void saxpy(int n, float a, float * x,

{

* v)

for(int i=0; i<n; i++)

{

}

y[base +i] += a * x[base+ i];

float

Divide the work equally
among T threads

Each thread is responsible for
computing one contiguous
‘region’ of the arrays

This is good for pthreads

global void saxpyl(int n, flocat a, float i
N = ot o Divide the work equally

(among T threads

int workPerThread = 1 + n/blockDim.x; . -

int base = threadldx.x * workPerThread; EaCh thread IS I'eSponSIble for
computing one contiguous

‘region’ of the arrays

if (base + i < n) This is good for pthreads
{

y[base +i] += a * x[base+ 1i];

for(int i=0; i<workPerThread; i++)

{

- i]
thread O thread 1 thread 2 thread 3 thread 31

_global _ void saxpyl(int n, float a, float In SIMT, 32 threads of a warp
* x, float * y) ’

(Issue the x[base+i] instruction
int workPerThread = 1 + n/blockDim.x; simultaneously.

int base = threadlIdx.x * workPerThread; :
Each thread has different value
for (int i=0; i<workPerThread; i++) of base

{

SR e i el if workPerThread > 1, this
{ becomes a strided load

y[base +i] += a * x[base+i];

. I N s
thread 0 thread 1 thread 2 thread 3 thread 31

__global void saxpy2(int n, float a, float
* x, float * y)

{
int id;
int loopCount = 0;
while(id < n)
{
id = loopCount*blockDim.x + threadldx.x;

y[id] += a * x[id]
loopCount++;
}

}

x IININNENEEER IR

loopcount =0 loopcount = 1

Divide work up so that each
pass through the loop, the
thread block computes one
‘contiguous region’ of the
array.

Achieves memory coalescing

loopcount=k

