Pointer Jumping

The technique

e Simple operation. Each node i replaces its pointer P[i] with the pointer of the
node that it points to, P[P[i]].

e Can be applied to both linked lists and trees.

e By repeating this operation, it is possible to compute, for each node in a list or
tree, a pointer to the end of the list or root of the tree.

e \We assume that the root points to itself or points to null.

Basic algorithm

Given a sequence P of pointers that represent a tree (i.e., pointers from children to
parents), the following code will generate a pointer from each node to the root.

ALGORITHM: POINT_TO_ROOT(P)
1 for j from 1 to [log|P|]
2 Pi=A P[Pl 1+ [0..|P})}

The idea behind this algorithm is that in each loop iteration the distance spanned by
each pointer, with respect to the original tree, will double, until it points to the root.

Since a tree constructed from n = |P| pointers has depth at most n — 1, after [log n1
iterations each pointer will point to the root.

Example run

(b) The tree P = [1,1,3,1,1, 3,4] after one iteration of the algorithm.
o
®
® /@
®
® ©

(c) The final tree P =[1,1,1,1,1,1,1].

Application to problem 1: list ranking

Computing distance from each node to the end of a linked list is called list ranking.

There are simple sequential algorithms that perform the same task using O(n) work.
For example, by making two passes through the list. The goal of the first pass is
simply to count the number of elements in the list. The elements can then be
numbered with their positions from the end of the list in a second pass.

LIST RANKING — EXAMPLE 1

3 4 0
(a) > > | .

3 0

(b) 2|\ 2|\ 1
\ _/

3 4 ()

(c) 4 4 1
>

4 0

(d) 5|/ 4|/

| LIST RANKING — EXAMPLE 2

OO+ D—+D—+D—-00

@ O

.”0'—
@ @ @ @ OO OO0

/6//’ R
OO gE© B W TN

=

OO0 OO OO MOMOS 0 d

The position of each item on the n-element list can be determined
in [logn| pointer jumping steps.

| THE PRAM ALGORITHM

PRAM to comipute, for each element of a singly-linked list, its distance from
the end of the list.

LIST.RANKING (CREW PRAM):
Initial condition: Values in array nex: represent a linked list
Final condition: Values in array posirion contain original distance
of each element from end of list
Global variables: n, position[0...(n = 1)),next[0...(n = 1)), j
begin
m(h- Plo ’Z- seey Pl’l)
forall ,where0 < i <n - 1do
i next(i] = i then position(i] « 0
else position[i] « 1
endif

for j <« 1to [log n] do
position[i] <« positionli] + position[next[i
next[i] +« next[next[i]]

endfor
end

Note this step
does not depend
on j.
There are [log n|
steps.
There are n

— processors.
So total cost is:

B(nlogn)

Not cost optimal!

THE SAME CODE USING POINTER
NOTATIONS

List_ranking(L)

1. for all P, for each node i, do

2 if i->next = null theni.d =0
3 else i.d = 1

4, while(i->next != null) do

5 i.d = i.d + i->next.d

6 i->next = i->next->next

Synchronization is important
* In step 6 (i->next = i->next->next), all processors must read right hand side before any
processor write left hand side

The list ranking algorithm is EREW
* If we assume in step 5 (i.d = i.d + inexi.d) all processors read i.d and then read inext.d

* If j.next =i, i and | do not read i.d concurrently

Application to problem 2: preorder tree traversal

Let us consider the problem of numbering the vertices of a rooted
tree in preorder (depth first search order).

Where is the parallelism?
The fundamental operation
assigns a label to a node.

PREORDER.TRAVERSAL(nodeptr):

Begin
We cannot assign labels to the
if nodeptr#null then vertices in the right subtree of

the left subtree, until we know
nodecount € nodecount + 1 N
how many vertices are on the

nodepfr.lqbel & nodecount left subtree of the left subtree,
and so on.

PREORDER.TRAVERSAL(nodeptr.left)
PREORDER.TRAVERSAL(nodeptr.right) | 1"€ @lgorithm seems inherently

sequential!
endif

End

Can we parallelize this?

PARALLELIZATION OF THE TRAVERSAL

Instead of focusing on the vertices, let us look into the edges.

When we perform a preorder traversal, we systematically work our
way through the edges of the tree.

* We pass along every vertex twice: one heading down from the parent to the child,
and one going from the child to the parent.

* If we divide each tree edge into two edges, one corresponding to the downward
traversal, and one corresponding to the upward traversal, then the problem of traversing
a tree turns into the problem of traversing a single linked list.

TARJAN AND VISHKIN (1984)

4 steps:

1. The algorithm constructs a singly linked list. Each vertex of the linked
list corresponds to a downward or upward edge traversal.

2. Algorithm assigns weights to the vertices of the newly created single
linked list.

= For vertices corresponding to downward edges, the weight is 1 (it contributes to node
count).

= For vertices corresponding to upward edges, the weight is O (it does not coniribute to node
count).

3. For each element of the singly-linked list, the rank of each element is
determined (by pointer jumping).

4. The processors associated with the downward edges use the ranks they

have computed to assign a preorder traversal number to their associated
tree nodes (the tree node at the end of the downward edge).

a) Tree

b) Double Tree Edges, distinguishing
downward edges from vpward
edges.

c) Build linked list out of directed tree
edges. Associate 1 with downward
edges, and 0 with upward edges.

d) Use pointer jumping to compute total
weight from each vertex to end of
list.

The elements of the linked list which

correspond to downward edges, have

‘ EXAMPLE

been shaded.
Processors managing these elements
8Dl [® o oAl | ©F C[,A assign preorder values.
4 . 2 wz 2 |0 For example, (E,G) has a weight 4,
ABCDEBFOSN meaning tree node G is 4™ node from
(T2 T3 «]sTsT6] end of preorder traversal list.
@ The tree has 8 nodes, so it can compute

that tree node G has label 5 in preorder
traversal (=8-4+1)

‘ DATA STRUCTURE FOR THE TREE

prent |noli| AfA|B|[B|C|E]|E]

sibling [null| C |oull| E | oull| ool [H |

child | B|D|F [oo| G |oon|oul o]

For every tree node, the data structure stores the node’s parent, the node’s
immediate sibling to the right, and the node’s leftmost child.

Representing the node this way keeps the amount of data stored a
constant for each tree node and simplifies the tree traversal.

PROCESSOR ALLOCATION

The PRAM algorithm spawns 2(n-1) processors.

A tree with nodes have (n-1) edges.

We are dividing each edge into two edges, one for the downward
traversal and one for the upward traversal.

So, the algorithm needs 2(n-1) processors to manipulate each of the

2(n-1) edges of the singly-linked list of elements corresponding to the
edge traversals.

CONSTRUCTION OF THE LINKED LIST

Once all the processors have been activated they construct
the linked list:
* P(i,j): The processor for the edge (i,j)

* Note (j,i) has a different processor P(j,i)

Given an edge (i,j), P(i,j) must compute the successor of (i)
and store in a global array: succ[1...2(n-1)].
* If the successor of (i,j) is (j,k), then succ[(i,j)] < (j,k)

‘ HANDLING UPWARD EDGES

Edge (i,j), such that parent(i)=j

If sibling[i]ZNULL

‘ G succ((i,i)] € (j,siblingfi])
j
s
° Else If parent[JNULL
succ[(i,i)1€(j,p orent[J{l
Else !

succ[(i,i)] € (i)
’ The edge is at the end of

the tree traversal, so we

put a loop at the end of
0 the element list.

HANDLING DOWNWARD EDGES

Edge (i,j), such that parent[i]#j.

‘ If child[j]JZNULL

succ[(i,i)] € (j,child(j])

else

G ° SUCC[(i,i)]e(i,i)

ie. jis a leaf and the
successor is the edge back

from the child to the
‘ parent.

ASSIGNING EDGE RANKS

After the processors construct the list, they assign position values:
* 1 to those elements corresponding to downward edges
* 0 to those elements corresponding to upward edges.

* Note the root is already handled.

if parent[i]=j, position[(i,j)] €0
Else position[(i,j)]€ 1

POINTER JUMPING: SUFFIX SUM

The pointer jumping follows subsequently to compute the suffix sum.

The final position values indicate the number of preorder traversal
nodes between the list element and the end of the list.

To compute each node’s preorder traversal label compute
(n-position+1).

PRAM PROGRAM

PREORDER.TREE.TRAVERSAL (CREW PRAM):

Global » {Number of vertices in tree}
parent[l... n) {Vertex number of parent node)
child(1... n) {Vertex number of first child)
sibling[1... n) {Vertex number of sibling)

suce(l... (n=1)) {Index of successor edge)
position[l... (n —1)] |Edge rank)
preorder(l... n] {Preorder traversal number}
begin
spawn (set of all P(i, j) where (i, j) is an edge)
for all P(i, j) where (i, /) is an edge do
(Put the edges into a linked list)
if parentli] = j then
if siblingli] # null then
sucel(i,)« (J, siblingli)
else if parent[j] # null then
sucel(i, D1 + (J. parent|j])
else

sucel(i,))) < (i,))
preorder|j] « 1 |j is root of tree)

else
if child[j] # null then succl(i, j)) «~ (j.child[j])
else sucelli,)] « (.1
endif

endif

3

| PRAM ALGORITHM (CONTD.)

if parem(i) = jthen pasition|li,))) <~ 0

olse position|(i, j)] « 1

endif

{Perform suffix sum on successor list)

fork < 110 [log(2(n 1)) do
position|(i, j)) « position|(i, j)] + positien[suce|(i,)]}
sucel(i,))] + sueelsuce{(i, H))

endfor

{Assign preorder values)
Wi = parent[j] then preorder[j] « n + | — position|(i, j)]
endif

endfor
end

Time Complexity:0([log(n)]
Processors: O(n)
Cost: O(nlogn)

