
DRAFT 1.6
3 Parallel Performance Analysis

Programs need to be correct. Programs also need to be fast. In order
to write efficient programs, one surely must know how to evaluate
efficiency. One might take recourse to our prior understanding of
efficiency in the sequential context and compare observed parallel
performance to observed sequential performance. Or, we can de-
fine parallel efficiency independent of sequential performance. We
may yet draw inspiration from the way efficiency is evaluated in a
sequential context. Into that scheme, we would need to incorporate
the impact of an increasing number of processors deployed to solve
the given problem. Question: How do you reason about

how long an algorithm or program
takes?

Efficiency has two metrics. The first is in an abstract setting, e.
g., asymptotic analysis1 of the underlying algorithm. The second is

1 The notion of asymptotic complexity is
not described here. Readers not aware
of this tool should refer to a book.

Thomas H. Cormen, Charles E.
Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms.
MIT Press, 1990

concrete – how well does the algorithm’s implementation behave in
practice on the available hardware and on data sizes of interest. Both
are important.

There is no substitute for measuring the performance of the real
implementation on real data. On the other hand, developing and
testing iteratively on large parallel systems is prohibitively expensive.
Most development occurs on a small scale: using only few processors,
p, on small input of size n. The extrapolation of these tests to a
much larger scale is deceptively hard, and we often must resort to
simplified models and analysis tools.

Asymptotic analysis on simple models is sometimes criticized
because it over-simplifies several complex dynamics (like cache
behavior, out of order execution on multiple execution engines,
instruction dependencies, etc.) and conceals constant multipliers.
Nonetheless, with large input sizes that are common in parallel appli-
cations, asymptotic measures do have value. They can be computed
somewhat easily, in a standardized setting and without requiring
iterations on large supercomputers. And, concealing constants is a
choice to some degree. Useful constants can and should be retained.
Nonetheless, the abstract part of our analysis will employ the big-O
notation to describe the number of steps an algorithm takes. It is a
function of the input size n and the number of processors p.

DRAFT 1.6
66 an introduction to parallel programming

Asymptotic notation or not, the time t(n, p) to solve a problem in
parallel is a function of n and p. For this purpose, we will generally
count in p the number of sequential processors – they complete their
program instructions in sequence. Naturally, we want both n and
p to be variable to allow a wider choice of computing platforms.
t(n, p) is the number of steps taken by the slowest of the p processors
deployed. Like we expect a program to run on varying input sizes,
we also must design programs that run well with varying p. In
reality, t is also a function of the core structure, network topology,
cache sizes, etc., but taking a cue from the sequential analysis style,
we will use a simplified model of a parallel system.

3.1 Simple Parallel Model

We need a simple model of computation steps to be able to evaluate
performance. Random Access Machine (RAM) model2 is a sequential 2 Stephen A. Cook and Robert A.

Reckhow. Time-bounded random access
machines. In Proceedings of the Fourth
Annual ACM Symposium on Theory
of Computing, STOC ’72, page 73–80,
New York, NY, USA, 1972. Association
for Computing Machinery. ISBN
9781450374576

such model, where simple arithmetic operations and memory oper-
ations take a unit time-step. Given that, one may evaluate the total
number of time-steps taken by an algorithm in the worst case, or on
average.

We seek a similar simple model to capture parallelism.

1. A parallel system consists of p sequential processors, p is a vari-
able and may be chosen to be a function of n. It may be fixed for
the entire duration of the algorithm or could be allowed to vary
from step to step3 3 Varying p may seem odd at first,

considering that most computing
systems have a fixed size. Nonetheless,
we do not generally design algorithms
and programs for one specific machine.
They must be flexible and support
variable p. See Section 3.5 for a more
detailed explanation.

2. Each processor has access to an unbounded number of constant-
sized local memory locations, which are not accessible to other
processors.

3. Each processor can read from or write to any local memory loca-
tion in unit time.

4. Communicating a constant-sized message from processor i to
processor j takes unit time.

5. Each processor takes unit time to perform simple arithmetic and
logical operations.

This model is simple and more useful than it may first seem. Its
major shortcoming is that the time taken by the network in message
transmission is not modeled. The cost of synchronization is also
ignored. Instead, it assumes that if a message addressed to proces-
sor i is sent by some other processor, it arrives instantaneously and
processor i spends 1 time-unit reading it. In effect, processor i may

DRAFT 1.6
parallel performance analysis 67

receive a message at any time, and only the unit time spent in re-
ceiving is counted. This model works reasonably well in practice for
programs based on the distributed-memory model. A more precise
model accounts for the message transmission delay as well as the
synchronization overhead.

3.2 Bulk-Synchronous Parallel Model

The Bulk-synchronous parallel model (i. e., BSP model4) addresses 4 Leslie G. Valiant. A bridging model for
parallel computation. Communications of
the ACM, 33(8):103–111, August 1990

those two shortcomings. At the same time, it avoids modeling syn-
chronizations in too great a detail. The BSP model limits synchroniza-
tion to defined points after every few local steps. Thus recognizing
that synchronization is an occasional requirement, it groups instruc-
tions into super-steps. A super-step consists of any number of local
arithmetic or memory steps, followed by one synchronization step.
Just as in the simple model, an arbitrary number of processors is
available per super-step. We continue to denote their count by p.
Each processor has access to an arbitrary number of local memory
locations.

1. Super-steps proceed in synchrony: all processors complete step s
before any starts step s + 1.

2. Super-step consists of local steps, followed by a synchronization
step. The synchronization is a global event – all processors take
this step, and its end indicates that all processors have reached
the synchronization step. After the synchronization completes,
the next super-step may begin. The time taken to synchronize is a
function of p, the number of processors.

3. The time taken by a super-step includes the local computation
times, which is the maximum time taken by any processor: Ls for
super-step s. This can vary from super-step to super-step. Ls may
depend on the input size n and processor count p.

4. In super-step s, processor i sends hsi point-to-point messages to
other processors. The total number of messages sent in super-step
s is Â hsi = hs. hs may be a function of n and p.

5. The messages are all received in the synchronization step. Thus
the received data is available only in the next super-step. This
clearly defines the send-receive synchronization point.

Figure 3.1 depicts the super-steps in a BSP model. All processors
perform local computation interspersed with sends. The messages
go into the network, which delivers them to their destinations. At

DRAFT 1.6
68 an introduction to parallel programming

Figure 3.1: BSP computation model

the completion of these local steps, each processor proceeds to the
synchronization barrier. Formally, no processor may cross this barrier
until all processors have reached it and they have all received their
messages.

BSP Computation Time

The time taken by a BSP algorithm is the sum of times taken by each
super-step. The time taken by a super-step varies from step to step.
This time includes computation time as well as data transmission
and synchronization time. The computation time for super-step s is
Ls, the maximum time taken by any processor. We assume in this
analysis that the processors all execute at the same rate, meaning that
a unit time is the same for all processors. The number of steps taken
by different processors can then be compared to each other. It’s a safe
assumption for asymptotic analysis because the clock rates, in reality,
do not differ by more than a constant factor. In fact, rates may not
differ by much at all in practice, and even with the assumption of a
common rate, the performance analysis is meaningful.

The data transmission time is proportional to hs. For example, we
might say that the network has the capacity to deliver 1

t messages
per unit time. The time taken to deliver hs message then is t hs. One
might consider t to be a function of p, or let it be a constant for
simpler analysis. Finally the synchronization time Ss is a function
only of p.

Thus the super-step time is Ls + t hs + Ss. The total execution time =

Â
8parallel super-step s

(Ls + t hs + Ss).

Each component is potentially a function if p. Ls and hs may also
depend on n. If p is constant for all steps, t and Ss can be taken as

DRAFT 1.6
parallel performance analysis 69

constants as well. In this case, Â Ss is proportional to the number
of super-steps and Â(t hs) is proportional to the total number of
messages sent by the algorithm and finally Â(Ls) measures the
computation time across the steps.

This model does consider the synchronization overhead and idle
times of processors. On the other hand, it ignores the complexities
of network communication. For example, in real systems, multiple
messages between two pairs could be batched, benefitting from a
common setup time. The time need not be solely a function of the
total number of messages. We have also seen in chapter 1 that not
all pairs have equal latency or throughput. BSP model also ignores
that messages may overlap local computation. A cleverly written
program attempts to hide communication latency by performing
other computation concurrently with the communication.

Assuming complete concurrency between computation and com-
munication, we can account for the overlap by replacing Ls + t hs with
max(Ls, t hs). This would not impact asymptotic analysis as the big-O
complexity remains the same. It is desirable for a computational
model to abstract away many complexities – particularly ones that
vary from system to system. The role of the model it to help with a
gross analysis of the parallel algorithm. This algorithm may then be
suitably adapted to the actual hardware architecture, at which point
some of the abstracted details can be reconsidered.

BSP Example

Let us consider an illustrative example of performance analysis using
the BSP model. Take the problem of computing the dot product of
two vectors.

Assume that the n elements of vectors A and B are initially equally
divided among p processors. The vector segments are in arrays
referred to locally as lA and lB in all processors. The number of
elements in each local array = n

p . Assume n is divisible by p and
consider the following code:

Input: Array A and B with n integers each.

Output:

A · B =
n�1

Â
i=0

A[i]⇥ B[i]

Solution:

forall5 processor i < p {// in parallel 5 forall means that all indicated pro-
cessors perform the loop in parallel.
The range of forall index variable (i
here), along with an optional condition
indicates how many processors are
used. The use of the index variable i in
the enclosed body indicates what each
processor does. We sometimes omit the
keyword processor to emphasize the
data-parallelism.

{ // Super-step local computation:

int lc = 0; // Local at each processor

int lC[p]; // Only needed at processor 0. Used for Receipt.

DRAFT 1.6
70 an introduction to parallel programming

for(int idx=0; idx<n/p; idx++)

lc += lA[idx] * lB[idx];

send lc to processor 0

} { // Super-step synchronization:

barrier; // The barrier is always there for BSP, listed or not.

Receive any item from processor i into lC[i] // Only processor 0 has any

}

}

//-- All receipts have now been completed into lC --

forall processor i == 0 { // Indicates p == 0 now.

{ // Super-step local computation

for(int idx=1; idx<p; idx++)

lc += lC[idx];

output lc;

} {// The barrier is implicit.

}

}

We can now analyze the time complexity of this algorithm. The
first super-step requires k1

n
p local time, k2 p communication time, and

k3 p synchronization time, assuming the network throughput to be a
constant independent of p and the barrier to be a linear function of
p. k1, k2, k3 are constants. The second super-step takes time k4 p. Thus
the total time is Q(n

p + p).
It is possible to make a different choice for the second super-step,

whose goal is to add the p numbers at p processors. Consider the
following alternative. Assume for simplicity that p is a power of 2.

forall processor i < p {// Assume p is a power of 2

{ // Super-step local computation

int lc2; // Designate for receipt of 1 item

int lc = 0;

for(int idx=0; idx<n/p; idx++)

lc += lA[idx] * lB[idx];

if(i >= p/2)

send lc to processor i - p/2 // 2nd half sends to 1st half

p = p/2; // Halve the processor count for the next super-step

}{ // Super-step synchronization

barrier;

receive any item into lc2

}

}

while(p > 0) { // Super-step loop

// Data sent in the previous step have now been received into lc2

forall processor i < p { // Only those that remain active

{ // Super-step local computation

lc += lc2; // Accumulate the received value

if(i >= p/2)

send lc to processor i - p/2 // 2nd half sends to 1st half

DRAFT 1.6
parallel performance analysis 71

p = p/2; // Halve the processors active at the next super-step

}{ // Super-step synchronization

barrier;

receive any item into lc2 // to accumulate further in the next iteration

}

}

}

// -- Last super-step --

forall processor i == 0 {

output lc; // Implicit barrier is after this local step

}

Figure 3.2: Binary tree like Computa-
tion treeNow, there are more super-steps. The super-step loop has log p

iterations. The structure of the computation is that of a binary tree,
as shown in Figure 3.2.This process, where values in a vector are
combined to produce a single scalar value, is called reduction6. In 6 Defined : Values in a vector are

combined to produce a single scalar
value. This is called reduction.

this variant of reduction, the number of processors employed in
each super-step halves from that at the previous step, until it goes
down to 1 in the final step. In this example, each active processor
sends a single message in each iteration. Thus the total time is again
Q(n

p + p + log p) = Q(n
p + p):

• The first super-step takes k1
n
p local time, k2

p
2 communication time

and k3 p synchronization time.

• The iterative super-step s takes Q(1) local time and Q(2(log p�s))

communication and synchronization time. This sums to Q(log p +

p) over the log p super-steps.

• The final super-step takes Q(1) total time.

3.3 PRAM Model

The parallel RAM (i. e., PRAM7) model mirrors the shared-memory 7 Steven Fortune and James Wyllie.
Parallelism in random access machines.
In Proceedings of the Tenth Annual ACM
Symposium on Theory of Computing,
STOC ’78, pages 114––118, New York,
NY, USA, 1978. Association for Comput-
ing Machinery. ISBN 9781450374378

DRAFT 1.6
72 an introduction to parallel programming

programming model. Like the BSP model, the PRAM model also
assumes an arbitrary number of processors, p, each with an arbitrary
number of constant-sized local memory locations. Further:

1. An arbitrary number of shared memory locations are accessible to
all processors.

2. All processors proceed in complete synchrony: all complete
step s before any starts step s + 1. Each step takes constant time.
Thus, there is a barrier after each local step. While unrealistic in
comparison to BSP, this leads to simpler analysis.

3. Each PRAM step is further divided into following three syn-
chronous sub-steps, each taking a constant time:

i) Each active processor i reads a constant sized value from any
shared memory location ri of its choosing.

ii) Each active processor i performs a basic arithmetic or logical
operation, or a local memory operation.

iii) Each active processor i writes a constant sized value to any
shared location wi of its choosing.

The processors that are active at any step depends on the algo-
rithm. Not all active processors are required to perform each sub-
step. Some processors may remain idle in some sub-step.

The imposition of lock-step progress eliminates the need for
explicit synchronization by the program, but it may yet result in
conflicting writes by two processors to the same memory location
in the same step. One solution is simply to disallow such shared
reads and writes. This variant of the model is called EREW PRAM
model: ri 6= rj in any given step and similarly wi 6= wj, for i 6= j.
Algorithms in this model must respect this restriction. Thus, each
reader has exclusive access to its read location and each writer has
exclusive access to its write location. Conflict is hence ruled out by
the definition of the model. This restriction on the model (and hence
the algorithms that assume this model) actually does not limit its
generality. Algorithms designed for models that do not have these
restrictions can be automatically translated into algorithms that do
respect these restrictions. Only, the number of steps required by the
resulting algorithm may be higher.

A more general variant is CREW PRAM, which allows two proces-
sors to read values from the same location in the same step. Writes
remain exclusive. CRCW PRAM models, which allow conflicting
writes as well, are also meaningful if the result of such conflicts are
well defined. Several CRCW models have been proposed.8,9 These 8 Ludĕk Kuc̆era. Parallel computation

and conflicts in memory access. Informa-
tion Processing Letters, 14(2):93 – 96, 1982.
ISSN 0020-0190
9 Yossi Shiloach and Uzi Vishkin. An
o(logn) parallel connectivity algorithm.
Journal of Algorithms, 3(1):57 – 67, 1982.
ISSN 0196-6774

DRAFT 1.6
parallel performance analysis 73

allow wi to equal wj for any number of different i, j pairs, but with
certain restrictions. Some of these are:

• Common-CRCW: If wi = wj, both processors i and j must write
the same value. So, there is no data conflict.

• Arbitrary-CRCW: If wi = wj, either of the conflicting values may
be written. The other is discarded. If more than two processors
conflicts, any one write may succeed. The algorithm’s correctness
must not depend on which value is actually written.

• Priority-CRCW: If wi = wj, the smaller of i and j succeeds. If
more than two processors conflict, the smallest indexed processor
among all conflicting processors has the priority and its value is
written.

Figure 3.3: PRAM computation model

Figure 3.3 demonstrates the PRAM model. Step 1 shows that
processors 2 and 3 read from the same location w. This would not be
possible in an EREW PRAM. All the writes in step 1 are to different
locations – they do not conflict. Hence this step would be allowed by
a CREW PRAM. Note that processor 2 writing to location w and other
processors reading from w in the read sub-step of the same step is not
considered common or conflicting. The read fetches the older value.

Step 2 shows a succinct way to write instructions. Each processor
reads from a shared memory location, optionally adds two value, and
then writes to a shared memory location. Notice that processors 0–2
all write to location y. This is not possible in CREW or EREW PRAM.
It is possible only in CRCW PRAM. Again note that the reading of x
by processor 0 happens strictly before its update by processor 3 in the
write sub-step of this step.

The third step shows that processors 1 and 2 have a common write
to location z. Since the two values are the same, all three CRCW vari-
ants support this. Processors 0 and 3 must also have the same values

DRAFT 1.6
74 an introduction to parallel programming

in their respective local variables l1 and l3 for this program to be
supported by Common CRCW. They may not. Both Priority-CRCW
and Arbitrary-CRCW would support this program. In Priority-CRCW
PRAM, the value in variable l1 of processor 0 is expected to be writ-
ten by this program. In Arbitrary-CRCW PRAM, this program must
produce the correct result irrespective of the value (l1 or l3) written
into y at the end of this step.

All the listed PRAM variants are equally general, and an algorithm
designed in any model can be translated into any other.10,11 The 10 Bogdan S. Chlebus, Krzysztof Diks,

Torben Hagerup, and Tomasz Radzik.
New simulations between crcw prams.
In J. Csirik, J. Demetrovics, and F. Géc-
seg, editors, Fundamentals of Compu-
tation Theory, pages 95–104, Berlin,
Heidelberg, 1989. Springer Berlin
Heidelberg. ISBN 978-3-540-48180-5
11 Joseph Jájá. Introduction to Parallel
Algorithms. Pearson, 1992

difference is in their execution times and the simplicity of designing
algorithms. Priority-CRCW is the most useful since any algorithm
of other models can be executed in this model as is without any
translation. We could choose this model for our design. However,
in practice, this model is the furthest from practical hardware, and
hides more cost than the others. Detecting and prioritizing conflicts
of an arbitrary number of processors in constant time is not feasible.
Comparatively, Common-CRCW and Arbitrary-CRCW are safer
models to design algorithms with, being more representative of the
hardware. However, the cost of supporting conflicting reads and
writes can be non-trivial in a distributed-memory setting, where the
EREW model may be more effective.

Regardless, all models assume perfect synchrony, which is hard to
achieve in hardware in constant time for a large number of proces-
sors. This means that that communication and synchronization costs
are not accounted for in PRAM analysis.

PRAM Computation Time

Each step of PRAM takes a constant time-unit. The total time taken is
then proportional to the number of PRAM steps.

There is a local step in PRAM, quite like BSP does. The commu-
nication step maps to reads and writes. Processors ‘send’ in the
PRAM model by writing to a shared location. ‘Recipients’ read from
there. In a sense, the (read, local step, write) triplet is analogous to
BSP super-step, except each of the three sub-steps is synchronous in
PRAM, whereas only the full super-step is synchronous in BSP. Also,
the cost of synchronization is hidden in PRAM, while BSP accounts
for synchronization and also allows arbitrary but local super-steps.

Thus, accounting is simpler in PRAM: assume each step takes
unit time. One can equivalently say that each of the three sub-steps
takes unit time, and the step takes ‘3’ units. Asymptotically, they
lead to the same analysis. Note that each processor is allowed local
memory in PRAM, just like BSP. It may be tempting to allow the
middle sub-step to include an arbitrary number of sub-steps, as BSP

DRAFT 1.6
parallel performance analysis 75

does. On the other hand, that is equivalent to having those local
sub-steps be simply associated with ‘NULL’ read and write steps (i.
e., all processors remain inactive in those sub-steps). The difference
effectively is that BSP accounts for the cost of shared reads and
writes, and PRAM does not.

Let us analyze the same dot product example, now in the PRAM
model. This time A and B are in shared memory accessible to all
processors.

PRAM Example

Input: Array A and B with n integers each in shared memory.

Output:

A · B =
n�1

Â
i=0

A[i]⇥ B[i]

Solution:

int C[p]; // C is a shared int array of size p

forall processor i < p {

C[i] = 0;

for(int idx=0; idx<n/p; idx++)

C[i] += A[i*n/p+idx] * B[i*n/p+idx];

}

forall processor i == 0 {

for(int idx=1; idx<p; idx++)

C[0] += C[idx];

output C[0];

}

At each iteration of the first loop, processor i reads from A, B and
C in three consecutive steps. The local computation of the product
and sum as well as the write-back of C[i] also takes place in the third
step. Thus the processors all take Q(n

p) steps in the first loop. The
second loop employs only a single processor, which takes Q(p) time.
Thus the total time complexity of this PRAM algorithm is Q(n

p + p).
This matches the complexity of the equivalent algorithm in the BSP
model.

We can also do a tree-like reduction in the PRAM model, as we
did in the BSP model, as follows:

int C[p]; // C is a shared int array of size p

forall processor i < p {

C[i] = 0;

for(int idx=0; idx<n/p; idx++) // Assume n is divisible by p

C[i] += A[i*n/p+idx] * B[i*n/p+idx];

}

DRAFT 1.6
76 an introduction to parallel programming

p = p/2; // Halve the number of processors used

while(p > 0) {

forall processor i < p {

C[i] += C[i+p/2];

p = p/2;

}

}

forall processor i == 0

output C[0];

The first loop is unchanged from the previous version and takes
time Q(n

p). The second loop takes Q(1) time per iteration and log p
iterations, taking total time Q(log p). The last step takes Q(1) time
by processor 0. Notice that the total time based on this analysis, i.
e., Q(n

p + log p), is different from the time taken by the analogous
algorithm in the BSP model. This is because the extra messages
passed in the reduction variant are exposed and counted in the BSP
model. This count remains hidden in the PRAM model because more
processors are able to perform more shared-memory accesses in
parallel in the same time-step. In this aspect, PRAM is like the simple
parallel model. In the case of shared-memory hardware, this unit
time-step for shared-memory read is a reasonable assumption. Note
that we sometimes allow p to be a suitable function of n for unified
analysis. For example, if p = Q(n) in the example above, the time
complexity is Q(log n).

For distributed-memory setting, PRAM is simpler, but BSP may be
better suited. Particularly so for algorithms that are communication-
heavy. Other more elaborate computational models exist, but they
also increase the complexity of algorithm analysis without necessarily
providing significantly more realistic prediction of hardware perfor-
mance. We discuss practical performance metrics next, which focus
on measured running times of programs.

3.4 Parallel Performance Evaluation
Question: What are the different as-
pects of measuring a parallel program’s
performance?

If we describe a parallel program using the simple parallel model
or one of the other models, we can compute the time it takes in the
context of that model. We may next translate such a description to
actual program implementation and measure the time it takes on real
hardware. Either way, we can compare the speeds of two programs,
given an input size n and a processor count p. We can also chart the
speed of one program with increasing processor counts. How are
these varying speeds to be evaluated? This behavior or performance

DRAFT 1.6
parallel performance analysis 77

with increasing processor count is a critical ingredient of parallel
programming and is called scalability. Scalability is important because
it predicts performance on large input and on large systems (that
may not be immediately available).

The following definitions are useful to study various aspects
of parallel performance evaluation. These may be measured by
executing implemented programs. They can be equally well defined
in terms of algorithms and computational models we have just
studied. In the context of programs, we may use measured wall-clock
times, and for algorithms, we talk of the number of notional steps as
described above.

Latency and Throughput

The time taken to complete one program, call it job execution, since
the time it began is also called the elapsed time or job latency. Often,
many jobs are executed on a parallel system. They may be processed
one at a time from a queue, or several could execute concurrently
on a large parallel system. These could be unrelated programs,
related programs, or different executions of the same program. In
all cases, the number of jobs retired per unit time is known as the
job throughput. Job throughput is related to average job latency. If
jobs take less time on average, more jobs are processed per unit time.
However, the latency of different jobs may vary wildly from job to
job, without impacting the throughput. The worst-case latency, i. e.,
the longest latency of any job, is an important metric.

Speed-up

The speed-up S of a program P taking time t(n, p) with respect to
another program P1 taking time t1(n1, p1) is the ratio of their speeds,
which is the inverse of their execution times :

S =
t1(n1, p1)

t(n, p)
(3.1)

Like before, n is the size of the input and p is the number of pro-
cessors deployed by an algorithm. So are n1 and p1, respectively.
Although not explicit in the notation, S is clearly a function of P , P1,
n, n1, p, and p1. We will keep this notation for brevity; it should be
clear from the context. We often consider parallel speed-up, the special
case of the speed-up with respect to the sequential execution of a
parallel program, i. e., p1 = 1 and n1 = n:

Spar =
t(n, 1)
t(n, p)

(3.2)

DRAFT 1.6
78 an introduction to parallel programming

Similarly, maximum speed-up may be defined as the maximum
speed with respect to the ‘best known’ sequential program (let us say
that is P1).

Smax =
t1(n, 1)
t(n, p)

(3.3)

Spar � 1 and Smax � 1 in principle, because a parallel program
may simply choose to inactivate p � 1 processors and degenerate to a
sequential version. Thus, a parallel program should always be able to
beat the sequential version. In fact, the speed-up of parallel program
P using p processors with respect to it using p1 processors, p1 < p
for the same input size should be greater than 1. (In reality, however,
early learners often find this hard to achieve at first. It does get better
in due course.)

Cost

Speed-up can increase with increasing p. On the other hand, de-
ploying more processors is costly. We define the cost C of a parallel
program as the product of its time and the processor count:

C = t(n, p)⇥ p (3.4)

A parallel program is cost-optimal if C = t1(n, 1), the cost of the best
sequential program. Cost-optimality means the speed-up gained by
deploying a large p is commensurate with their increased cost. For
example, doubling the number of available processors doubles the
speed, i. e., halves the execution time.

Often, we do not know t1(n, 1) precisely, but only in an asumptotic
sense. In such situation a definition of asymptotic optimality is
useful. A parallel program (or algorithm) is asymptotically cost-optimal
if C = O(t1(n, 1).

Efficiency

Another way to express the ‘quality’ of speed-up is efficiency. Ex-
pected speed-up over a sequential program is higher for a higher
value of p. The quality of this speed-up, or the speed-up efficiency E ,
is the maximum speed-up per deployed processor:

E =
Smax

p
(3.5)

E 1, because any speed-up larger than p implies the discovery
of a better sequential algorithm than the best known sequential
algorithm (making the newly discovered algorithm the new best).
After all, any flexible parallel algorithm can be executed sequentially

DRAFT 1.6
parallel performance analysis 79

by setting p = 1. E = 1 implies the program is cost-optimal, and the
speed-up is proportional to the number of processors used.

In practice, it is quite possible to observe values of efficiency
greater than 1. This occurs because the underlying system on which
the executions of the sequential program and the parallel program
are measured are necessarily different. For example, with larger p
may come larger caches, improving data access times. Recall that
data access latency is significantly higher than arithmetic operation
latency. Hence, the performance of a program with many memory
operations can depend heavily on this latency. Consequently, even
small improvements in memory access latency can improve the
program’s performance. There can also be other scenarios, e.g., a
parallel “multi-pronged" search may serendipitously converge to a
solution quicker. The tools we develop next are designed in a more
idealized setting and ignore these real effects. Regardless, they are
meaningful and may generally be used even in the presence of these
effects.

Scalability

Scalability is related to efficiency and measures the ability to increase
the speed-up linearly with p. In particular, if the efficiency of pro-
gram P remains 1 with increasing processor count p, we say it scales
perfectly with the size of the computing system. Most problems
cannot be solved this efficiently, and those that can are often said
to be embarrassingly parallel. Indeed, the program may begin to
slow-down for larger values of p, as shown in Figure 3.4 for p = 17
and n = 104. This can happen due to several reasons. For example,
communication may increase, or more processors remain idle. Of
course, the efficiency may also depend on the size of the input, n. For
example, an Q(n) sequential program, on parallelization, might not
get faster for p > n. It is often the case that performance scales better
for larger values of n. For example, Figure 3.4 shows higher speed-up
for n = 106. In some cases, however, the speed-up may even reduce
for larger n, e.g., because caches become less effective.

When efficiency remains high with increasing p, regardless of
n, we say the program exhibits strong scaling. On the other hand,
if efficiency for higher values of p remains high only if n is also
increased, we call it weak scaling. If efficiency is low regardless, we say
the program does not scale. But how high is high? For the efficiency
to remain 1 is unrealistic, and such definition would hardly be useful.
One might instead say, if the speed-up for a higher value of p is lower
than that for a lower value of p, the efficiency is low, and scaling
is poor. This seems too low a bar. A slightly tighter definition says

DRAFT 1.6
80 an introduction to parallel programming

Figure 3.4: Efficiency curve: speed-up
vs. processor count

that the efficiency E does not reduce with increasing p – it remains
constant. This means the efficiency curve remains linear, even if
its slope may be somewhat less than 1. We refine this quantitative
measure of scalability next.

Iso-efficiency

The Iso-efficiency of a scalable program indicates how (and if) the
problem size must grow to maintain efficiency on increasingly larger
computing systems. Iso-efficiency is, in reality, a restating of the
sequential execution time as a function of p, the processor count.
Recall from Eq 3.3 and 3.5:

t1(n, 1) = E(n, p) t(n, p) p (3.6)

t1(n, 1) is a measure of the problem’s size and complexity. Given
p and the time-function for a parallel program t(n, p), we want to
derive that t1, which would ensure a constant efficiency E . t1 changes
because n changes. Thus, deriving t1 really amounts to finding the
appropriate problem size n that takes time t1. To emphasize that
we seek to find the problem size for a given p, we use the notation
I(p) for problem size in place of t1. I(p) is called the iso-efficiency
function. The parameterization with p signifies that we adapt the
problem size to p. A rapid growth in I with increasing p means
that only much larger problems can be efficiently solved on larger
machines. This is poor scalability.

We can relate I to the overhead of parallelization ō(n, p): the
computation that is not required in the sequential solution. In other
words, ō(n, p) is the ‘extra’ time collectively spent by the parallel
processors compared to the best sequential program. This may

DRAFT 1.6
parallel performance analysis 81

include idle processors, communication time, etc. Hence,

ō(n, p) = t(n, p) p � t1(n, 1) (3.7)

and
I(p) = t1(n, 1) = t(n, p) p � ō(n, p) (3.8)

Substituting E from Equation 3.5 and 3.3.

) I(p) =

E(n, p)
1 � E(n, p)

�
ō(n, p) (3.9)

This means that if I increases proportionally to the overhead ō, the
term within [] above – call it K – remains constant, i. e., the efficiency
remains constant. In other words, if the overhead grows rapidly with
increasing p, the problem size also must grow as rapidly to maintain
the same efficiency. That indicates poor iso-efficiency.

For illustration, consider the BSP example of parallel reduction
in Section 3.2: t(n, p) = Q(n

p + p). We know the optimal sequential
algorithm is linear in n: t1(n, 1) = Q(n). This means:

ō(n, p) = W(p2)

) I(p) = KW(p2)

This means that the problem size must grow at least quadratically
with increasing p to maintain constant efficiency. Check that in the
PRAM model, I is bounded sub-quadratically (see Exercise 3.11) in
p.

Note that by Equations 3.6 and 3.7, for embarrassingly parallel
problems, ō remains 0, and E remains 1 because t1(n, 1) = t(n, p) p.
The problem size apparently does not need to grow to keep E con-
stant. However, there is a limit. If p > t1(n, 1), there is not enough
work to go around. Hence, the problem size must eventually grow
at least as fast as p, i. e., asymptotically I(p) = W(p). Practically
speaking also, the overhead usually grows at least in proportion to
p, and often faster. In other words, we expect that the input size n
needs to grow at least as fast as the processor count p to maintain ef-
ficiency. Similarly, if ō(n, p) = O(t1(n, 1)), Equation 3.7 indicates that
t(n, p) p = O(t1(n, 1)) meaning that the solution is asymptotically
cost-opimal.

Note that p is bounded in practice. Surely, there is not an unlim-
ited supply of processors. Nonetheless, scalability with increasing p
is a useful measure. Of course, it indicates the possibility of speed-up
with increasing system size. It is also often the case that better scaling
programs – and better scaling algorithms – tend to perform better on
a wider variety of systems and system architecture.

DRAFT 1.6
82 an introduction to parallel programming

3.5 Parallel Work

The final metric we will study is called parallel work. This is the total
sum of work done by processors actually employed at different steps
of an algorithm. Recall, the cost is the time taken by an algorithm
multiplied by the maximum number of processors available for use
at any step. Work is a more thorough accounting of the processors
actually used. In other words, parallel work required for input of size
n,

W(n) =
t(n,p)

Â
s=1

ps(n), (3.10)

where ps(n) processors are active at step s. Note that we allow the
number of active processors to be a function of input size n. Each
processor takes unit time per step, and the algorithm takes t(n, p)
steps. Note also that in t(n, p), p varies at each step. We leave this
intricacy out of the notation for p. The value of p at each step is
specified for algorithms, however.

As an example, the initial number of processors assumed in the
binary tree reduction algorithm is n

2 . The algorithm requires log n
steps, but the number of active processors halves at each step. For
instance, in the first step of the PRAM algorithm n

2 processors each
perform unit work (a single addition in this example). n

4 processors
are used in the second step and so on. Thus the total work, W(n) is:

log n�1

Â
s=0

2s = n

The total parallel work performed in the reduction algorithm is
Q(n), but the cost is Q(n log n). One may question the logic of using
work as a performance metric. If n processors were available and not
used in step two, that seems like a wasted opportunity. Maybe, it is
not so because the unused processors are available to a different job.
However, there is a more fundamental reason this work complexity is
important.

It allows us to design highly scalable algorithms that allow an
arbitrarily large value for ps, sometimes even equal to or greater than
n. An implementation would, of course, have a limited number Pr

of real processors available. We then map each step of the algorithm
to Pr processors simply by each real processor performing the work
of ps

Pr
assumed processors in a loop. What can we say about the

expected time taken by such an execution then? This is given by
Brent’s work-time scheduling principle.

DRAFT 1.6
parallel performance analysis 83

Brent’s Work-time Scheduling Principle

Let us assume the PRAM model to take a specific example, but other
models are equally compliant. Step s of the original algorithm takes
Q(1) using ps processors. In its execution, step s is scheduled on Pr

processors taking
l

ps
Pr

m
steps. The total number of steps are:

t(n,p)

Â
s=1

⇠
ps
Pr

⇡

t(n,p)

Â
s=1

(
ps
Pr

+ 1) =
t(n,p)

Â
s=1

ps
Pr

+
t(n,p)

Â
s=1

1 =
W(n)

Pr
+ t(n, p)

(3.11)
The work and time both impact the actual performance. For many

algorithms t(n, p) = O(W(n)), and hence the work is the main
determinant of the execution time. Another useful way to think about
this is that with Pr processors, the algorithm takes time O(W(n)

Pr
), for

Pr W(n)/t(n).
We can also now define the notion of work optimality. A parallel

algorithm is called work-optimal, if W(n) = O(t1(n, 1)). Further, a
work-optimal algorithm for which t(n, p) is a lower bound on the
running time and cannot be further reduced is called work-time
optimal.

3.6 Amdahl’s Law
Question: Is this the best performance
achievable?There are certain limits to the speed-up and scalability of algorithms.

Sometimes the problem itself is limited by its definition. Such limits
may exist, e.g., because there may be dependencies that reduce or
preclude concurrency. Recall that concurrency is a prerequisite for
parallelism. Reconsider, for example, the problem of moving vans.
Boxes can be transported in vans, but before they can be moved,
they must be loaded, say, at the warehouse. There is no way to
perform the task of loading a van at the warehouse and driving it to
its destination in parallel with each other. Driving must happen after
loading sequentially and is dependent on it.

Sometimes, the dependency is imposed by the algorithm. For
example, in hopes of better packing, the loaders may load large boxes
first and small ones later. Possibly, the large boxes may be loaded
in parallel by multiple loaders. However, the small boxes’ loading
may only begin after a certain minimum number of large boxes are
loaded.

Here is a more ‘computational’ example, called the prefix sum
problem.

Input: Array A with n integers

DRAFT 1.6
84 an introduction to parallel programming

Output: Array B with n integers such that

B[i] =
i

Â
j=0

A[i]

Solution:

B[0] = A[0];

for(int i=1; i<n; i++)

B[i] = A[i] + B[i-1];

This solution has each iteration i depend on the value of B[i-
1] computed in the previous iteration. Thus, different entries of B
cannot be filled in parallel; rather, the entire loop is sequential. We
will later see that this is a shortcoming of the chosen algorithm and
not a limitation of the problem itself. There do exist parallel solutions
to this problem.

Amdahl’s law12 is an idealization of such sequential constraints. 12 Gene M. Amdahl. Validity of the
single processor approach to achieving
large scale computing capabilities.
In Proceedings of the April 18-20, 1967,
Spring Joint Computer Conference, AFIPS
’67 (Spring), page 483–485, New York,
NY, USA, 1967. Association for Comput-
ing Machinery. ISBN 9781450378956

Suppose fraction f of a program is sequential. That may be because
of inherent limits to parallelization or because that fraction was
simply not parallelized. The fraction is in terms of the problem size (i.
e., the fraction of time taken by the sequential program). This implies
that fraction f would take time at least t1(n, 1) f . Assuming that the
rest is perfectly parallelizable, it can be speeded up by factor up to
p. This means that time t(n, p) taken by a parallel program can be
no lower than t1(n, 1) f + t1(n,1)

p (1 � f). This implies a maximum
speed-up of:

Smax =
t1(n, 1)

t1(n, 1) f + t1(n,1)
p (1 � f)

=
1

f + 1� f
p

(3.12)

No matter how many processors we apply (say, p ! •), a speed-
up greater than 1

f could never be achieved. Even that is possible only
if the solution scales strongly with an efficiency of 1 for an unlimited
number of processors. This equation may seem hardly surprising, but
looking at the actual value of such limits can be eye-opening.

The graph in Figure 3.5 plots the maximum speed-up that is the-
oretically possible for a varying number of processors. The different
plots are for different values of f . Notice how much limit even small
values of f can place. If the sequential fraction is only 10%, the paral-
lel speed-up could never be more than 10. It would seem that there
is little benefit of using, say, more than a hundred processors, which
yield a speed-up greater than 9. This is rarely true in practice. First,
the formula assumes an efficiency of 1. If the efficiency is less, even
the speed-up of 9 likely requires many more than a hundred proces-
sors. Second, for weakly scaling solutions, larger problems could be

DRAFT 1.6
parallel performance analysis 85

Figure 3.5: Maximum speed-up possible
with different processor counts (in
idealized setting)solved efficiently on larger machines, even if the small problem does

not scale beyond a hundred processors. Gustafson’s law accounts for
precisely that.

3.7 Gustafson’s Law

Gustafson13 redirects Amdahl’s equation to bring the size of the 13 John L. Gustafson. Reevaluating
amdahl’s law. Commun. ACM, 31(5):
532–533, May 1988. ISSN 0001-0782

problem into the mix. Suppose that the time spent in sequential
components by a parallel program is t(n, p) f , and the time spent in
the parallel part is t(n, p) (1 � f). The fraction is now in terms of the
execution time of the parallel program (and can vary with p). The
sequential fraction also includes all overheads, meaning the (1 � f)
fraction of the time is spent in fully parallel computation keeping all
processors busy.

Given that breakup, any sequential implementation must take
t(n, p) f + pt(n, p) (1 � f) time. After all, the single processor must
perform the work of each of the p processors, one at a time. This
means that the speed-up of the parallel implementation over the
sequential one is:

t(n, p) f + t(n, p) (1 � f) p
t(n, p)

= f + p(1 � f) (3.13)

Note that the fractions f used by Amdahl and Gustafson are differ-
ent In Amdahl’s treatment, f represents the fraction of a sequential
program that is not parallelized, and f does not vary with p, whether
the problem size n grows or not. In Gustafson’s treatment, f accounts
for the overheads of parallel computation. This fraction relative to
the parallel execution time remains constant even as n and p change.
This effectively means that the time spent in the sequential part re-
duces in proportion to that spent in the parallel part. In Amdahl’s

DRAFT 1.6
86 an introduction to parallel programming

treatment, the sequential time remains constant even as the parallel
time reduces with more processors.

If Gustafson’s fraction remains constant as p increases, the ob-
tained speed-up S grows linearly with p, as Figure 3.6 shows. Re-
member that n grows along with p, but that is not highlighted in the
graph.

Figure 3.6: Maximum speed-up possible
by scaling problem size with processor
count (in idealized setting)

In practice, it is possible that Gustafson’s f does not remain con-
stant but grows more slowly than envisaged by Amdahl. This would
lead to a sub-linear growth of speed-up with increasing p, but pos-
sibly not as slow as Amdahl envisages. In any case, neither law
accounts for the higher overhead with more processors. This over-
head has a major impact on real program execution times, and causes
the efficiency to decrease with increasing p.

3.8 Karp-Flatt Metric

Karp-Flatt Metric14 turns the discussion around and seeks to estimate 14 Alan H. Karp and Horace P. Flatt.
Measuring parallel processor perfor-
mance. Commun. ACM, 33(5):539–543,
May 1990. ISSN 0001-0782

the unparallelized part f in a program, given the measured speed-up
over the sequential execution S :

f =
1
S � 1

p

1 � 1
p

(3.14)

It is not hard to verify that this metric is consistent with Amdahl’s
law. Just reorganize equation 3.12 to bring f to the left-hand side.
According to this equation, if the speed-up obtained by a program
using 100 processors is 10, the sequential part takes approximately
9.1% of the execution time. How this fraction varies with p can now
be computed by running the experiment with different processor
counts.

Again, it is possible that the actual sequential part is lower than
the value of f so computed. This means that the observed speed-

DRAFT 1.6
parallel performance analysis 87

up is less than the maximum possible. That can happen due to the
overheads of parallelization. In that sense, f may thus generically
represent the overhead ō.

3.9 Summary

An understanding of performance issues is fundamental to the
exercise of designing parallel algorithms and writing programs.
Measuring actual execution time is useful, but one must design
programs that perform well on all n and p, or at least many n and
p. It is not practical to measure the performance on all instances.
Rather, one must argue about the performance on n and p that are
anticipated.

Hence, modeling and analyzing performance are pre-requisites
for writing efficient parallel programs. This chapter discusses a few
abstract models of computation, which can be used to express and
analyze parallel algorithms. It also introduces practical metrics to
evaluate parallel programs’ design and performance in compari-
son to, say, sequential programs, and as it relates to the number of
processors used. Theses lessons include:

• The PRAM model relies on an arbitrary number of synchronous
processors. Each has local memory, and they together share global
memory. Simple computation and memory operations take a sin-
gle time-unit each. Since the processors proceed in lock-step and
share memory, there is no synchronization or explicit communica-
tion. As a result, such overheads are ignored in the analysis.

• Variants of the PRAM model control the possibility of different
processors read from or writing to the same memory location
or address in a single time-step. Either common addresses are
supported (e.g., EREW, CREW), or the addresses must be exclusive
(e.g., CREW, CRCW). Such support is set separately for reading
and writing operations.

• For CRCW PRAM, different semantics are possible. In Common-
CRCW PRAM, if multiple processors write to a common address
at the same time-step, they must all present the same value to
write. Alternatively, in Arbitrary-CRCW PRAM, if multiple pro-
cessors write to a common address, any of their values may be
written. The algorithm’s correctness must not depend on which
value is written. In the Priority-CRCW PRAM, each processor
is accorded a distinct priority. If multiple processors write to a
common address, the value presented by the one with the highest
priority is always written.

DRAFT 1.6
88 an introduction to parallel programming

• All variants of the PRAM model are functionally equivalent, for
each can simulate the behavior of others. However, such simu-
lation may not take constant time. Priority-CRCW model, for
example, can simulate the steps of every other model in constant
time each. Other models cannot simulate Priority-CRCW steps
in constant time each. In that sense, the Priority-CRCW is more
powerful than others.

• The BSP model maintains the synchronizing characteristic of
PRAM, but it does not require complete lock-step progress of
processors. Instead, processors may take an arbitrary number of
local steps before synchronizing. Further, data is exchanged by
the processors explicitly – there is no shared memory. BSP counts
the number of messages communicated. The lack of per-step
synchrony does not make algorithms much more complicated than
in the PRAM model, but the communication overhead is counted.
BSP does not consider the size or batching of messages.

• Work is an important metric to measure parallel performance. We
start by exposing the entire parallelism inherent in an algorithm by
assuming as many processors as the number of independent steps.
Recall that two steps are independent if there is no order required
between them, and they can be taken simultaneously. At differ-
ent time-steps, different numbers of independent steps may be
possible. This means that the number of processors used at each
time-step varies. The total of all processor-steps in this manner is
called the work. Work complexity on its own is not sufficient to
indicate the level of parallelism. After all, a sequential algorithm
has a low work complexity. Our goal is to keep work complexity
similar to that of the sequential solution while minimizing the time
complexity.

• Brent’s scheduling principle shows how work translates to the
real execution time on a specific machine with p processors. If the
number of sequential time-steps is t and the number of processor-
steps (i. e., work) are w, a p-processor machine takes time w

p + t.

• Speed-up measures the ratio of the speed of one algorithm or
implementation with another. When comparing algorithms in a
PRAM or BSP setting, asymptotic speed-up is usually of concern.
With measured execution times of implementations, the actual
speed-up value on specific computing systems becomes possible.

• Although absolute speed-up on specific computing systems is the
primary statistic for the user of an application, the efficiency with
which it is obtained is a more meaningful metric for the program

DRAFT 1.6
parallel performance analysis 89

designer and developer: the speed-up per processor used to obtain
it. The same speed-up obtained on a smaller machine points to a
more efficient than when more processors are required.

• The cost of an execution is related to its efficiency. Cost is the prod-
uct of the time taken by a program and the number of processors
used. The cost does not require a comparison to the speed of an-
other program. Low-cost implementations take low time or use
very few processors. In other words, efficient programs are likely
to be cost-effective because the speed per processor is high.

• The speed of a program or algorithm relative to the number of pro-
cessors used is important. However, some programs are efficient
only if a small number of processors are used. As the number
of processors grows, so do the overheads of synchronizing them,
exchanging data, or simply waiting for certain action by other pro-
cessors. This overhead can be detrimental to both efficiency and
cost. More the number of processors, more such overhead. In fact,
the overhead from using too many processors can outweigh the en-
tire benefit of the extra execution engines. Scalable programs limit
such overheads. As a result, they continue to get faster with more
processors. Some even continue to maintain the speed-up per
processor, i.e., they continue to remain efficient, for large values of
p.

• A strongly scaling program gets faster if more processors are
available. A weakly scaling program roughly maintains speed
with more processors if the problem size grows as well. The
same program may scale strongly for smaller p, scale weakly for
medium p, and stop scaling altogether for larger p.

• The notion of iso-efficiency formalizes scalability. The Iso-efficiency
of an algorithm or program measures the growth required in the
problem size as a function of the number of processors to maintain
constant efficiency. Iso-efficiency combines the impact of n and p
on scalability, and a slow growing iso-efficiency function works
well for larger problem cases than a fast growing one.

• There are limits to scaling in most situations. Amdahl’s law states
one fundamental limit: the limit to the parallel speed-up of prob-
lems (or their solution) if they contain strictly sequential compo-
nents. Such sequential components must be processed on a single
processor, while all other processors wait for it to finish. Amdahl’s
law assumes that the problem of a certain size is solved using
increasingly more processors. In this case, the sequential compo-
nents remain a fixed fraction of the entire problem and do not get

DRAFT 1.6
90 an introduction to parallel programming

faster with more processors. On the other hand, the parallel com-
ponents do get faster. Consequently, the sequential components
start to dominate the total execution time, limiting total speed-up.

• Gustafson’s law instead considers the case when the sequential
components are a fixed fraction of the parallel execution time.
Thus, as more processors are employed to solve larger problems,
the sequential components’ execution time keeps pace with the
parallel components’. Linear scaling of speed-up is possible in this
scenario.

• Instead of debating the components’ sizes, the Karp-Flatt metric
estimates them. Rather, it estimates the entire parallelization
overhead by observing the speed-up with an increasing number of
processors. Growth of this overhead with an increasing number of
processors while keeping the problem size constant indicates that
the overhead is significant. This suggest that attempts to reduce
overhead may be useful.

The abstract computation models that this chapter focuses on are
the BSP model and the PRAM model. Historically, the PRAM model
was proposed first by Fortune and Wylie15. Valiant later proposed 15 Steven Fortune and James Wyllie.

Parallelism in random access machines.
In Proceedings of the Tenth Annual ACM
Symposium on Theory of Computing,
STOC ’78, pages 114––118, New York,
NY, USA, 1978. Association for Comput-
ing Machinery. ISBN 9781450374378

the BSP model as a ‘bridge’ between the abstract model and practical
architecture. These two are popular, but others that account for more
overheads and parameters have also been proposed. For example,
block-transfer and communication latency have been considered.16,17.

16 Alok Aggarwal, Ashok K. Chandra,
and Marc Snir. Hierarchical memory
with block transfer. In Proceedings of the
28th Annual Symposium on Foundations
of Computer Science, SFCS ’87, page
204–216, USA, 1987. IEEE Computer
Society. ISBN 0818608072
17 Alok Aggarwal, Ashok K. Chandra,
and Marc Snir. Communication
complexity of prams. Theoretical
Computer Science, 71(1):3 – 28, 1990. ISSN
0304-3975

Mehlhorn and Vishkin propose an extension: the module parallel com-
puter18 (MPC). In MPC, the shared memory is divided into modules

18 Kurt Mehlhorn and Uzi Vishkin. Ran-
domized and deterministic simulations
of prams by parallel machines with
restricted granularity of parallel memo-
ries. Acta Inf., 21(4):339–374, November
1984. ISSN 0001-5903

(i. e., banks) and only one word may be accessed from each module
in one time-step. Limitations of perfect synchrony have also been
addressed.19,20

19 P. B. Gibbons. A more practical pram
model. In Proceedings of the First Annual
ACM Symposium on Parallel Algorithms
and Architectures, SPAA ’89, page
158–168, New York, NY, USA, 1989.
Association for Computing Machinery.
ISBN 089791323X
20 R. Cole and O. Zajicek. The expected
advantage of asynchrony. J. Comput. Syst.
Sci., 51(2):286–300, October 1995. ISSN
0022-0000

The BSP model also addresses both the synchrony and commu-
nication shortcomings of the PRAM model. The BSPRAM model21

21 Alexandre Tiskin. The bulk-
synchronous parallel random access
machine. Theoretical Computer Science,
196(1):109 – 130, 1998. ISSN 0304-3975

attempts to combine the PRAM and BSP models. Others like the
LogP model (Culler et al., 1993) account the message cost more
realistically by considering detailed parameters like the communi-
cation bandwidth and overhead and message delay. Barrier is still
supported but not required. Others have also focussed on removing
the synchronous barrier by supporting higher-level communication
primitives e.g., the coarse grained multi-computer model (Dehne et al.,
1993).

Other than shared-memory and message-passing style architec-
tures, purely task-graph based models have also been used (Ullman
and Papadimitriou, 1984; Papadimitriou and Yannakakis, 1988) using
parameters like task time, message complexity, and communication

DRAFT 1.6
parallel performance analysis 91

delay. All these models can simulate each other and are equivalent
in that sense. That may be the reason why the simplest models like
PRAM and BSP have gained prevalence. However, the models do
differ in their performance analysis. A case can be made that a more
realistic model discourages algorithms from taking steps that are
costly on real machines by making such cost explicit in the model.
More importantly, though, it is the awareness of the differences be-
tween the model and the target hardware that drives good algorithm
design.

Besides designing efficient algorithms suitable for specific hard-
ware and software architecture, one must also select the number
of the processors before execution begins. Large supercomputers
may be available, but they are generally partitioned among many
applications. It is important for applications not to oversubscribe to
processors. As many processors should be used as provide the best
speed-up and efficiency trade-off. Sometimes speed-up can reduce
with large p. At other times speed-up increases, but the efficiency re-
duces rapidly beyond a certain value of p. In many applications, the
size of the problem, n, can also be configured. Further, the memory
reserved for an application, m, may also be configured. Optimally
choosing S , E , p, n, and m is hard. A study of time and memory con-
strained scaling22,23 is useful in this regard. In particular, Sun-Ni 22 John L. Gustafson, Gary R. Montry,

and Robert E. Benner. Development of
parallel methods for a 1024-processor
hypercube. SIAM Journal on Scientific and
Statistical Computing, 9(4):609–638, 1988
23 Patrick H. Worley. The effect of
time constraints on scaled speedup.
SIAM Journal on Scientific and Statistical
Computing, 11(5):838–858, 1990

law24 extends Amdahl’s and Gustafson’s laws to study limits on

24 X.H. Sun and L.M. Ni. Scalable prob-
lems and memory-bounded speedup.
Journal of Parallel and Distributed Comput-
ing, 19(1):27 – 37, 1993. ISSN 0743-7315

scaling due to memory limits.
Multiple studies25,26,27 have shown the utility of optimizing the

25 David J. Kuck. Parallel processing
of ordinary programs. In Morris Ru-
binoff and Marshall C. Yovits, editors,
Advances in Computers, volume 15, pages
119 – 179. Elsevier, 1976
26 D. L. Eager, J. Zahorjan, and E. D.
Lozowska. Speedup versus efficiency in
parallel systems. IEEE Trans. Comput., 38
(3):408–423, March 1989. ISSN 0018-9340
27 Horace P Flatt and Ken Kennedy.
Performance of parallel processors.
Parallel Computing, 12(1):1 – 20, 1989.
ISSN 0167-8191

product of efficiency and speed-up: ES . Several of these conclude
that there exists a maximum value of p beyond which the speed-up
inevitably plateaus or decreases for a given problem. In general, seek-
ing to obtain an efficiency of 0.5 provides a good trade-off between
speed-up and efficiency.28,29

28 D. L. Eager, J. Zahorjan, and E. D.
Lozowska. Speedup versus efficiency in
parallel systems. IEEE Trans. Comput., 38
(3):408–423, March 1989. ISSN 0018-9340
29 Horace P Flatt and Ken Kennedy.
Performance of parallel processors.
Parallel Computing, 12(1):1 – 20, 1989.
ISSN 0167-8191

Exercise

3.1. Consider the following steps in a 3-processor PRAM. Explain the
effect of each instruction for each of the following models. Note
that some instruction may be illegal under certain models; indicate
so. All variables are in shared memory.

(a) EREW PRAM

(b) CREW PRAM

(c) Common-CRCW PRAM

(d) Aribitray-CRCW PRAM

(e) Priority-CRCW PRAM (assume priority diminishes from left to
right).

DRAFT 1.6
92 an introduction to parallel programming

P0
x = 5;
y = z;

P1
x = 5;
y = z;

P2
x = z;
y = z;

3.2. Show that each step of p-processor Common-CRCW PRAM is
also valid for p-processor Arbitrary-CRCW PRAM.

3.3. Show that each step of p-processor Arbitrary-CRCW PRAM is
also valid for p-processor Priority-CRCW PRAM.

3.4. Show that each step of a p-processor Priority-CRCW PRAM can
be completed in up to O(log p) steps of p-processor EREW PRAM.

3.5. Show that every BSP algorithm can be converted to a PRAM
algorithm.

3.6. Write pseudo-code to multiply two n ⇥ n matrices A and B,
assuming the PRAM model. Analyze its time and work complexity.
Assume that the input matrices A and B are stored in the shared
memory in row-major order. Assume as many processors as you
need.

3.7. Write pseudo-code to multiply two n ⇥ n matrices A and B,
assuming the BSP model. Analyze its time complexity. The entire
input matrices A and B initially reside in the processor 0. Assume
as many processors as you need.

3.8. Consider the following BSP algorithm to distribute n items
equally among p processors (assume n is divisible by p).

Input: Array B0 with n integers in the memory of processor 0

Output: Array Bi in the memory of each processor i such that
Bi = A[i ⇤ b..(i + 1) ⇤ b � 1], where b = n

p

Algorithm:

for(step i=0; step<logn; step++)

forall processor i {

{

len = 2step

if i < len

send Bi[n/(2*len)] .. Bi[n/len-1] to processor i + len

} {

Barrier

if len <= i < 2*len

receive n/(2*len) items into Bi[0..n/(2*len)-1]

}

}

DRAFT 1.6
parallel performance analysis 93

This is called a scatter operation. Analyze its time complexity. You
may assume that p is a power of 2.

3.9. Devise an EREW PRAM algorithm for the problem in Exercise
3.8. Analyze its time complexity.

3.10. Consider a parallel sorting algorithm psort with PRAM work
complexity O(log2 n) and time complexity O(log n). Assume a
PRAM limited to p processors. Compute t(n, p) in the asymptotic
sense. What is the efficiency compared to the best sequential
sorting algorithm of O(log n)?

3.11. Show the iso-efficiency function I(p) for the PRAM reduction
algorithm in Section 3.3 is W(p log p).

3.12. The following table lists execution times of two different so-
lutions (Program 1 and Program 2) to a problem. The executions
times were recorded with varying number of processors p and
varying input size n. This table applies to many following ques-
tions.

Input size n Processor count Time t(n, p) (minutes)
(million) p Program 1 Program 2

1 12 12
10 3.5 5.28

1 50 3.2 17.0
100 3.0 26.5
500 3.1 126.6

1 22 22
10 8.6 10.5

10 50 7.1 11.9
100 7.0 31.5
500 7.2 126.2

1 263 263
10 63.2 64.9

50 50 43.2 57.9
100 40.6 59.9
500 40.3 158.6

1 1021 1021
10 189 191

100 50 110.5 125
100 100.7 118.5
500 94.5 211.9

Find the cost of the implementation for each n and p.

3.13. Referring to the table in Exercise 3.12, what is the latency of
Program 1 for n = 10 million and p = 10?

DRAFT 1.6
94 an introduction to parallel programming

3.14. Referring to the table in Exercise 3.12, what is the minimum
latency of Program 1 execution for n = 10 million.

3.15. Refer to the table in Exercise 3.12. Consider a computing sys-
tem with 50 total processors. What is the maximum throughput of
Program 1 for n = 10 million?

3.16. Referring to the table in Exercise 3.12, find the maximum
Speed-up S of Program 2 over the sequential implementation for
each given value of n.

3.17. Referring to the table in Exercise 3.12, find the maximum
Speed-up S of Program 1 over Program 2 for n = 10 million.

3.18. Referring to the table in Exercise 3.12, find the efficiency E of
Program 1 and Program 2 for n = 10 million and p = 100.

3.19. Referring to the table in Exercise 3.12, estimate the Iso-efficiency
function I for Program 1 and Program 2.

3.20. Analyze the scalability of Program 1 and Program 2 in the table
in Exercise 3.12 solution. (Discuss strong vs. weak scalability and
the iso-efficiency function.)

3.21. Discuss how well Amdahl’s law and Gustafson’s law hold for
Programs 1 and 2 for the table in Exercise 3.12. Do they accurately
estimate the bounds on the speed-up?

3.22. Refer to the table in Exercise 3.12. Using the Karp-Flatt metric,
estimate the overhead (including any sequential components) in
Program 2 for each value of p and n = 10 million. Discuss how the
overhead grows with p.

	Concurrency and Parallelism
	Why Study Parallel Programming
	What is in this book
	An Introduction to Parallel Computer Architecture
	Parallel Organization
	System Architecture
	CPU Architecture
	Memory and Cache
	GPU Architecture
	Interconnect Architecture
	Summary

	Parallel Programming Models
	Distributed-Memory Programming Model
	Shared-Memory Programming Model
	Task Graph Model
	Variants of Task Parallelism
	Summary

	Parallel Performance Analysis
	Simple Parallel Model
	Bulk-Synchronous Parallel Model
	PRAM Model
	Parallel Performance Evaluation
	Parallel Work
	Amdahl's Law
	Gustafson's Law
	Karp-Flatt Metric
	Summary

	Synchronization and Communication Primitives
	Threads and Processes
	Race-condition and Consistency of State
	Synchronization
	Mutual Exclusion
	Communication
	Summary

	Parallel Program Design
	Design Steps
	Task Decomposition
	Task Execution
	Input/Output
	Debugging & Profiling
	Summary

	Middleware: The Practice of Parallel Programming
	OpenMP
	MPI
	Chapel
	Map-Reduce
	GPU Programming
	Summary

	Parallel Algorithms and Techniques
	Divide and Conquer: Prefix-Sum
	Divide and Conquer: Merge Two Sorted Lists
	Accelerated Cascading: Find Minima
	Recursive Doubling: List Ranking
	Recursive Doubling: Euler Tour
	Recursive Doubling: Connected Components
	Pipelining: Merge-sort
	Application of Prefix-sum: Radix-Sort
	Exploiting Parallelism: Quick-Sort
	Fixing Processor Count: Sample-Sort
	Exploiting Parallelism: Graph Algorithms
	Summary

	Bibliography

