
CUDA STREAMS
 A stream is a queue of device work

— The host places work in the queue and continues on immediately

— Device schedules work from streams when resources are free

 CUDA operations are placed within a stream
— e.g. Kernel launches, memory copies

 Operations within the same stream are ordered (FIFO) and
cannot overlap

 Operations in different streams are unordered and can
overlap

MANAGING STREAMS
 cudaStream_t stream;

— Declares a stream handle
 cudaStreamCreate(&stream);

— Allocates a stream
 cudaStreamDestroy(stream);

— Deallocates a stream

— Synchronizes host until work in stream has completed

PLACING WORK INTO A STREAM
 Stream is the 4th launch parameter

— kernel<<< blocks , threads, smem, stream>>>();

 Stream is passed into some API calls
— cudaMemcpyAsync(dst, src, size, dir, stream);

DEFAULT STREAM
 Unless otherwise specified all calls are placed into a default

stream
— Often referred to as “Stream 0”

 Stream 0 has special synchronization rules
— Synchronous with all streams

 Operations in stream 0 cannot overlap other streams

 Exception: Streams with non-blocking flag set
— cudaStreamCreateWithFlags(&stream,cudaStreamNonBlocking)

— Use to get concurrency with libraries out of your control (e.g. MPI)

KERNEL CONCURRENCY
 Assume foo only utilizes 50% of the GPU

 Default stream
 foo<<<blocks,threads>>>();

 foo<<<blocks,threads>>>();

 Default & user streams
 cudaStream_t stream1;

 cudaStreamCreate(&stream1);

 foo<<<blocks,threads>>>();

 foo<<<blocks,threads,0,stream1>>>();

 cudaStreamDestroy(stream1);

CPU

Stream 0

CPU

Stream 0

Stream 1

KERNEL CONCURRENCY
 Assume foo only utilizes 50% of the GPU

 Default & user streams
 cudaStream_t stream1;

 cudaStreamCreateWithFlags(&stream1,cudaStreamNonBlocking);

 foo<<<blocks,threads>>>();

 foo<<<blocks,threads,0,stream1>>>();

 cudaStreamDestroy(stream1);

CPU

Stream 0
Stream 1

KERNEL CONCURRENCY
 Assume foo only utilizes 50% of the GPU

User streams
 cudaStream_t stream1, stream2;

 cudaStreamCreate(&stream1);

 cudaStreamCreate(&stream2);

 foo<<<blocks,threads,0,stream1>>>();

 foo<<<blocks,threads,0,stream2>>>();

 cudaStreamDestroy(stream1);

 cudaStreamDestroy(stream2);

CPU

Stream 1
Stream 2

REVIEW
 The host is automatically asynchronous with kernel launches

 Use streams to control asynchronous behavior
— Ordered within a stream (FIFO)

— Unordered with other streams

— Default stream is synchronous with all streams.

Simple Example: Synchronous

cudaMalloc (&dev1, size) ;

double* host1 = (double*) malloc (&host1, size) ;

…

cudaMemcpy (dev1, host1, size, H2D) ;

kernel2 <<< grid, block, 0 >>> (…, dev2, …) ;

kernel3 <<< grid, block, 0 >>> (…, dev3, …) ;

cudaMemcpy (host4, dev4, size, D2H) ;

...

completely

synchronous

All CUDA operations in the default stream are synchronous

Simple Example: Asynchronous, No Streams

cudaMalloc (&dev1, size) ;

double* host1 = (double*) malloc (&host1, size) ;

…

cudaMemcpy (dev1, host1, size, H2D) ;

kernel2 <<< grid, block >>> (…, dev2, …) ;

some_CPU_method ();

kernel3 <<< grid, block >>> (…, dev3, …) ;

cudaMemcpy (host4, dev4, size, D2H) ;

...

potentially

overlapped

GPU kernels are asynchronous with host by default

Simple Example: Asynchronous with Streams

cudaStream_t stream1, stream2, stream3, stream4 ;

cudaStreamCreate (&stream1) ;

...

cudaMalloc (&dev1, size) ;

cudaMallocHost (&host1, size) ; // pinned memory required on host

…

cudaMemcpyAsync (dev1, host1, size, H2D, stream1) ;

kernel2 <<< grid, block, 0, stream2 >>> (…, dev2, …) ;

kernel3 <<< grid, block, 0, stream3 >>> (…, dev3, …) ;

cudaMemcpyAsync (host4, dev4, size, D2H, stream4) ;

some_CPU_method ();

...

potentially

overlapped

Fully asynchronous / concurrent

Data used by concurrent operations should be independent

CONCURRENT MEMORY COPIES
 First we must review CUDA memory

THREE TYPES OF MEMORY
 Device Memory

— Allocated using cudaMalloc

— Cannot be paged

 Pageable Host Memory
— Default allocation (e.g. malloc, calloc, new, etc)

— Can be paged in and out by the OS

 Pinned (Page-Locked) Host Memory
— Allocated using special allocators

— Cannot be paged out by the OS

ALLOCATING PINNED MEMORY
 cudaMallocHost(...) / cudaHostAlloc(...)

— Allocate/Free pinned memory on the host

— Replaces malloc/free/new

 cudaFreeHost(...)

— Frees memory allocated by cudaMallocHost or cudaHostAlloc

 cudaHostRegister(...) / cudaHostUnregister(...)

— Pins/Unpins pagable memory (making it pinned memory)

— Slow so don’t do often

 Why pin memory?
— Pagable memory is transferred using the host CPU

— Pinned memory is transferred using the DMA engines

 Frees the CPU for asynchronous execution

 Achieves a higher percent of peak bandwidth

CONCURRENT MEMORY COPIES
 cudaMemcpy(...)

— Places transfer into default stream

— Synchronous: Must complete prior to returning

— cudaMemcpyAsync(..., &stream)

 Places transfer into stream and returns immediately

— To achieve concurrency
 Transfers must be in a non-default stream

 Must use async copies

 1 transfer per direction at a time

 Memory on the host must be pinned

PAGED MEMORY EXAMPLE
int *h_ptr, *d_ptr;

h_ptr=malloc(bytes);

cudaMalloc(&d_ptr,bytes);

cudaMemcpy(d_ptr,h_ptr,bytes,cudaMemcpyHostToDevice);

free(h_ptr);

cudaFree(d_ptr);

PINNED MEMORY: EXAMPLE 1
int *h_ptr, *d_ptr;

cudaMallocHost(&h_ptr,bytes);

cudaMalloc(&d_ptr,bytes);

cudaMemcpy(d_ptr,h_ptr,bytes,cudaMemcpyHostToDevice);

cudaFreeHost(h_ptr);

cudaFree(d_ptr);

PINNED MEMORY: EXAMPLE 2
int *h_ptr, *d_ptr;

h_ptr=malloc(bytes);

cudaHostRegister(h_ptr,bytes,0);

cudaMalloc(&d_ptr,bytes);

cudaMemcpy(d_ptr,h_ptr,bytes,cudaMemcpyHostToDevice);

cudaHostUnregister(h_ptr);

free(h_ptr);

cudaFree(d_ptr);

CONCURRENCY EXAMPLES
Synchronous

cudaMemcpy(...);

foo<<<...>>>();

Asynchronous Same Stream
 cudaMemcpyAsync(...,stream1);

foo<<<...,stream1>>>();

Asynchronous Different Streams
 cudaMemcpyAsync(...,stream1);

foo<<<...,stream2>>>();

CPU

Stream 0

CPU

Stream 1

CPU

Stream 1

Stream 2

REVIEW
 Memory copies can execute concurrently if (and only if)

— The memory copy is in a different non-default stream

— The copy uses pinned memory on the host

— The asynchronous API is called

— There isn’t another memory copy occurring in the same direction at
the same time.

SYNCHRONIZATION APIS
 Synchronize everything

—cudaDeviceSynchronize()

 Blocks host until all issued CUDA calls are
complete

 Synchronize host w.r.t. a specific stream
—cudaStreamSynchronize (stream)

 Blocks host until all issued CUDA calls in
stream are complete

 Synchronize host or devices using events

More
Synchronization

Less
Synchronization

CUDA EVENTS
 Provide a mechanism to signal when operations have occurred

in a stream
— Useful for profiling and synchronization

 Events have a boolean state:
— Occurred

— Not Occurred

— Important: Default state = occurred

MANAGING EVENTS
 cudaEventCreate(&event)

— Creates an event

 cudaEventDestroy(&event)

— Destroys an event

 cudaEventCreateWithFlags(&ev, cudaEventDisableTiming)

— Disables timing to increase performance and avoid synchronization issues

 cudaEventRecord(&event, stream)

— Set the event state to not occurred

— Enqueue the event into a stream

— Event state is set to occurred when it reaches the front of the stream

SYNCHRONIZATION USING EVENTS
 Synchronize using events

— cudaEventQuery (event)

 Returns CUDA_SUCCESS if an event has occurred

— cudaEventSynchronize (event)

 Blocks host until stream completes all outstanding calls

— cudaStreamWaitEvent (stream, event)

 Blocks stream until event occurs

 Only blocks launches after this call

 Does not block the host!

Common multi-threading mistake:
—Calling cudaEventSynchronize before cudaEventRecord

CUDA_LAUNCH_BLOCKING
 Environment variable which forces sychronization

— export CUDA_LAUNCH_BLOCKING=1

— All CUDA operations are synchronous w.r.t the host

 Useful for debugging race conditions
— If it runs successfully with CUDA_LAUNCH_BLOCKING set but doesn’t

without you have a race condition.

Resolve using an event

Explicit Synchronization Example

{

 cudaEvent_t event;

 cudaEventCreate (&event); // create event

 cudaMemcpyAsync (d_in, in, size, H2D, stream1); // 1) H2D copy of new input

 cudaEventRecord (event, stream1); // record event

 cudaMemcpyAsync (out, d_out, size, D2H, stream2); // 2) D2H copy of previous result

 cudaStreamWaitEvent (stream2, event); // wait for event in stream1

 kernel <<< , , , stream2 >>> (d_in, d_out); // 3) must wait for 1 and 2

 asynchronousCPUmethod (…) // Async GPU method

}

Stream Scheduling

Fermi hardware has 3 queues

1 Compute Engine queue

2 Copy Engine queues – one for H2D and one for D2H

CUDA operations are dispatched to HW in the sequence they were issued

Placed in the relevant queue

Stream dependencies between engine queues are maintained, but lost within an engine queue

A CUDA operation is dispatched from the engine queue if:

Preceding calls in the same stream have completed,

Preceding calls in the same queue have been dispatched, and

Resources are available

CUDA kernels may be executed concurrently if they are in different streams

Threadblocks for a given kernel are scheduled if all threadblocks for preceding kernels have been

scheduled and there still are SM resources available

Note a blocked operation blocks all other operations in the queue, even in other streams

Example – Blocked Queue

Two streams, stream 1 is issued first

Stream 1 : HDa1, HDb1, K1, DH1 (issued first)

Stream 2 : DH2 (completely independent of stream 1)

K1

DH1

DH2

program H2D queue compute queue D2H queue

HDa1 K1 DH1

DH2

is
s
u
e

 o
rd

e
r

ti
m

e

HDa1

K1

DH1

DH2

execution

Signals between queues

enforce synchronization

CUDA operations

get added to queues

in issue order

within queues, stream dependencies are lost

DH1 blocks

completely

independent DH2

runtime = 5

HDb1

HDa1

HDb1
HDb1

Example – Blocked Queue

Two streams, stream 2 is issued first

Stream 1 : HDa1, HDb1, K1, DH1

Stream 2 : DH2 (issued first)

K1

DH1

DH2

program H2D queue compute queue D2H queue

HDa1 K1

DH1

DH2

is
s
u
e

 o
rd

e
r

ti
m

e

HDa1

K1

DH1

DH2

execution

Signals between queues

enforce synchronization

CUDA operations

get added to queues

in issue order

within queues, stream dependencies are lost

runtime = 4

HDb1

HDa1
HDb1

HDb1

issue order matters!

concurrent

Example - Blocked Kernel

Two streams – just issuing CUDA kernels

Stream 1 : Ka1, Kb1

Stream 2 : Ka2, Kb2

Kernels are similar size, fill ½ of the SM resources

Issue depth first Issue breadth first

Kb2

Kb1

Ka2

Ka1

compute queue

is
s
u
e

 o
rd

e
r

ti
m

e

Ka1

Kb1

Kb2

Ka2

execution

Kb2

Ka2

Kb1

Ka1

compute queue

is
s
u
e

 o
rd

e
r

ti
m

e

Ka1

Kb1 Kb2

Ka2

execution

issue order matters!

runtime = 2runtime = 3

Kb1

Kd2

Example - Optimal Concurrency can Depend on

Kernel Execution Time

Two streams – just issuing CUDA kernels – but kernels are different 'sizes'

Stream 1 : Ka1 {2}, Kb1 {1}

Stream 2 : Kc2 {1}, Kd2 {2}

Kernels fill ½ of the SM resources

Depth first

issue order matters!

execution time matters!

Kd2

Kb1

Kc2

Ka1

compute

queue

is
s
u
e

 o
rd

e
r

ti
m

e

Ka1

execution

Kd2

Kb1 Kc2

Kd2

Kc2

Kb1

Ka1

compute

queue

is
s
u
e

 o
rd

e
r

ti
m

e

Ka1

execution

Kd2
Kb1

Kc2

Kc2

Ka1

compute

queue

is
s
u
e

 o
rd

e
r

ti
m

e

Ka1

execution

Kd2
Kb1

Kc2

Breadth first Custom

runtime = 5 runtime = 4 runtime = 3

Concurrent Kernel Scheduling

Concurrent kernel scheduling is special

Normally, a signal is inserted into the queues, after the operation, to

launch the next operation in the same stream

For the compute engine queue, to enable concurrent kernels, when

compute kernels are issued sequentially, this signal is delayed until

after the last sequential compute kernel

In some situations this delay of signals can block other queues

Example – Concurrent Kernels and Blocking

Three streams, each performing (HD, K, DH)

Breadth first

Sequentially issued kernels delay signals and block cudaMemcpy(D2H)

HD1

program H2D queue compute queue D2H queue

HD1 K1 DH1

DH2

is
s
u
e

 o
rd

e
r

ti
m

e

execution

Signals between sequentially

issued kernels are delayed

HD2

HD3

K1

K2

K3

DH1

DH2

DH3

HD1HD2

HD3

K2

K3 DH3

HD1

K1

DH1

DH2

HD2

HD3 K2

K3

DH3

blocking

runtime = 7

Example – Concurrent Kernels and Blocking

Three streams, each performing (HD, K, DH)

Depth first

'usually' best for Fermi

HD1

program H2D queue compute queue D2H queue

HD1 K1 DH1

DH2

is
s
u
e

 o
rd

e
r

ti
m

e

execution

HD2

HD3

K1

K2

K3

DH1

DH2

DH3

HD1HD2

HD3

K2

K3 DH3

HD1

K1

DH1

DH2

HD2

HD3 K2

K3

DH3

Kernels no longer

issued sequentially
runtime = 5

Example – Tiled DGEMM

CPU (4core Westmere x5670 @2.93 GHz, MKL)

43 Gflops

GPU (C2070)

Serial : 125 Gflops (2.9x)

2-way : 177 Gflops (4.1x)

3-way : 262 Gfllops (6.1x)

GPU + CPU

4-way con.: 282 Gflops (6.6x)

Up to 330 Gflops for larger rank

Obtain maximum performance by leveraging concurrency

All communication hidden – effectively removes device memory size limitation

default stream

 stream 1

 stream 2

 stream 3

 stream 4

CPU

Nvidia Visual Profiler (nvvp)

DGEMM: m=n=8192, k=288

