
Learning from Mistakes –
Real World Concurrency Bug Characteristics

Yuanyuan(YY) Zhou
Associate Professor
University of Illinois, Urbana-Champaign

ASPLOS 2008

Paper contributions

 Concurrency bug detection
 What types of bugs are un-solved?
 How bugs are diagnosed in practice?

 Concurrent program testing
 What are the manifestation conditions for concurrency
bugs?

 Concurrent program language design
 How many mistakes can be avoided
 What other support do we need?

 All can benefit from a closer look at real world
concurrency bugs

 105 real-world concurrency bugs from 4 large open
 source programs
 Study from 4 dimensions

 Bug patterns
 Manifestation condition
 Diagnosing strategy
 Fixing methods

Study methodology

Bug report

8 years10 years7 years6 yearsBug DB history

640.32LOC (M line)

C++C++Mainly CC++/CLanguage

GUIClientServerServerSoftware Type

OpenOfficeMozillaApacheMySQL

Applications

 Limitations
 No scientific computing applications
 No JAVA programs
 Never-enough bug samples

2

6

OpenOffice

31

74

Total

1649Deadlock

411314Non-deadlock

MozillaApacheMySQL

Bugs analyzed

 Classified based on root causes
 Categories

 Atomicity violation
 The desired atomicity of certain

 code region is violated
 Order violation

 The desired order between
 two (sets of) accesses is flipped

 Others

X

X

Thread 1 Thread 2

Thread 1 Thread 2

Pattern

Bug patterns

Bug patterns: atomicity bug

Bug patterns: order violation bug

Bug patterns: underestimating #threads

Bug patterns: order violation bug

Bug patterns: order violation bug

 We should focus on atomicity
violation and order violation

 Bug detection tools for order
violation bugs are desired

*There are 3-bug overlap between Atomicity and Order

Implications

Atomicity Order Other
0

10

20

30

40

50

OpenOffice
Mozilla
Apache
MySQL

Bug pattern presence in analyzed softwares

 Bug manifestation condition
 A specific execution order among a smallest set of memory
accesses

 The bug is guaranteed to manifest, as long as the condition
is satisfied

 How many threads are involved?
 How many variables are involved?
 How many accesses are involved?

Manifestation

Bug manifestation study

 Single variables are more common
 The widely-used simplification is reasonable

 Multi-variable concurrency bugs are non-negligible
 Techniques to detect multi-variable concurrency bugs are
needed

1 Variable > 1 Variables
0

20

40

60
OpenOffice Mozilla Apache MySQL

49 (66%)

25 (34%)

Implications

#bugs

Bug manifestation: how many variables?

Bug patterns: multi-variable

1 acc. 2 acc. 3 acc. 4 acc. >4 acc.
0

5

10

15

20

25

30

35

OpenOffice Mozilla Apache MySQL

1 acc. 2 acc. 3 acc. 4 acc. >4 acc.
0

5

10

15

20

25

OpenOffice Mozilla Apache MySQL

 Concurrent program testing can focus on small
groups of accesses
 The testing target shrinks from exponential to polynomial

Non-deadlock bugs Deadlock bugs

7 (9%)
1 (3%)

of Bugs

Double lock

Bug manifestation: how many accesses?

 101 out of 105 (96%) bugs involve at most two
threads
 Most bugs can be reliably disclosed if we check all possible
interleaving between each pair of threads

 Few bugs cannot
 Example: Intensive resource competition among many
threads causes unexpected delay

Bug manifestation: how many threads?

Bug patterns: underestimating #threads

 Adding/changing locks 20 (27%)
 Condition check 19 (26%)
 Data-structure change 19 (26%)
 Code switch 10 (13%)
 Other 6 (8%)

No silver bullet for fixing concurrency bugs.
Lock usage information is not enough to fix bugs.

ImplicationsImplications

20 (27%)

Bug fix strategies: non-deadlock bugs

Bug fixes: lock vs. condition variable

Bug fixes: two condition variables

 Adding/changing locks 20 (27%)
 Condition check 19 (26%)
 Data-structure change 19 (26%)
 Code switch 10 (13%)
 Other 6 (8%)

No silver bullet for fixing concurrency bugs.
Lock usage information is not enough to fix bugs.

ImplicationsImplications

20 (27%)

Bug fix strategies: non-deadlock bugs

Bug fixes: code switch

 Give up resource acquisition 19 (61%)
 Change resource acquisition order 7 (23%)
 Split the resource to smaller ones 1 (3%)
 Others 4 (13%)

We need to pay attention to the
correctness of ``fixed’’ deadlock bugs

Might introduce
non-deadlock bugs
Might introduce

non-deadlock bugs

Fix

Implications

Bug fix strategies: deadlock bugs

 Impact of concurrency bugs
 ~ 70% leads to program crash or hang

 Reproducing bugs are critical to diagnosis
 Many examples

 Programmers lack diagnosis tools
 No automated diagnosis tools mentioned
 Most are diagnosed via code review
 Reproduce bugs are extremely hard and directly determines the diagnosing time

 60% 1st-time patches still contain concurrency bugs (old or new)
 Usefulness and concerns of transactional memory

Summary

Seriousness of concurrency bugs

	Slide 1
	How to Improve the State-of-Art?
	Learning from Mistakes
	Slide 4
	Methodology: Evaluated Applications
	Methodology: Bug Sources
	Non-Deadlock Bug Pattern
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Non-Deadlock Bug Pattern Characteristics
	How to Trigger a Bug?
	Single Variable vs. Multiple Variable
	Slide 16
	Number of Accesses/Operations Involved
	Number Threads Involved
	Slide 19
	How Were Non-Deadlock Bugs Fixed?
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	How Were Deadlock Bugs Fixed?
	Other Findings
	Slide 27

