
Matrix vector multiplication

Performance numbers

Observation 1

Explanation 1

● A write-miss occurs when a core tries to update a variable that’s not in cache, and it has to access the
main memory

● 8,000,000 x 8 shows more cache write-misses than either of the other inputs
● Bulk of these occur in Line 4
● Since the number of elements in the vector y is far greater in this case (8,000,000 vs. 8000 or 8), and each

element must be initialized, so line 4 slows down the execution of the program with the 8,000,000 × 8 input

Observation 2

Explanation 2

● A read-miss occurs when a core tries to read a variable that’s not in cache, and it has to access main
memory

● 8 x 8,000,000 shows more cache read-misses than either of the other inputs
● Bulk of these occur in Line 6
● for this matrix dimension, x has 8,000,000 elements, versus only 8000 or 8 for the other inputs

Observation 3

Explanation 3

● Cache coherence is enforced at “cache-line level.” Each time any value in a cache line is written, if the line
is also stored in another core’s cache, the entire line will be invalidated, not just the value that was written.

● System used has two dual-core processors and each processor has its own cache. Suppose threads 0 and
1 are assigned to one of the processors and threads 2 and 3 are assigned to the other.

● 8,000,000 × 8 input, each thread is assigned 2,000,000 components
8000 × 8000 input, each thread is assigned 2000 components
8 × 8,000,000 input, each thread is assigned 2 components

● On system used, cache line is 64 bytes. y is double -> 8 bytes, a single cache line will store 8 doubles
● for 8 × 8,000,000 all of y is stored in a single cache line. Then every write to some element of y will

invalidate the line in the other processor’s cache

mjb – March 4, 2019

29

Computer Graphics

False Sharing – An Example Problem

struct s
{

float value;
} Array[4];

omp_set_num_threads(4);

#pragma omp parallel for
for(int i = 0; i < 4; i++)
{

for(int j = 0; j < SomeBigNumber; j++)
{

Array[i].value = Array[i].value + (float)rand();
}

}

Some unpredictable function so the compiler
doesn’t try to optimize the j-for-loop away.

One
cache
line

mjb – March 4, 2019

30

Computer Graphics

False Sharing – Fix #1
Adding some padding

#include <stdlib.h>
struct s
{

float value;
int pad[NUMPAD];

} Array[4];

const int SomeBigNumber = 100000000; // keep less than 2B

omp_set_num_threads(4);

#pragma omp parallel for
for(int i = 0; i < 4; i++)
{

for(int j = 0; j < SomeBigNumber; j++)
{

Array[i].value = Array[i].value + (float)rand();
}

}

This works because successive Array elements are forced onto
different cache lines, so less (or no) cache line conflicts exist

One
cache
line

} NUMPAD=3

mjb – March 4, 2019

31

Computer Graphics

False Sharing – Fix #1

NUMPAD

S
p

ee
d

u
p

of
threads

Why do these curves look this way?

mjb – March 4, 2019

32

Computer Graphics

False Sharing – the Effect of Spreading Your Data to Multiple Cache Lines

NUMPAD = 0

mjb – March 4, 2019

33

Computer Graphics

False Sharing – the Effect of Spreading Your Data to Multiple Cache Lines

NUMPAD = 1

mjb – March 4, 2019

34

Computer Graphics

False Sharing – the Effect of Spreading Your Data to Multiple Cache Lines

NUMPAD = 2

mjb – March 4, 2019

35

Computer Graphics

False Sharing – the Effect of Spreading Your Data to Multiple Cache Lines

NUMPAD = 3

mjb – March 4, 2019

36

Computer Graphics

False Sharing – the Effect of Spreading Your Data to Multiple Cache Lines

NUMPAD = 4

mjb – March 4, 2019

37

Computer Graphics

False Sharing – the Effect of Spreading Your Data to Multiple Cache Lines

NUMPAD = 5

mjb – March 4, 2019

38

Computer Graphics

False Sharing – Fix #1

mjb – March 4, 2019

39

Computer Graphics

NUMPAD = 6

False Sharing – the Effect of Spreading Your Data to Multiple Cache Lines

mjb – March 4, 2019

40

Computer Graphics

NUMPAD = 7

False Sharing – the Effect of Spreading Your Data to Multiple Cache Lines

mjb – March 4, 2019

41

Computer Graphics

False Sharing – Fix #1

mjb – March 4, 2019

42

Computer Graphics

NUMPAD = 8

False Sharing – the Effect of Spreading Your Data to Multiple Cache Lines

mjb – March 4, 2019

43

Computer Graphics

NUMPAD = 9

False Sharing – the Effect of Spreading Your Data to Multiple Cache Lines

mjb – March 4, 2019

44

Computer Graphics

NUMPAD = 10

False Sharing – the Effect of Spreading Your Data to Multiple Cache Lines

mjb – March 4, 2019

45

Computer Graphics

False Sharing – Fix #1

mjb – March 4, 2019

46

Computer Graphics

NUMPAD = 11

False Sharing – the Effect of Spreading Your Data to Multiple Cache Lines

mjb – March 4, 2019

47

Computer Graphics

NUMPAD = 12

False Sharing – the Effect of Spreading Your Data to Multiple Cache Lines

mjb – March 4, 2019

48

Computer Graphics

NUMPAD = 13

False Sharing – the Effect of Spreading Your Data to Multiple Cache Lines

mjb – March 4, 2019

49

Computer Graphics

NUMPAD = 14

False Sharing – the Effect of Spreading Your Data to Multiple Cache Lines

mjb – March 4, 2019

50

Computer Graphics

NUMPAD = 15

False Sharing – the Effect of Spreading Your Data to Multiple Cache Lines

mjb – March 4, 2019

51

Computer Graphics

False Sharing – Fix #1

mjb – March 4, 2019

52

Computer Graphics

Stack

Stack

Common
Program

Executable

Common
Globals

Common
Heap

False Sharing – Fix #2:
Using local (private) variables

OK, wasting memory to put your data
on different cache lines seems a little
silly (even though it works). Can we do
something else?

Remember our discussion in the
OpenMP section about how stack
space is allocated for different threads?

If we use local variables, instead of
contiguous array locations, that will
spread our writes out in memory, and
to different cache lines.

mjb – March 4, 2019

53

Computer Graphics

Stack

Stack

Common
Program

Executable

Common
Globals

Common
Heap

False Sharing – Fix #2

#include <stdlib.h>
struct s
{

float value;
} Array[4];

omp_set_num_threads(4);

const int SomeBigNumber = 100000000;

#pragma omp parallel for
for(int i = 0; i < 4; i++)
{

float tmp = Array[i].value;
for(int j = 0; j < SomeBigNumber; j++)
{

tmp = tmp + (float)rand();
}
Array[i].value = tmp;

}

This works because a localized temporary variable is
created in each core’s stack area, so little or no cache
line conflict exists

Makes this a private
variable that lives in each
thread’s individual stack

mjb – March 4, 2019

54

Computer Graphics

False Sharing – Fix #2 vs. Fix #1

NUMPAD

S
p

ee
d

u
p

of
threads

Fix #2 -- 4 Threads

Fix #2 -- 2 Threads

Fix #2 -- 1 Thread

Note that Fix #2 with {1, 2, 4} threads gives the same
performance as NUMPAD= {0,7,15}

