
More on parallel computation models, 
Brent’s theorem for runtime upper bound



Lower bound for Tp



Lower bound for Tp

● In the best case, the total work required by the algorithm is evenly divided 
between the p processors.

● Hence Tp is lower bounded by T1/p ≤ Tp, where T1 is the time taken by a 
single processor.

● The equality gives the best case scenario. This is the lower bound we are 
trying to achieve as parallel algorithm designers.
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● What happens when we have infinite number of processors? 
● One might suspect the compute time for an algorithm would then be zero. 
● But this is often not the case, because algorithms usually have an inherently 

sequential component to them.
● For example, suppose we represent our algorithm as a collection of 

computations, then if the output of one computation is used as the input to 
another, the first must complete before the second can begin.

● Remember Amdahl’s Law, which considered sequential computations?
● The above intuition can be made rigorous by representing the dependencies 

between operations in an algorithm using a directed acyclic graph (DAG).
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Constructing a DAG from an algorithm

● Each fundamental unit of computation is represented by a node. 
● We draw a directed arc from node u to node v if computation u is required as 

an input to computation v. 
● The resulting graph is not guaranteed to be connected— it is possible to have 

calculations that are completely independent of each other. 
● However, each connected component is acyclic.
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Parallel DAG for mergesort (2-cores, 4-cores)
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How an algorithm is executed on a single machine? 

● Look for the leaves of the tree, since these depend on no prior computations.
● Evaluate all of the leaf nodes and continue through each layer of the DAG 

until we reach the root node (i.e. return the output). 
● It takes time proportional to the number of nodes in the graph (assuming each 

node represents a unit of computation which takes constant time). 
● So, we define work to be

T1 = number of nodes in DAG
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Different DAG layers cannot be computed in parallel

● Without loss of generality, assume our DAG is a tree, so the levels are well defined. 
● Let the root of the tree (i.e. the output of the algorithm) have depth 0, its children 

depth 1, and so on. 
● Suppose m_i denotes the number of operations (or nodes) performed in level i of 

the DAG. 
● Each of the m_i operations may be computed concurrently, i.e. no computation 

depends on another in the same layer. 
● But operations in different levels of the DAG may not be computed in parallel. 
● For any node, the computation cannot begin until all its children have finished their 

computations.



Critical path
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How an algorithm is executed with an unlimited 
number of processors?

● At each level i, if there are m_i operations we may use m_i processors to 
compute all results in constant time. 

● We may then pass on the results to the next level, use as many processors 
as required to compute all results in parallel in constant time again, and 
repeat for each layer in the DAG.

● So with infinite processors, the compute time is given by the depth of the tree. 
● We then define depth to be 

T∞ = depth of computation DAG. 

● Realistically, the number of processors will be limited, so what’s the point of 
T∞ i.e. time assuming infinite resources? It will be used in upper-bounding Tp.
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Brent’s theorem
● With T1, Tp, T∞ defined as above, 

● Since T1/p optimal, we see that T∞ allows us to assess how far off our algorithm 
performs relative to the best possible version of the parallel algorithm. 

● T∞ can be interpreted as how parallel an algorithm is, smaller values indicate 
more parallelism.
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Proof
On level i of our DAG, there are m_i operations. Since T1 is the total work of our 
algorithm, if we denote T∞ = n

For each level i of the DAG, the time taken by p processors is given as

The equality follows from the fact that there are m_i constant-time operations to be 
performed at m_i. Once all lower levels are completed, these operations share no 
inter-dependencies. So, we may distribute operations uniformly to our processors. 

The ceiling follows from the fact that if the number of operations is not divisible by p, we 
require one wall-clock cycle where some but not all processors are used in parallel.

Then,
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How do we add up a bunch of integers? Sequentially, the summation operation on 
an array can be described by an algorithm of the form

For this summation algorithm T1 = n. Work of the algorithm is O(n). 

What’s T2 on this algorithm? T2 = n as well, since we haven’t written the code in a 
way which is parallel. 

The depth of the algorithm is O(n), since we have written it in a sequential order. In 
fact, T∞ = n. So, if we increase the number of processors but keep the same 
algorithm, the time of algorithm does not change, i.e. T1 = T2 = · · · = T∞ = n.
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Using Brent’s theorem: summation algorithm 2

Instead of (a1 + a2) + a3  + a4 + . . . we assign each processor a pair of elements from 
our array, such that the union of the pairs is the array and there is no overlap. 

At the next level of our DAG, each of the summations from the leaf-nodes will be added 
by assigning each pair a processor in a similar manner. 

If the array length is not even, we can simply pad it with a single zero. 
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Instead of (a1 + a2) + a3  + a4 + . . . we assign each processor a pair of elements from 
our array, such that the union of the pairs is the array and there is no overlap. 

At the next level of our DAG, each of the summations from the leaf-nodes will be added 
by assigning each pair a processor in a similar manner. 

If the array length is not even, we can simply pad it with a single zero. 

This results in an algorithm with depth T∞ = log2 n. Hence by Brent’s theorem,

As n → ∞, our algorithm does better since n/p dominates. Remember Gustafson?

As p → ∞, our algorithm does worse, since all that remains is log2 n





Brent’s theorem tighter bound
On level i of our DAG, there are m_i operations. Since T1 is the total work of our 
algorithm, if we denote T∞ = n

For each level i of the DAG, the time taken by p processors is given as

So a tighter bound will be                               -1/p

 

Brent’s theorem with tighter bound                                          -1/p                  - T∞/p 

            

1/p 1/p 1/p 1/p 1/p 1/p…....



Compare runtime on two machines with finite processors

- T∞/p - 1/p 



Finite processors for parallel reduction
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Summary

● Parallel algorithms can be represented as DAG, for better runtime analysis
● Nodes are computations, edges indicate dependencies between computations
● Number of nodes indicate computation time on single machine T1
● Runtime on parallel machine cannot be better than T1/p, where p indicates number 

of processors. This is the parallel runtime lower bound.
● Nodes at same depth can be computed simultaneously by parallel machines
● So total depth of DAG indicate level of parallelism in the program, smaller depth 

means more parallel.
● Maximum depth path (longest chain of sequential dependency) is the critical path. 
● Even with infinite processors, critical path time (called T∞) cannot be reduced. 
● Brent’s law fixes parallel runtime upper bound at T1/P+ T∞ or T1/P + T∞ - T∞/p 


