time to compute MST with (m log m) work. Note that
log m is O(log n). As a result, the total work remains O(m log n). We
assume m � n � 1. Otherwise, a spanning tree of G does not exist.

Listing 7.38: Parallelized Prim’s MST algorithm with Parallel Priority
Queue

1 forall v in 1..n // n = Number of vertices in G

DRAFT 1.6
parallel algorithms and techniques 285

2 Cost[v] = •
3 Parent[v] = null

4 inMST[v] = false

5 MST = null

6 GV = Build Priority Queue on Cost

7 for i in 1..n

8 repeat

9 minv = ExtractMin (GV) // Break tie arbitrarily

10 until inMST[minv] is false

11 inMST[minv] = true

12 Append (Parent[minv], minv) to MST

13 forall v in 1..degree[minv]

14 if inMST[v] == false && Cost[v] > EdgeWeight[minv][v]

15 Cost[v] = EdgeWeight[minv][v]

16 Parent[v] = minv

17 Insert(GV, (v , Cost[v]))

A shortcoming of all variants of the Prim’s algorithm demon-
strated above is the sequential loop (line 6 of Listing 7.33). This can
only be addressed by an entirely different structure. For example,
Sollin’s algorithm12 begins with each vertex of G as an isolated tree. 12 Joseph Jájá. Introduction to Parallel

Algorithms. Pearson, 1992It merges these trees (not unlike the connected components algorithm
of Section 7.6) by including the minimum-weight edge going out of
each tree, thus building larger trees. This affords an opportunity for
multiple parallel mergers. Indeed, the number of trees remaining
after each iteration is at most half of the number before the iteration.
This is explored in Exercise 7.21.

7.12 Summary

This chapter presents several techniques useful to develop parallel
algorithms. A model like PRAM often helps simplify thinking about
the algorithm. Nonetheless, we need to evaluate the algorithms also
in the context of practical architecture. For most shared-memory ma-
chines, CREW PRAM works well. Arbitrary-CRCW PRAM has some
overhead but still works. On the other hand, only EREW PRAM is
likely to translate well to message passing machines. For this environ-
ment, the BSP model provides avenues for a more careful accounting
of overheads.

In either case, while designing parallel algorithms, we can either
think in terms of the total number of operations required or the
number of processors required. They are equivalent formulations of
work complexity as a function of the problem size n. Sometimes, it is
convenient to instead think of the number of processors p also as a
parameter. The time taken by p processors on the problem with size
n then becomes the way to measure complexity.

DRAFT 1.6
286 an introduction to parallel programming

Many times the task of designing an efficient algorithm amounts
to finding which sequential dependencies to break. This could be
accomplished e.g., by repeating a computation or deferring a compu-
tation by allowing it to proceed concurrently. Deferring works well
in case the partial results of the originally dependent computation
can be later retrofitted with the late-arriving results of that concurrent
computation.

Divide and conquer is among the most pervasive paradigms for
parallel algorithm design, just as it is for sequential algorithm design.
Division into two sub-problems at a time is quite standard in the
sequential domain. That is often valuable in parallel algorithms as
well and manifests as a binary computation tree. However, digging
a bit deeper into the work-scheduling principle, subdivision into
more than two problems at a time is useful in the parallel domain.
Furthermore, in parallel algorithms, it may not always pay to carry
out the recursion all the way to the top of the recursion tree, where
increasingly fewer processors are employed. Nonetheless, if the
total work remaining at the top of the tree is small, it matters little.
Indeed, we can exploit that fact by using a less work-efficient and
more time-efficient algorithm at the top levels.

Accelerated cascading is a powerful design pattern for parallel
algorithms. It allows us to combine a divide and conquer solution
with low time complexity but high work complexity with one that
has a higher time complexity and a lower work complexity. Usually,
the lower time complexity is obtained by subdividing the problem
much more aggressively than into two each time. For example, if
we subdivide a problem of size n into O(

p
n) each time, the height

of the tree shrinks to doubly-log in n: log log n. If we subdivide into
two (or a fixed number) at a time, the height is O(log n). However,
the shrinkage in height can come at the cost of work complexity.
By using the slower algorithm at the lower levels of the tree, we
can quickly reduce the problem size. Employing the higher-work
complexity algorithm on the smaller problems then adds up to lower
total work.

Pointer jumping is another handy tool for graph and list traversal,
where multiple processors can proceed with multiple traversals in
parallel, exploiting each other’s traversals. Pipelining is a useful tool
when an algorithm is divisible into parts that need to be performed
in sequence by a series of data items. Inserting multiple items into
a tree is a good example. Many graph algorithms are based on
processing edges or vertices in a certain order. This order can vary
dynamically, and can be updated each time the next vertex or edge
is selected. Minimum spanning tree computation is an example.
Parallel operation of priority queues can be a useful tool in such

DRAFT 1.6
parallel algorithms and techniques 287

situations.

Exercise

7.1. Give an O(1) EREW PRAM algorithm to find the index of the
single 1 in BITS, a list of n bits. There is at most one 1 in BITS. If
no 1 exists in BITS, the output must be n.

7.2. Analyze the time and work complexity of the recursive dependency-
breaking parallel algorithm to compute the prefix-sum introduced
as Method 1 in Section 7.1.

7.3. Prove that the algorithm in Listing 7.5 computes the prefix sum.
Analyze its time and work complexity.

7.4. Modify the algorithm in Listing 7.7 computes the exclusive pre-
fix sum. (Try not to first compute the prefix-sum before computing
the exclusive sum from it).

7.5. Re-pose all the three methods for parallel prefix-sum computa-
tion discussed in Section 7.1 under the BSP model. Analyze their
time and work complexity, and compare their performance.

7.6. Devise and algorithm to compute segmented prefix-sum S of
array D, where the segment markers are given in an array F, as
shown below:

Segment begins at index where F does not have a 0 to its imme-
diate left, and continues until a non-0 is discovered. We say a
non-existent value like F[�1] is non-0. Prefix-sum is computed for
each segment.

7.7. Modify the segmented prefix-sum algorithm of Exerciseex:segscan
to compute segmented prefix-minima M, given D and S. M[i] is
the minimum element D[j] among all j < i within the segment of i.

7.8. Efficiently Compute the polynomial

n

Â
i=0

D[i]xi,

given an array D, the integer n, and a real number x.

DRAFT 1.6
288 an introduction to parallel programming

7.9. Given a list BIT of n 1-bit values, find the lowest such index
i that B[i] = 1. If no bit is 1, the answer is n. Find an O(log n)
time algorithm with O(n) work for EREW PRAM. Find an O(1)
time and O(n) work algorithm for common-CRCW PRAM. (Hint:
Subdivide BIT into blocks of

p
n.)

7.10. Given a list INT of n integers, compute list ANSV such that
ANSV[i] stores the value INT[j] found at the largest index j where
INT[j] < INT[i] and j < i. If no such j exists, the answer is n. Find
an O(1) time algorithm with O(n2) work to compute ANSV on
Common-CRCW PRAM. (Hint: Use Exercise 7.9.) Find an O(log n)
time algorithm with O(n) work to compute ANSV for EREW
PRAM.

7.11. Compute Prefix-minima M given input integer list D with
n elements (M[i] as the minimum of all D[j] among j < i) in
O(log log n) time using O(n log log n) work on Common-CRCW
PRAM. (Hint: Use Exercise 7.10 to devise accelerated cascading.)

7.12. Recall Merge Method 1 in Section 7.2. There we subdivided the
problem of merging two sorted lists into two unequal subproblems
by finding the rank of the middle element of the larger list in the
other list. This may not subdivide the smaller list equally. What if
we also locate the middle element of the second list in the larger
list. This will lead to three merger sub-problems, none of them
with more than half the elements from either list. Does that lead to
an improved performance in time and work? Analyze.

7.13. Given a connected undirected graph G with n vertices and a list
of m edges E, where ith edge E[i] is a pair of integers (u, v), u <

n, v < n indicating that vertex number u and vertex number v
have an edge between them. Given P PRAM processors, compute
the list RANK such that RANK[j] is the level of vertex number i
in breadth-first search of G starting at vertex 0. You may use any
PRAM model.

7.14. Consider mapping the Quicksort partitioning algorithm on
P message passing processors. Revise the algorithm discussed
in Section 7.9 to account for the given P and provide the time
complexity under the BSP model.

7.15. Reformulate the Sample sort algorithm in Section 7.10 for a
CREW PRAM and analyze its time and work complexity.

7.16. A parallel strategy for sorting is to focus on finding the rank of
each element. This is also called enumeration sort. With n2 com-
parisons, ranks of each of n element can be determined. Of course,

DRAFT 1.6
parallel algorithms and techniques 289

we still need to find the rank of an element after comparing it to
n � 1 other elements. How quickly can you enumeration-sort n
elements on

(a) CREW PRAM

(b) EREW PRAM

Provide the time and work complexities.

7.17. The selection problem is to find the kth smallest element in a list
List of n unsorted elements. Devise a parallel selection algorithm
taking O(log2 n) time and O(n) work on CREW PRAM. (Hint:
Consider recursively reducing the problem of selecting from n1
unordered items to a problem of selecting from no more than 3n1

4
items in log n1 time with O(n1) work.)

7.18. Assume a sorting algorithm that runs in O(log n) time with
O(n log n) work on CREW PRAM. Combine this sorting algorithm
with the selection algorithm in Exercise 7.17 to accomplish parallel
selection in O(log log n) time with O(n) work.

7.19. Consider the first algorithm in Section 7.6. Modify the al-
gorithm to produce labels such that those labels double as the
component number. All components must be sequentially num-
bered, but in any arbitrary order. Is there any change to the work
complexity of the connected components algorithm due to this
additional requirement?

7.20. Consider the CREW-PRAM minimum spanning tree algorithm
described in Section 3.3. What changes could make it work on
EREW-PRAM? What is the resulting time and work complexity?

7.21. Provide an CREW-PRAM algorithm with O(log2 n) time and
O(n2) work complexities to compute the minimum spanning tree
of a graph with n vertices. (Hint: Start with many small trees and
merge them until a single tree remains.)

7.22. Provide an algorithm to compute the shortest path between two
vertices v1 and v2 in an undirected weighted graph on EREW and
CREW PRAM. respectively.

	Concurrency and Parallelism
	Why Study Parallel Programming
	What is in this book
	An Introduction to Parallel Computer Architecture
	Parallel Organization
	System Architecture
	CPU Architecture
	Memory and Cache
	GPU Architecture
	Interconnect Architecture
	Summary

	Parallel Programming Models
	Distributed-Memory Programming Model
	Shared-Memory Programming Model
	Task Graph Model
	Variants of Task Parallelism
	Summary

	Parallel Performance Analysis
	Simple Parallel Model
	Bulk-Synchronous Parallel Model
	PRAM Model
	Parallel Performance Evaluation
	Parallel Work
	Amdahl's Law
	Gustafson's Law
	Karp-Flatt Metric
	Summary

	Synchronization and Communication Primitives
	Threads and Processes
	Race-condition and Consistency of State
	Synchronization
	Mutual Exclusion
	Communication
	Summary

	Parallel Program Design
	Design Steps
	Task Decomposition
	Task Execution
	Input/Output
	Debugging & Profiling
	Summary

	Middleware: The Practice of Parallel Programming
	OpenMP
	MPI
	Chapel
	Map-Reduce
	GPU Programming
	Summary

	Parallel Algorithms and Techniques
	Divide and Conquer: Prefix-Sum
	Divide and Conquer: Merge Two Sorted Lists
	Accelerated Cascading: Find Minima
	Recursive Doubling: List Ranking
	Recursive Doubling: Euler Tour
	Recursive Doubling: Connected Components
	Pipelining: Merge-sort
	Application of Prefix-sum: Radix-Sort
	Exploiting Parallelism: Quick-Sort
	Fixing Processor Count: Sample-Sort
	Exploiting Parallelism: Minimum Spanning Tree
	Summary

	Bibliography

