Divide and Conquer (contd.)

NON-OBVIOUS APPLICATIONS OF PARALLEL SCAN / REDUCTIONS

Suppose, we have an array of 0's and 1's, and we want to determine how many 1's begin the array.

• Ex (1,1,1,0,1,1,0,1).. The answer is 3.

It may be non-intuitive to think of an associative operator which we might use here!

However, there seems to be a common trick, which we can try to learn.

THE TRICK

Let us define for any segment of the array by the notation (x,p)

- x denotes the number of leading 1's
- p denotes whether the segment contains only 1's.

Thus, each element a_i is replaced by (a_i, a_i) .

How do we combine, (x,p) and (y,q)?

Let us define an operator, \otimes to do this.

It is intuitive that $(x,p) \otimes (y,q)=(x+py,pq)$. Why?

Is this operator associate?

- $((x,p) \otimes (y,q)) \otimes (z,r) = (x+py,pq) \otimes (z,r) = (x+py+pqz,pqr)$
- $(x,p) \otimes ((y,q)) \otimes (z,r) = (x,p) \otimes (y+qz,qr) = (x+p(y+qz),pqr) = (x+py+pqz,pqr)$

Now all the previous parallelizations can be applied ©

EXAMPLE

Evaluating polynomial: Estrin's scheme

Take $P_n(x)$ to mean the nth order polynomial of the form: $P_n(x) = C_0 + C_1 x + C_2 x^2 + C_3 x^3 + \cdots + C_n x^n$

Written with Estrin's scheme we have:

$$\begin{split} P_3(x) &= (C_0 + C_1 x) + (C_2 + C_3 x) \, x^2 \\ P_4(x) &= (C_0 + C_1 x) + (C_2 + C_3 x) \, x^2 + C_4 x^4 \\ P_5(x) &= (C_0 + C_1 x) + (C_2 + C_3 x) \, x^2 + (C_4 + C_5 x) \, x^4 \\ P_6(x) &= (C_0 + C_1 x) + (C_2 + C_3 x) \, x^2 + ((C_4 + C_5 x) + C_6 x^2) x^4 \end{split}$$

In full detail, consider the evaluation of $P_{15}(x)$:

Inputs:
$$x$$
, C_0 , C_1 , C_2 , C_3 , C_4 , C_5 , C_6 , C_7 , C_8 , C_9 , C_{10} , C_{11} , C_{12} , C_{13} , C_{14} , C_{15}

Step 1: x^2 , $C_0 + C_1 x$, $C_2 + C_3 x$, $C_4 + C_5 x$, $C_6 + C_7 x$, $C_8 + C_9 x$, $C_{10} + C_{11} x$, $C_{12} + C_{13} x$, $C_{14} + C_{15} x$

Step 2: x^4 , $(C_0 + C_1 x) + (C_2 + C_3 x)x^2$, $(C_4 + C_5 x) + (C_6 + C_7 x)x^2$, $(C_8 + C_9 x) + (C_{10} + C_{11} x)x^2$, $(C_{12} + C_{13} x) + (C_{14} + C_{15} x)x^2$

Step 3: x^8 , $((C_0 + C_1 x) + (C_2 + C_3 x)x^2) + ((C_4 + C_5 x) + (C_6 + C_7 x)x^2)x^4$, $((C_8 + C_9 x) + (C_{10} + C_{11} x)x^2) + ((C_{12} + C_{13} x) + (C_{14} + C_{15} x)x^2)x^4$

Step 4: $(((C_0 + C_1 x) + (C_2 + C_3 x)x^2) + ((C_4 + C_5 x) + (C_6 + C_7 x)x^2)x^4) + (((C_8 + C_9 x) + (C_{10} + C_{11} x)x^2) + ((C_{12} + C_{13} x) + (C_{14} + C_{15} x)x^2)x^4)x^8$

CAN YOU EVALUATE A POLYNOMIAL IN PARALLEL USING A SIMILAR METHOD?

Consider a polynomial : $a_0x^{n-1} + a_1x^{n-2} + ... + a_{n-2}x + a_{n-1}$.

Each segment also denotes a polynomial. Say, the first two coefficients denoted a_0x+a_1

Let us consider (p,y) to denote a segment.

- p denotes the value of the segment's polynomial evaluated for x
- y denotes the value of xⁿ, where n is the length of the segment

Thus, each element a_i is replaced by (a_i,x) .

How do we combine, (p,y) and (q,z)?

Let us define an operator, \otimes to do this.

It is intuitive that $(p,y) \otimes (q,z) = (pz+q,yz)$. Why?

Is this operator associate?

- $((a,x) \otimes (b,y)) \otimes (c,z)=(ay+b,xy) \otimes (c,z)=(ayz+bz+c,xyz)$
- $(a,x) \otimes ((b,y)) \otimes (c,z) = (a,x) \otimes (bz+c,yz) = (ayz+bz+c,xyz)$

Now all the previous parallelizations can be applied ©