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Note: This blog post was originally written for the Baidu Research technical blog, and is

reproduced here with their permission. Since then, these ideas have evolved and been

incorporated into the excellent Horovod library by Uber (https://github.com/uber/horovod),

which is the easiest way to use MPI or NCCL for multi-GPU or multi-node deep learning

applications.

Summary: Neural networks have grown in scale over the past several years, and training

can require a massive amount of data and computational resources. To provide the required

amount of compute power, we scale models to dozens of GPUs using a technique common

in high-performance computing (HPC) but underused in deep learning. This technique, the

ring allreduce, reduces the amount of time spent communicating between different GPUs,

allowing them to spend more of their time doing useful computation. Within Baidu’s Silicon

Valley AI Lab (SVAIL), we have successfully used these techniques to train state-of-the art

speech recognition models. We are excited to release our implementation of the ring

allreduce as a library as well as a patch for TensorFlow, and we hope that by releasing

these libraries we can enable the deep learning community to scale their models more

effectively.

To learn more about the ring allreduce and why it lets us scale easily to many GPUs, read

on!

Introduction
Over the past several years, neural networks have proven to be an incredibly effective tool

for a variety of problems, and have quickly grown in size and computational requirements.

In 2012, the SuperVision convolutional network for image recognition made big gains in

object recognition with two GPUs for a week and 60 million parameters . In 2016,

researchers made breakthroughs on language modeling with a network with over a billion

parameters trained on 32 GPUs for three weeks . Within the Silicon Valley AI Lab at Baidu
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Research, in 2014 the first iteration of our Deep Speech speech recognition system

approximately 11 million parameters , while the next iteration a year later had grown to

100 million parameters .

As the number of parameters and computational needs of neural networks grow, efficiently

parallelizing neural network training on many nodes and many GPUs becomes more and

more important, because waiting months for large networks to train slows down

experimentation and limits further development. In this blog post, we present a technique

from the field of high-performance computing (HPC) and demonstrate how it can be applied

to deep learning to achieve significant performance gains in neural network training.

The Communication Problem
When parallelizing training of a neural network onto many GPUs, you must choose how to

distribute different operations onto the different GPUs available to you. Here, we focus on a

technique known as data parallel stochastic gradient descent (SGD). As in standard SGD,

gradient descent is done with subsets of the data (minibatches), taking many iterations to

progress through the entire dataset. In data parallel training, however, each GPU has a

complete copy of the entire neural network model and for each iteration is assigned only a

subset of the samples in the minibatch. For each iteration, every GPU runs forward

propagation of the network on its data, followed by error backpropagation to compute the

gradient of the loss with respect to the network parameters. Finally, the GPUs communicate

with each other to average the gradients computed by the different GPUs, apply the

averaged gradient to the weights to obtain new weights. The GPUs all progress through the

iterations in lock-step, and once a GPU has completed its iteration, it must wait for all other

GPUs to complete theirs so that the weights can be properly updated. This is equivalent to

doing SGD on a single GPU, but we obtain a speedup by distributing the data among

multiple GPUs and doing the computations in parallel.

When you only have two GPUs and parameters measured in megabytes of data, it may not

matter much exactly how those GPUs communicate. However, when your models have

billions of parameters, the gradients may take gigabytes of space (because there is a

gradient value for every parameter), and you are coordinating dozens of GPUs, the

communication mechanism becomes crucial.

For example, consider the most straight-forward communication mechanism possible. Every

GPU computes a gradient on its subset of the minibatch. Then, every GPU sends its

gradient to a single GPU, which takes the average of all the gradients, and sends the

average back to all the other GPUs.
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Data transfer to and from a single reducer GPU

The more data needs to be sent, the longer it takes to send it; every communication channel

has a maximum throughput (the bandwidth). For example, a good internet connection may

provide a bandwidth of 15 megabytes per second, and a gigabit ethernet connection can

provide a bandwidth of 125 megabytes per second. Specialized networking hardware on an

HPC cluster, such as Infiniband, may provide a bandwidth of several gigabytes per second

between nodes.

In the straight-forward mechanism where data is sent and received from a single GPU, that

single GPU must receive all parameters from all GPUs, and send all parameters to all GPUs.

The more GPUs are in the system, the greater the communication cost.

Let’s evaluate how this communication strategy works on a real model, such as a speech

recognition network modeled after Baidu’s Deep Speech 2 , with three hundred million

trainable parameters. Three hundred million parameters, at four bytes per parameter, is

roughly 1.2 gigabytes of data. Let’s suppose that the networking hardware on your system

can support a bandwidth of one gigabyte per second; in that case, parallelizing your system

onto two GPUs as described above will slow every iteration down by 1.2 seconds.

Parallelizing your training onto ten GPUs will slow every iteration down by 10.8 seconds; as

the number of GPUs grows, the time it takes to do every iteration grows linearly. Even if the

iterations take several seconds each, this linear growth in communication cost quickly

makes further parallelization impractical and kills the efficiency of your training.
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One alternative is to give up on the synchronous nature of the training algorithm and

remove the constraint that all GPUs progress in lock-step through the iterations of gradient

descent. However, while this can make it easier to parallelize your model, algorithms that

remove this constraint (variants of asynchronous SGD) can be difficult to debug and for

some models can converge to subpar results, so we do not consider them for the purpose of

this blog post.

Instead, we can fix the communication problem by using distributed reduction algorithms

from the field of high performance computing and taking advantage of a bandwidth-optimal

ring allreduce.

The Ring Allreduce
The main issue with the simplistic communication strategy described above was that the

communication cost grew linearly with the number of GPUs in the system. In contrast, a

ring allreduce is an algorithm for which the communication cost is constant and

independent of the number of GPUs in the system, and is determined solely by the slowest

connection between GPUs in the system; in fact, if you only consider bandwidth as a factor

in your communication cost (and ignore latency), the ring allreduce is an optimal

communication algorithm . (This is a good estimate for communication cost when your

model is large, and you need to send large amounts of data a small number of times.)

The GPUs in a ring allreduce are arranged in a logical ring. Each GPU should have a left

neighbor and a right neighbor; it will only ever send data to its right neighbor, and receive

data from its left neighbor.
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GPUs arranged in a logical ring

The algorithm proceeds in two steps: first, a scatter-reduce, and then, an allgather. In the

scatter-reduce step, the GPUs will exchange data such that every GPU ends up with a

chunk of the final result. In the allgather step, the GPUs will exchange those chunks such

that all GPUs end up with the complete final result.

The Scatter-Reduce

For the sake of simplicity, let’s assume that the goal is sum up, elementwise, all elements of

a single large array of floating point numbers; there are N GPUs in the system, each of the

GPUs has an array of the same size, and at the end of the allreduce every GPU should have

an array of the same size that contains the sum of the numbers in the original arrays.

To begin, the GPUs partition the array into N smaller chunks (where N is the number of

GPUs in the ring).
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Partitioning of an array into N chunks

Next, the GPUs will do N-1 iterations of the scatter-reduce; in every iteration, the GPU will

send one of its chunks to its right neighbor, and will receive a chunk from its left neighbor

and accumulate into that chunk. The chunk being sent and received by every GPU is

different every iteration; the nth GPU starts by sending chunk n and receiving chunk n – 1,

and then proceeds backwards from there, each iteration sending the chunk it received in

the previous iteration.

For example, in the first iteration, the five GPUs in the diagram above will send and receive

the following chunks:

GPU Send Receive

0 Chunk 0 Chunk 4

1 Chunk 1 Chunk 0

2 Chunk 2 Chunk 1

3 Chunk 3 Chunk 2

4 Chunk 4 Chunk 3
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Data transfers in the first iteration of scatter-reduce

After the first send and receive is completed, each GPU will have a chunk that consists of

the sum of that same chunk on two different GPUs. For example, the first chunk on the

second GPU will be the sum of the values in that chunk from the second GPU and the first

GPU.
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Itermediate sums after the first iteration of scatter-reduce is complete

In the next iterations, the process continues, and by the end, each GPU will have one chunk

that contains the sum of all the values in that chunk across all the GPUs. The images below

demonstrate all the data transfers and intermediate results, starting with the first iteration

and continuing until the scatter-reduce is complete.
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Scatter-reduce data transfers (iteration 1)
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Scatter-reduce data transfers (iteration 2)
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Scatter-reduce data transfers (iteration 3)
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Scatter-reduce data transfers (iteration 4)

Final state after all scatter-reduce transfers

The Allgather
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After the scatter-reduce step is complete, every GPU has an array of values, and some of

those values (one chunk per GPU) are the final values which include contributions from all

the GPUs. In order to complete the allreduce, the GPUs must exchange those chunks, so

that all GPUs have all the necessary values.

The ring allgather proceeds identically to the scatter-reduce (with N-1 iterations of sends

and receives), except instead of accumulating values the GPUs receive, they simply

overwrite the chunks. The nth GPU starts by sending the n+1th chunk and receiving the

nth chunk, and then in future iterations always sends the chunk it has just received.

For example, in the first iteration of our five-GPU setup, the GPUs will send and receive the

following chunks:

GPU Send Receive

0 Chunk 1 Chunk 0

1 Chunk 2 Chunk 1

2 Chunk 3 Chunk 2

3 Chunk 4 Chunk 3

4 Chunk 0 Chunk 4
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Data transfers in the first iteration of the allgather

After the first iteration is completed, each GPU will have two chunks of the final array.

In the next iterations, the process continues, and by the end, each GPU will have the fully

accumulated values for the entire array. The images below demonstrate all the data

transfers and intermediate results, starting with the first iteration and continuing until the

allgather is complete.
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Allgather data transfers (iteration 1)
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Allgather data transfers (iteration 2)
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Allgather data transfers (iteration 3)
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Allgather data transfers (iteration 4)

Final state after all allgather transfers

Allreduce Communication Cost
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Recall that for the simplistic communication algorithm described in the introduction, the

communication cost grew linearly with the number of GPUs. The primary reason that an

allreduce works well is that this is no longer the case.

In the system we described, each of the N GPUs will send and receive values N-1 times for

the scatter-reduce, and N-1 times for the allgather. Each time, the GPUs will send K / N

values, where K is the total number of values in array being summed across the different

GPUs. Therefore, the total amount of data transferred to and from every GPU is

which, crucially, is independent of the number of GPUs.

Since all of the transfers happen synchronously in discrete iterations, the speed of the

allreduce is limited by the slowest (lowest bandwidth) connection between adjacent GPUs

in the ring. Given the right choice of neighbors for every GPU, this algorithm is bandwidth-

optimal and is the fastest possible algorithm for doing an allreduce (assuming that latency

cost is negligible compared to bandwidth) . In general, the algorithm functions best if all

GPUs on a node are next to each other in the ring; this minimizes the amount of network

contention, which could otherwise significantly reduce the effective bandwidth of the GPU-

GPU connections.

Applying the Allreduce to Deep Learning

The ring allreduce is a well-known algorithm in the field of high-performance computing,

but tends to receive fairly little use within deep learning. In our lab, we’ve managed to use

this tool as the basis for all our data-parallel training, allowing us to effectively scale

training to dozens of GPUs.

In order to minimize communication overhead, we can exploit the structure of the neural

network. In every iteration, every GPU runs forward propagation to compute errors, and

then runs backward propagation to compute gradients for each of the parameters of the

neural network. Backpropagation computes gradients starting from the output layer and

moving towards in the put layer, which means that gradients for the output layer

parameters are available significantly before gradients for the earlier layers. Since the

allreduce can operate on a subset of the parameters of the network at a time, we can start

the allreduce on the output layer parameters while the other gradients are still being

computed. Doing so overlays the communication with the rest of the computation in the

backpropagation step, and so reduces the total amount of time each GPU ends up waiting

for communication to complete.

Data Transferred = 2(N − 1)
K

N

4
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For example, consider a language model similar to the one in , but with approximately 300

million learnable parameters (and thus with a total gradient size of 1.2 gigabytes). Using

the allreduce, each GPU must send and receive about 2.4 gigabytes of data. Using a CUDA-

aware MPI implementation (such as OpenMPI), we can transfer data between GPUs using

GPUDirect RDMA with a bandwidth of roughly 10 gigabytes per second; however, the

connection between nodes in our cluster is slower, with Infiniband providing a bandwidth of

roughly 6 gigabytes per second. Since the limiting factor is the Infiniband connections, a

single iteration requires about

Since layers deeper into the network have gradients available first, we can start doing the

data transfers before the entire backpropagation pass is completed, so the true overhead

may be less than 400 milliseconds; the overlap between communication and compute may

vary depending on the nature of the neural network being optimized.

We implemented the aforementioned language model and tested the time taken per

iteration as we scale from a single GPU (with no communication overhead) to 40 GPUs.

These 40 GPUs are arranged into 5 nodes with 8 GPUs each, connected by Infiniband. We

ran the language model for 300 iterations with a batch size of 32 and computed the number

of samples processed per second.

2

≈ 400 milliseconds per iteration
2.4 gigabytes

6.0 gigabytes per second
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The number of samples processed per second with a 300-million parameter language

model scales linearly with the number of GPUs concurrently doing synchronous training.

As you can see, the throughput of the entire system scales linearly with the number of

GPUs; past a certain opint, adding more GPUs does not result in a significant slowdown of

each iteration. Running the model on 40 GPUs takes approximately 650 – 700 milliseconds

per iteration, while on a single GPU it takes approximately 370 milliseconds. Since by our

estimate communication would take 400 milliseconds, we are saving an extra 70 – 120

milliseconds per iteration by overlapping the backpropagation with the data transfer.

Conclusion
The ring allreduce, a technique from the field of high-performance computing, allows us to

efficiently average gradients in neural networks across many devices and many nodes. By

using this bandwidth-optimal algorithm during training, you can drastically reduce the

communication overhead and scale to many more devices, while still retaining the

determinism and predictable convergence properties of synchronous stochastic gradient

descent. The algorithm is network architecture and deep learning framework agnostic and

can provide tangible and immediate benefits for the efficiency of data-parallel training,

while also being fairly straight-forward and easy to implement.
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« NRAM: Theano Implementation (https://andrew.gibiansky.com/blog/machine-learning/nram-2)

In order to make it easier for you to take advantage of these techniques, today we’re

releasing baidu-allreduce (https://github.com/baidu-research/baidu-allreduce), a C library

demonstrating the allreduce algorithm which you can embed into any MPI-enabled

application. Additionally, the excellent Horovod library (https://github.com/uber/horovod) by

Uber implements the technique that we pioneered here.

We hope that other deep learning frameworks will take advantage of similar techniques

where appropriate, and that with these tools, you will be able to scale your neural network

models to many machines easily and efficiently, independent of your framework of choice.
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