
Learning from Mistakes — A Comprehensive Study on Real
World Concurrency Bug Characteristics

Shan Lu, Soyeon Park, Eunsoo Seo and Yuanyuan Zhou
Department of Computer Science,

University of Illinois at Urbana Champaign, Urbana, IL 61801
{shanlu,soyeon,eseo2,yyzhou}@uiuc.edu

Abstract
The reality of multi-core hardware has made concurrent programs
pervasive. Unfortunately, writing correct concurrent programs is
difficult. Addressing this challenge requires advances in multiple
directions, including concurrency bug detection, concurrent pro-
gram testing, concurrent programming model design, etc. Design-
ing effective techniques in all these directions will significantly
benefit from a deep understanding of real world concurrency bug
characteristics.

This paper provides the first (to the best of our knowledge) com-
prehensive real world concurrency bug characteristic study. Specif-
ically, we have carefully examined concurrency bug patterns, man-
ifestation, and fix strategies of 105 randomly selected real world
concurrency bugs from 4 representative server and client open-
source applications (MySQL, Apache, Mozilla and OpenOffice).
Our study reveals several interesting findings and provides use-
ful guidance for concurrency bug detection, testing, and concurrent
programming language design.

Some of our findings are as follows: (1) Around one third of
the examined non-deadlock concurrency bugs are caused by vio-
lation to programmers’ order intentions, which may not be easily
expressed via synchronization primitives like locks and transac-
tional memories; (2) Around 34% of the examined non-deadlock
concurrency bugs involve multiple variables, which are not well
addressed by existing bug detection tools; (3) About 92% of the
examined concurrency bugs can be reliably triggered by enforcing
certain orders among no more than 4 memory accesses. This indi-
cates that testing concurrent programs can target at exploring possi-
ble orders among every small groups of memory accesses, instead
of among all memory accesses; (4) About 73% of the examined
non-deadlock concurrency bugs were not fixed by simply adding
or changing locks, and many of the fixes were not correct at the
first try, indicating the difficulty of reasoning concurrent execution
by programmers.
Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging; B.8.1 [Hardware]: Performance and
Reliability–Reliability, Testing, and Fault-Tolerance
General Terms Languages, Reliability
Keywords concurrent program, concurrency bug, bug character-
istics

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ASPLOS’08, March 1–5, 2008, Seattle, Washington, USA.
Copyright c© 2008 ACM 978-1-59593-958-6/08/03. . . $5.00

1. Introduction
1.1 Motivation

Concurrent programs are becoming prevalent due to the reality
of multi-core hardware. Nowadays, not only high-end servers but
also desktop machines need concurrent programs to make the best
use of their multi-core hardware. As a result, the difficulty of
concurrent programming is hitting the entire software development
community, rather than just the elite few. Writing good quality
concurrent programs has become critically important.

Unfortunately, writing correct concurrent programs is difficult.
Most programmers think sequentially and therefore they make mis-
takes easily when writing concurrent programs. Even worse, the
notorious non-determinism of concurrent programs makes concur-
rency bugs difficult to repeat during interactive diagnosis.

Addressing the above challenges will require efforts from multi-
ple related directions including those listed as follows, all of which
have made some progress over the past years but still have many
open, unsolved issues:

(1) Concurrency bug detection Most previous concurrency bug
detection research has focused on detecting data race bugs [7, 10,
31,33,37,42] and deadlock bugs [3,10,37]. Data race occurs when
two conflicting accesses to one shared variable are executed with-
out proper synchronization, e.g., not protected by a common lock.
Deadlock occurs when two or more operations circularly wait for
each other to release the acquired resource (e.g., locks). Recently,
several approaches have also been proposed to detect atomicity-
violation bugs [12, 23, 41], which are caused by concurrent execu-
tion unexpectedly violating the atomicity of a certain code region.

Although previous work has proposed effective methods to de-
tect certain types of concurrency bugs, it is still far from provid-
ing a complete solution. In particular, several open questions about
concurrency bug detection still remain: (i) Can existing bug detec-
tion tools detect all real world concurrency bugs? Specifically, what
types of concurrency bugs exist in real world? Is there any type that
has not been addressed yet by existing work? In addition, are the
assumptions of existing tools about concurrency bugs valid? For ex-
ample, most previous race detection and many atomicity bug detec-
tion techniques focus on synchronization among accesses to a sin-
gle variable. How many concurrency bugs are missed by this single
variable assumption? (ii) How helpful are existing tools in diagnos-
ing and fixing the real world concurrency bugs detected by them?
For example, many concurrency bug detection tools remind pro-
grammers that some conflicting accesses are not protected by the
same lock. Such information can help programmers add or change
lock operations. However, how often are real world bugs fixed by
adding or changing lock operations? More generally, how do pro-

329

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1346281.1346323&domain=pdf&date_stamp=2008-03-01

grammers fix real world concurrency bugs and what information do
they need?

(2) Concurrent program testing and model checking Testing is
a common practice in software development. It is a critical step for
exposing software bugs before release.

Existing testing techniques mainly focus on the sequential as-
pects of programs, such as statements, branches, etc. and can not ef-
fectively address concurrent programs’ concurrency aspects, such
as multi-thread (or multi-process) interleavings [28].

The major challenge of concurrency testing is the exponen-
tial interleaving space of concurrent programs. Exposing concur-
rency bugs requires not only a bug-exposing input, but also a bug-
triggering execution interleaving. Therefore, to achieve a complete
testing coverage of concurrent programs, testing needs to cover ev-
ery possible interleaving for each input test case [39], which is in-
feasible in practice.

To address the above challenge, an open question in concur-
rency testing is as follows: can we selectively test a small num-
ber of representative interleavings and still expose most of the con-
currency bugs? Motivated by this problem, previous work such as
the ConTest project [4, 9] has proposed some methods to perturb
program execution and force certain interleavings by injecting ar-
tificial delays after every synchronization point. While an inspir-
ing attempt, it is unclear, both quantitatively and qualitatively, what
portion of concurrency bugs can be exposed by such heuristics.

Ultimately, designing practical and effective test cases for con-
current programs requires a good understanding of the manifesta-
tion conditions of real world concurrency bugs. That is, we need
to know what conditions are needed, besides program inputs, to re-
liably trigger a concurrency bug. Specifically, how many threads,
how many variables, and how many accesses are usually involved
in a real world concurrency bug’s manifestation?

Similar questions are also encountered in software verification
and model checking [13, 28, 34] for concurrent programs. Better
understanding of the manifestation of real world concurrency bugs
can help model checking prioritize the program states and alleviate
its state explosion problem.

(3) Concurrent programming language design Good concur-
rent programming languages can help programmers correctly ex-
press their intentions and therefore avoid certain types of con-
currency bugs. Along this direction, transactional memory (TM)
[1,2,15,16,25,26,27,36] is one of the popular trends. TM provides
programmers an easier way to specify which code regions should
be atomic. Further, it automatically protects the atomicity of the
specified region against other specified regions through underlying
hardware and software support.

Although TM shows great potential, there are many open ques-
tions, including (i) What portion of bugs can be avoided by using
TM? (ii) What are the real world concerns that TM design needs
to pay attention to? (iii) Besides TM, what other programming lan-
guage supports will be useful for programmers to write correct con-
current programs?

Addressing the open questions in all of the above directions
will significantly benefit from a better understanding of real world
concurrency bug characteristics—basically, we can learn from the
common mistakes programmers are making in writing concurrent
programs. For example, if many real world concurrency bugs in-
volve multiple shared variables, we need to extend concurrency bug
detection techniques to address multi-variable concurrency bugs; if
the manifestation of most real world concurrency bugs are guaran-
teed by a partial order among only two threads, concurrent program
testing only needs to cover pairwise interleavings for every pair of
program threads; if there are some concerns in avoiding real world
concurrency bugs with existing synchronization primitives, we can

extend transactional memory model or design new language sup-
port to further ease writing concurrent programs; if a certain type of
information is frequently used by programmers in fixing real world
concurrency bugs, bug detection tools can be extended to provide
such information and thus become more useful in practice.

In the past, many empirical studies on general program bug
characteristics (not specific to concurrency bugs) have been done.
Their findings have provided useful guidelines and motivations for
bug detection, testing and programming language design. For ex-
ample, the study of bug types in IBM software systems [38] in
1990’s demonstrated the importance of memory bugs and has mo-
tivated many commercial and open-source memory bug detection
tools such as Purify [18], Valgrind [30], CCured [29], etc. A recent
study of operating system bugs [8] revealed that copy-paste was
an important cause of semantic bugs, and has inspired a tool called
CP-Miner that focused on detecting copy-pasted code and semantic
bugs related to copy-paste [19].

Unfortunately, few studies have been conducted on real world
concurrency bug characteristics. Previously, researchers realizing
the importance of such a study have conducted a preliminary work
on concurrency bug characteristics [11]. However, they built their
observations upon programs that were intentionally made buggy by
students for the characteristic study.

The lack of a good real-world concurrency bug characteristic
study is mainly due to the following two reasons:

(1) It is difficult to collect real world concurrency bugs, espe-
cially since they are usually under-reported. As observed in previ-
ous work [6], the non-determinism hindered the users from report-
ing concurrency bugs, and made concurrency bug reports difficult
to get understood and solved by programmers. Therefore, it is time-
consuming to collect a good set of real world concurrency bugs.

(2) Concurrency bugs are not easy to understand. Their pat-
terns and manifestations usually involve complicated interactions
among multiple program components, and are therefore hard to un-
derstand.

1.2 Contributions
This work provides the first (to the best of our knowledge) com-
prehensive real world concurrency bug characteristic study. Specif-
ically, we examine the bug patterns, manifestations, fix strate-
gies and other characteristics of real world concurrency bugs. Our
study is based on 105 randomly selected real world concurrency
bugs, including 74 non-deadlock bugs and 31 deadlock bugs, col-
lected from 4 large and mature open-source applications: MySQL,
Apache, Mozilla and OpenOffice, representing both server and
client applications. For each bug, we carefully examine its bug
report, corresponding source code, related patches, and program-
mers’ discussion, all of which together provide us a relatively thor-
ough understanding of the bug patterns, manifestation conditions,
fix strategies and diagnosis processes.

Our study reveals many interesting findings, which provide use-
ful guidelines for concurrency bug detection, concurrent program
testing, and concurrent programming language design. We summa-
rize our main findings and their implications in Table 1.

While we believe that the applications and bugs we examined
well represent a large body of concurrent applications, we do not
intend to draw any general conclusions about all concurrent ap-
plications. In particular, we should note that all of the character-
istics and findings obtained in this study are associated with the
four examined applications and the programming languages these
applications use. Therefore, the results should be taken with the
specific applications and our evaluation methodology in mind (see
Section 2.3 for our discussion about threats to validity).

330

Findings on Bug Patterns (Section 3) Implications
(1) Almost all (97%) of the examined non-deadlock bugs Concurrency bug detection can focus on these two bug
belong to one of the two simple bug patterns: patterns to detect most concurrency bugs.
atomicity-violation or order-violation∗.
(2) About one third (32%) of the examined non-deadlock New concurrency bug detection tools are needed to
bugs are order-violation bugs, which are not well addressed detect order-violation bugs, which are not addressed
in previous work. by existing atomicity violation or race detectors.

Findings on Manifestation (Section 4) Implications
(3) Almost all (96%) of the examined concurrency bugs are Pairwise testing on concurrent program threads can
guaranteed to manifest if certain partial order between 2 threads expose most concurrency bugs, and greatly reduce
is enforced. the testing complexity.
(4) Some (22%) of the examined deadlock bugs are caused Single-thread based deadlock detection and testing tech-
by one thread acquiring resource held by itself. niques can help eliminate these simple deadlock bugs.
(5) Many (66%) of the examined non-deadlock concurrency Focusing on concurrent accesses to one variable is a good
bugs’ manifestation involves concurrent accesses to simplification for concurrency bug detection, which is
only one variable. used by many existing bug detectors.
(6) One third (34%) of the examined non-deadlock concur- New detection tools are needed to address
rency bugs’ manifestation involves concurrent accesses to multiple variable concurrency bugs.
multiple variables.
(7) Almost all (97%) of the examined deadlock bugs involve Pairwise testing on the acquisition/release sequences to
two threads circularly waiting for at most two resources. two resources can expose most deadlock concurrency bugs,

and reduce testing complexity.
(8) Almost all (92%) of the examined concurrency bugs Testing partial orders among every small group of
are guaranteed to manifest if certain partial order among accesses can expose most concurrency bugs, and simplify
no more than 4 memory accesses is enforced. the interleaving space from exponential to polynomial.

Findings on Bug Fix Strategies (Section 5) Implications
(9) Three quarters (73%) of the examined non-deadlock Bug detection and diagnosis tools need to provide more
bugs are fixed by techniques other than adding/changing bug pattern and manifestation information, besides
locks. Programmers need to consider correctness, performance lock information, to help programmers fix bugs.
and other issues to decide the most appropriate fix strategy.
(10) Many (61%) of the examined deadlock bugs are fixed by Fixing deadlock bugs might introduce non-deadlock
preventing one thread from acquiring one resource (e.g. lock). concurrency bugs. Special help is needed to ensure the
Such fix can introduce non-deadlock concurrency bugs. correctness of deadlock bug fixes.

Findings on Bug Avoidance (Section 5.3) Implications
(11) Transactional memory (TM) can help avoid about Transactional memory (TM) is a promising language
one third (39%) of the examined concurrency bugs. feature for programmers.
(12) TM could help avoid over one third (42%) of the examined TM designers may need to pay attention to some concerns,
concurrency bugs, if some concerns are addressed. such as how to protect hard-to-rollback operations.
(13) Some (19%) of the examined concurrency bugs cannot Better programming language features to help express
benefit from basic TM designs, because of their bug patterns. “order” semantics in C/C++ programs are desired.

Table 1. Our findings of real world concurrency bug characteristic and their implications for concurrency bug detection, concurrent program
testing and concurrent programming language design. (*: All terms and categories mentioned here will be explained in Section 2.)

2. Methodology
2.1 Bug sources
Applications: We select four representative open source appli-
cations in our study: MySQL, Apache, Mozilla, and OpenOffice.
These are all mature (with 9–13 years development history) large
concurrent applications (with 1–4 million lines of code), with well
maintained bug databases. These four applications represent dif-
ferent types of server applications (database and web server) and
client applications (browser suite and office suite). Concurrency is
used for different purposes in these applications. Server applica-
tions mostly use concurrency to handle concurrent client requests.
They can have hundreds or thousands of threads running at the
same time. Client and office applications mostly use concurrency
to synchronize multiple GUI sessions and background working
threads.

Bugs: We randomly collect concurrency bugs from the bug
databases of these applications. Since these databases contain more
than five hundred thousand bug reports, in order to effectively
collect concurrency bugs from them, we used a large set of key-

words related to concurrency bugs, for example, ‘race(s)’, ‘dead-
lock(s)’, ‘synchronization(s)’, ‘concurrency’ ‘lock(s)’, ‘mutex(es)’,
‘atomic’, ‘compete(s)’, and their variations. From the thousands of
bug-reports that contain at least one keyword from the above key-
word set, we randomly pick about five hundred bug reports with
clear and detailed root cause descriptions, source codes, and bug
fix information. Then, we manually check them to make sure that
the bugs are really caused by programmers’ wrong assumptions
about concurrent execution, and finally get 105 concurrency bugs.

Application Description # of Bug Samples
Non-Deadlock Deadlock

MySQL Database Server 14 9
Apache Web Server 13 4
Mozilla Browser Suite 41 16
OpenOffice Office Suite 6 2
Total 74 31

Table 3. Our application set and bug set

331

Definitions Related to Bug Pattern Study
Dimension Category Description Abbr.

Atomicity The desired serializability among multiple memory accesses is violated. Atomicity
Bug Violation (i.e. a code region is intended to be atomic, but the atomicity is not enforced during execution.)

Pattern* Order The desired order between two (groups of) memory accesses is flipped. Order
Violation (i.e. A should always be executed before B, but the order is not enforced during execution.)

Other Concurrency bugs other than the atomicity violation and order violation. Other
Definitions Related to Bug Manifestation Study

Dimension Term Definition
Manifestation A specific execution order among a smallest set (S) of memory accesses.

Bug Condition As long as that order is enforced, no matter how, the bug is guaranteed to manifest.
Mani- # of threads involved The number of distinct threads that are included in S.

festation # of variable involved The number of distinct variables that are included in S.
of accesses involved The number of accesses that are included in S.

Definitions Related to Bug Fix Study
Dimension Category Description Abbr.

Condition Check (1) While-flag; or (2) optimistic concurrency with consistency check. COND
Non- Code Switch Switch the order of certain statements in the source code. Switch

deadlock Design Change Change the design of data structures or algorithms. Design
Fix Strategy Lock Strategy (1) Add/change locks; or (2) adjust the region of critical sections. Lock

Other Strategies other than the above ones. Other
Give up resource Not acquiring a resource (lock, etc.) for certain code region. GiveUp

Deadlock Split Resource Split a big resource to smaller pieces to avoid competition. Split
Fix Strategy Change acquisition order Switch the acquisition order among several resources. AcqOrder

Other Strategies other than the above ones. Other
Concerns in Very long code A code region is too long to be put into a transaction. Long

Transactional Rollback Problem Some I/O and system calls are hard to roll back. Rollback
Memory Code Nature Source code with certain design is hard to turn to transaction. Nature

Table 2. Our characteristic categories and definitions. (*: The bug pattern category is determined by the root cause of a concurrency bug, i.e.
what type of programmers’ synchronization intention is violated, regardless of possible bug fix strategies.)

We separately study two types of concurrency bugs: deadlock
bugs and non-deadlock concurrency bugs. These two types of bugs
have completely different properties, and demand different detec-
tion, recovery approaches. Therefore, we separate them for the ease
of investigation.

Finally, we collect 105 concurrency bugs, including 74 non-
deadlock concurrency bugs and 31 deadlocks bugs. The details are
shown in Table 3.

2.2 Characteristic categories
In order to provide guidance for future research on concurrent
program reliability, in this work, we focus on three aspects of
concurrency bug characteristics: bug pattern, manifestation, and
bug fix strategy. Other characteristics, such as failure impact and
bug diagnosis process, will be briefly discussed at the end.

(1) Along the bug pattern dimension, we classify non-deadlock
concurrency bugs into three categories (atomicity-violation bugs,
order-violation bugs and the other bugs) based on their root causes,
i.e., what types of synchronization intentions are violated. Detailed
definitions are shown in Table 2. Here we do not classify data race
as a bug pattern. The reason is that, a data race may indicate a con-
currency bug, but it can also be a benign race in many cases, e.g.,
while-flag. Furthermore, data-race free does not mean concurrency
bug free [12, 23]. We do not further break deadlocks into subcate-
gories as most of them are relatively similar and simple.

(2) For the manifestation characteristics, we study the required
condition for each concurrency bug to manifest (denoted as man-
ifestation condition, defined in Table 2), and then discuss concur-
rency bugs based on how many threads, how many variables (re-
sources), and how many accesses are involved in their manifesta-
tion conditions.

(3) For the bug fix strategy, we study both the final patch’s
fix strategy and the mistakes in intermediate patches. We also
evaluate how transactional memory can help avoid these bugs. All
the related classification is shown in Table 2.

2.3 Threats to validity
Similar to the previous work, real world characteristic studies are
all subject to a validity problem. Potential threats to the validity
of our characteristic study are the representativeness of the appli-
cations, concurrency bugs used in our study, and our examination
methodology.

As for application representativeness, our study chooses four
server and client-based concurrent applications written in C/C++,
which are the popular programming languages for these types of
applications. We believe that these four applications well repre-
sent server and client-based concurrent applications, which are two
large classes of concurrent applications. However, our study may
not reflect the characteristics of other types of applications, such as
scientific applications, operating systems, or applications written in
other programming languages (e.g., Java).

As for bug representativeness, the concurrency bugs we studied
are randomly selected from the bug database of the above applica-
tions. They provide good samples of the fixed bugs in those appli-
cations. While characteristics of non-fixed or non-reported concur-
rency bugs might be different, these bugs are not likely as important
as the reported and fixed bugs that are examined in our study.

In terms of our examination methodology, we have examined
every piece of information related to each examined bug, including
programmers’ clear explanations, forum discussions, source code
patches, multiple versions of source codes, and bug-triggering test
cases. In addition, we are also familiar with the examined applica-
tions, since we have modified and used them in many of our previ-
ously published work [22, 23, 35].

Overall, while our conclusions cannot be applied to all concur-
rent programs, we believe that our study does capture the charac-
teristics of concurrency bugs in two large important classes of con-
current applications: server-based and client-based applications. In
addition, most of these characteristics are consistent across all four
examined applications, indicating the validity of our evaluation
methodology to some degree. Additionally, we do not emphasize

332

 MySQL ha_innodb.cc

S1: if (thd proc_info)
{
 S2: fputs(thd proc_info,);
}

Thread 1 Thread 2

S3: thd proc_info=NULL;
...

Buggy Interleaving

Figure 1. An atomicity violation bug from MySQL.

Mozilla nsthread.cpp

void init ()
{

mThread=PR_CreateThread (mMain,);

}

Thread 1 Thread 2

void mMain ()
{
 mState=
 mThread State;
 ...
}

Thread 2
should not
dereference
mThread
before Thread
1 initializes it.

Correct Order

Buggy Order

Figure 2. An order violation bug from Mozilla. The program fails to en-
force the programmer’s order intention: thread 2 should not read mThread
until thread 1 initializes mThread. Note that, this bug could be fixed by
making PR CreateThread atomic with the write to mThread. However,
our bug pattern categorization is based on root cause, regardless of possi-
ble fix strategies.

void buf_flush_try_page() {
 ...
 rw_lock(&lock);

}

MySQL buf0flu.c

Thread 1

rw_lock(&lock);

Thread 2 Thread n Monitor thread
void error_monitor_thread() {

 if(lock_wait_time[i] >
fatal_timeout)

 assert(0, We crash the server;
 It seems to be hung.);
} MySQL srv0srv.c

Figure 3. A MySQL bug that is neither an atomicity-violation bug nor
an order-violation bug. The monitor thread is designed to detect deadlock.
It restarts the server when a thread i has waited for a lock for more than
fatal timeout amount of time. In this bug, programmers under-estimate
the workload (n could be very large), and therefore the lock waiting time
would frequently exceed fatal timeout and crash the server. (We sim-
plified the code for illustration)

any quantitative characteristic results. Finally, we also warn the
readers to take our findings together with above methodology and
selected applications.

3. Bug pattern study
Different bug patterns usually demand different detection and diag-
nosis approaches. In Table 4, we classify the patterns of the exam-
ined non-deadlock concurrency bugs into three categories: Atom-
icity, Order, and Other, which are described in Table 2. Note that
the categories are distinguished from each other by the root cause
of a bug, regardless of the possible bug fix strategies.

Application Total Atomicity Order Other
MySQL 14 12 1 1
Apache 13 7 6 0
Mozilla 41 29 15 0
OpenOffice 6 3 2 1
Overall 74 51 24 2

Table 4. Patterns of non-deadlock concurrency bugs. (There are 3 exam-
ined bugs, whose patterns can be considered as either atomicity or order
violation. Therefore, they are considered in both categories.)

Mozilla macio.c

int ReadWriteProc ()
{

S1: PBReadAsync (&p);
S2: io_pending = TRUE;

S3: while (io_pending) {...};

}

Thread 1 Thread 2
void DoneWaiting ()
{

 ...
S4: io_pending = FALSE;
 ...
}

Mozilla macthr.c

Correct Order

Buggy Order

S4 is assumed
to be after S2.
If S4 executes
before S2,
thread 1 will
hang.

/*callback function of
PBReadAsync*/

Figure 4. A write-write order violation bug from Mozilla. The program
fails to enforce the programmer’s order intention: thread 2 is expected to
write io pending to be FALSE some time after thread 1 initializes it to
be TRUE. Note that, this bug could be fixed by making S1 and S2 atomic.
However, our bug pattern categorization is based on root cause, regardless
of possible fix strategies.

Mozilla jscntxt.c, jsgc.c

void js_DestroyContext (�) {

 js_UnpinPinnedAtom(&atoms);
}

Thread 1 Thread 2
void js_DestroyContext (�) {

 js_MarkAtom(&atoms, �);
}

Correct Order
Buggy Order

js_UnpinPinnedAtom
should happen after
js_MarkAtom.

Otherwise, program
crashes.

/* non-last one entering this
function */

/* last one entering this function */

Figure 5. A Mozilla bug that violates the intended order between two
groups of operations.

Finding (1): Most (72 out of 74) of the examined non-deadlock
concurrency bugs are covered by two simple patterns: atomicity-
violation and order-violation.
Implications: Concurrent program bug detection, testing and
language design should first focus on these two major bug pat-
terns.

The Finding (1) can be explained by the fact that programmers
generally put their intentions on atomic regions and execution or-
ders, but it is not easy to enforce all these intentions correctly and
completely in implementation.

Since programmers think sequentially, they tend to assume that
small code regions will be executed atomically. For example, in
Figure 1, programmers assume that if S1 reads a non-NULL value
from thd->proc info, S2 will also read the same value. How-
ever, such an atomicity assumption can be violated by S3 during
concurrent execution, and it leads to a program crash.

It is also common for programmers to assume an order between
two operations from different threads, but programmers may forget
to enforce such an order. As a result, one of the two operations may
be executed faster (or slower) than the programmers’ assumption,
and it makes the order bug manifest. In the Mozilla bug shown in
Figure 2, it is easy for programmers to assume wrongly that thread
2 would dereference mThread after thread 1 initializes it, because
thread 2 is created by thread 1. However, in real execution, thread
2 may be very quick and dereference mThread before mThread is
initialized. This unexpected order leads to program crash. Note that
even though the bug can be fixed with locks, the root cause of the
bug is not an atomicity violation, but an order violation.

Concurrency bugs violating other types of programmers’ in-
tentions also exist, but are much rarer as shown in Table 4. Fig-
ure 3 shows an example. In one version of MySQL, programmers
use a timeout threshold fatal timeout to detect deadlock. The
server will crash, if any thread waits for a lock for more than
fatal timeout amount of time. However, when programmers set
the threshold, they under-estimate the workload. As a result, users
found that the MySQL server keeps crashing under heavy workload
(with 2048 worker-thread setting). Such a performance-related as-

333

sumption is neither atomicity intention nor order intention. This
bug is fixed by limiting the number of worker-threads.

Finding (2): A significant number (24 out of 74) of the exam-
ined non-deadlock concurrency bugs are order bugs, which are
not addressed by previous bug detection work.
Implications: New bug detection techniques are desired to
address order bugs.

As we discussed above, it is common for programmers to as-
sume a certain order between two operations from two threads.
Specifically, programmers can have an order intention i) between
a write and a read (Figure 2) to one variable; ii) between two writes
(Figure 4) to one variable; or iii) between two groups of accesses
to a group of variables (Figure 5). In Figure 4, programmers ex-
pect S2 to initialize io pending before S4 assigns a new value,
FALSE, to it. However, the execution of the asynchronous read can
be very quick and S4 may be executed before S2, contrary to the
expectation of programmers. This makes thread 1 to hang. In an-
other example shown in Figure 5, js UnpinPinnedAtom frees all
elements in the atoms array. This set of memory accesses to the
whole array is expected to happen after js MarkAtom, which may
access some elements in atoms.

Note that the above order bugs are different from data race bugs
and atomicity violation bugs. Even if two memory accesses to the
same variable are protected by the same lock or two conflicting
code regions are atomic to each other, the execution order between
them still may not be guaranteed. We should also note that some
order-violation bugs could be fixed using coarser-grained locking,
as in example Figure 2 and Figure 4; some others cannot be fixed
by locks, as in example Figure 5 and Figure 7 (will be discussed
later). This is not related to the bug root cause, and does not affect
our bug pattern classification.

Although important and common, order-violation bugs have not
been well studied by previous research. Many order bugs will be
missed by existing concurrency bug detectors, which mainly focus
on race bugs or atomicity bugs. New techniques are desired for
solving the order problems.

4. Bug manifestation study
Manifestation condition of a concurrency bug is usually a specific
order among a set of memory accesses or system events. In this
section, we study the characteristics of real world concurrency bug
manifestation, following the methodology defined in Table 2. We
will discuss guidance for concurrent program testing and concur-
rency bug detection based on our observations.

4.1 How many threads are involved?

Finding (3): The manifestation of most (101 out of 105) exam-
ined concurrency bugs involves no more than two threads.
Implications: Concurrent program testing can pairwise test pro-
gram threads, which reduces testing complexity without losing
bug exposing capability much.

Finding (3) tells us that even though the examined server pro-
grams use hundreds of threads, in most cases, only a small number
(mostly just two) of threads are involved in the manifestation of a
concurrency bug.

The underlying reason for this is that most threads do not closely
interact with many others, and most communication and collabora-
tion is conducted between two or a small group of threads. As a
result, manifestation conditions of most concurrency bugs do not
involve many threads. For examples, all of the bugs presented in

Non-deadlock concurrency bugs
Application Total Env. >2 threads 2 threads 1 thread
MySQL 14 1 1 12 0
Apache 13 0 0 13 0
Mozilla 41 1 0 40 0
OpenOffice 6 0 0 6 0
Overall 74 2 1 71 0

Deadlock concurrency bugs
Application Total Env. >2 threads 2 threads 1 thread
MySQL 9 0 0 5 4
Apache 4 0 0 4 0
Mozilla 16 0 1 14 1
OpenOffice 2 0 0 0 2
Overall 31 0 1 23 7

Table 5. The number of threads (or environments) involved in
concurrency bugs.

Section 3, except the one shown in Figure 3, are guaranteed to
manifest if their execution follow certain partial orders (marked by
dotted lines in the figures) between two threads.

We should note that this finding is not opposite to the common
observation that concurrency bugs are sometimes easier to manifest
at a heavy-workload (concurrent execution of many threads). In
many cases, the manifestation condition involves only two threads.
Heavy-workload increases the resource competition and context
switch intensity. It therefore increases the possibility of hitting
certain orders among the two threads that can trigger the bug. The
manifestation condition still involves just two threads.

Our finding implies that testing can focus on execution orders
among accesses from every pair of threads. Such pairwise testing
technique can prevent the testing complexity from increasing expo-
nentially with the number of threads. At the meantime, few concur-
rency bugs would be missed.

There are also cases where the bug manifestation relies on not
only memory accesses within the program, but also environmental
events (as shown in column ‘Env’ in Table 5). For example, one
Mozilla bug cannot be triggered unless another program modifies
the same file concurrently with Mozilla. Exposing such bugs needs
special system support.

Finding (4): The manifestation of some (7 out of 31) deadlock
concurrency bugs involves only one thread.
Implications: This type of bug is relatively easy to detect and
avoid. Bug detection and programming language techniques can
try to eliminate these simple bugs first.

It usually happens when one thread tries to acquire a resource
held by itself. Detecting and analyzing this type of bugs are rela-
tively easy, because we do not need to consider the contention from
other concurrent execution components.

4.2 How many variables are involved?
Are concurrency bugs synchronization problems among accesses
to one variable or multiple variables? To answer this question, we
examine the number of variables (or resources) involved in the
manifestation of each concurrency bug. The examination result is
shown in Table 6.

Finding (5): 66% (49 out of 74) of the examined non-deadlock
concurrency bugs involve only one variable.
Implications: Focusing on concurrent accesses to one variable
is a good simplification for concurrency bug detection.

334

Non-deadlock concurrency bugs
Application Total >1 variables 1 variable
MySQL 14 6 8
Apache 13 4 9
Mozilla 41 15 26
OpenOffice 6 0 6
Overall 74 25 49

Deadlock concurrency bugs
Application Total >2 resources 2 resources 1 resource
MySQL 9 0 5 4
Apache 4 0 4 0
Mozilla 16 1 14 1
OpenOffice 2 0 0 2
Overall 31 1 23 7

Table 6. The number of variables (resources) involved in concur-
rency bugs.

nsTextFram e.cpp

void nsTextFram e::PaintA sc iiText(�)
{
 :
 pu tc(
 m C ontent[m O ffset+m Length -1]);
 :
}

Thread 1 Thread 2

void nsTextFram e::R eflow (�)
{
 /* ca lcu la te and then set correct
 m O ffset and m Length */
}

Buggy Interleaving

m Content, m O ffse t
and m Length are
inconsistent in the
m idd le of C ut and
Reflow .

Pa int at th is
m om ent m ight lead
to crash. nsM sgSend.cpp

m C ontent, m O ffset, m Length are shared

void nsP la in tex tE ditor::C ut()
{
 /* change the m C ontent */
}

nsP laintex tEditor.cpp

m C ontent

m O ffset m Length

m O ffset and m Length together m ark a
�

valid reg ion
�

 ins ide m C ontent string .

Figure 6. A multi-variable concurrency bug from Mozilla. Accesses to
three correlated variables, mContent, mOffset and mLength, should be
synchronized.

Finding (5) confirms our intuition. Flipping the order of two
accesses to different memory locations does not directly change
the program state, and therefore is less likely to cause problems.
Figure 1, 2, and 4 are all examples of single variable concurrency
bugs: their manifestation can be guaranteed by certain order among
accesses to one variable.

This finding supports the single-variable assumption taken by
many existing bug detectors. For example, data race bug detec-
tion [37, 42] checks the synchronization among accesses to one
variable; some atomicity violation bug detection tools also focus
on atomic regions related to one variable [23, 41].

Finding (6): A non-negligible number (34%) of non-deadlock
concurrency bugs involve more than one variable.
Implications: We need new concurrency bug detection tools to
address multiple variable concurrency bugs.

Multiple variable concurrency bugs usually occur when unsyn-
chronized accesses to correlated variables cause inconsistent pro-
gram state. Semantic connections among variables are common,
and therefore, multiple variable concurrency bugs are common too.

Figure 6 shows an example of multiple variable concurrency
bug from Mozilla. In this example, mOffset and mLength to-
gether mark the region of useful characters stored in dynamic string
mContent. Thread 1 and 2’s concurrent accesses to these three
variables should be synchronized, otherwise thread 1 might read
inconsistent values and access invalid memory address. Here, con-
trolling the order of memory accesses to any single variable, can-
not guarantee the bug to manifest. For example, it is not wrong for
thread 1 to read mContent either before or after thread 2’s modifi-
cation to all of three variables. The required condition for the bug
manifestation is that thread 1 uses the three correlated variables in
the middle of thread 2’s modification to these three variables.

As discussed above, most existing bug detection tools only fo-
cus on single-variable concurrency bugs. Although this simplifica-
tion provides a good starting point for concurrency bug detection,
future research should not ignore the problem of multi-variable
concurrency bugs.

The difficulty of detecting multiple variable concurrency bugs is
that it is hard to infer which accesses, to different variables, should
be well synchronized. Solving this problem will not only benefit
automatic concurrency bug detection, but also provide useful hints
for programmers to specify correct transactions or atomic regions
for transactional memory or atomicity bug detection tools [12].

Finding (7): 97% (30 out of 31) of the examined deadlock
concurrency bugs involve at most two resources.
Implications: Deadlock-oriented concurrent program testing
can pairwise test the order among acquisition and release of two
resources.

Among the examined deadlock bugs, only one bug is triggered
by three threads circularly waiting for three resources. Leveraging
this finding, pairwise testing on resources can prevent the testing
complexity from increasing exponentially with the total number of
resources.

4.3 How many accesses are involved?
We find that the manifestation of most concurrency bugs involves
only two threads and a small number of variables. However, the
number of accesses from one thread to each variable can still be
huge. Therefore, we need to study how many accesses are involved
in the bug manifestation.

Non-deadlock concurrency bugs
Application Total 1 acc.∗ 2 acc. 3 acc. 4 acc. >4 acc.
MySQL 14 0 2 7 4 1
Apache 13 0 6 5 2 0
Mozilla 41 0 12 18 5 6
OpenOffice 6 0 2 3 1 0
Overall 74 0 22 33 12 7

Deadlock concurrency bugs
Application Total 1 acc.∗ 2 acc. 3 acc. 4 acc. >4 acc.
MySQL 9 4 1 4 0 0
Apache 4 0 0 4 0 0
Mozilla 16 1 2 12 0 1
OpenOffice 2 2 0 0 0 0
Overall 31 7 3 20 0 1

Table 7. The number of accesses (or resource acquisition/release) in-
volved in concurrency bugs. (*: “1 acc.” case happens only in deadlock
bugs, when one thread waits for itself. The bug triggering therefore does
not depend on any inter-thread order problem.)

Finding (8.1): 90% (67 out of 74) of the examined non-deadlock
bugs can deterministically manifest, if certain orders among at
most four memory accesses are enforced.
Finding (8.2): 97% (30 out of 31) of the examined deadlock bugs
can deterministically manifest, if certain orders among at most
four resource acquisition/release operations are enforced.
Implications: Concurrent program testing can focus on the par-
tial order among every small groups of accesses. This simplifies
the interleaving testing space from exponential to polynomial re-
garding to the total number of accesses, with little loss of bug
exposing capability.

335

The Finding (8.1) can be easily understood, considering that
most of the examined concurrency bugs have simple patterns and
involve a small number of variables. Most of the exceptions come
from those bugs that involve more than two threads and/or more
than two variables.

The Finding (8.2) is also natural, considering that most of our
examined deadlock bugs involve only two resources.

The above findings have significant implication for concurrent
program testing. The challenge in concurrent program testing is
that the number of all possible interleavings is exponential to the
number of dynamic memory accesses, which is too big to thor-
oughly explore. Our finding provides support to a more effective
design of interleaving testing [21]: exploring all possible orders
within every small groups of memory accesses, e.g. groups of 4
memory accesses. The complexity of this design is only polynomial
to the number of dynamic memory accesses, which is a huge re-
duction from the exponential-sized all-interleaving testing scheme.
Furthermore, the bug exposing capability of this design is almost
as good as exploring all interleavings. It would miss only few bugs
in our examination.

A recent model checking work [28] uses the heuristic to start
the checking from interleavings with small numbers of context
switches. Our study provides support for this heuristic.

Of course, enforcing a specific partial order among a set of ac-
cesses is not trivial. The program input and many accesses need to
be controlled to achieve that. How to leverage our finding to en-
able practical and powerful concurrent program testing and model
checking remains as future work.

5. Bug fix study
5.1 Fix strategies
Before we check how the real world bugs were fixed, our guess was
that adding or changing locks should be the most common way to
fix concurrency bugs. However, the characteristic result is contrary
to our guess, as shown in Table 8.

Application Total COND Switch Design Lock Other
MySQL 14 2 0 5 4 3
Apache 13 4 2 3 4 0
Mozilla 41 13 8 9 9 2
OpenOffice 6 0 0 2 3 1
Overall 74 19 10 19 20 6

Table 8. Fix strategies for non-deadlock concurrency bugs (all
categories are explained in Table 2).

Finding (9): Adding or changing locks is not the major fix strat-
egy. It is used for only 20 out of 74 non-deadlock concurrency
bugs that we examined.
Implication: There is no silver bullet for fixing concurrency
bugs. Just telling programmers that certain conflicting accesses
are not protected by the same lock is not enough to fix concur-
rency bugs.

MySQL NodeState.hpp

void NodeState::setDynamicId (int id)
{
dynamicId = id;

}

Thread 1 Thread 2

MgmtSrvr::status(... int *myid ...)
{

*myid =
node.m_state.dynamicId;

}

Correct Order
Buggy Order

dynamicId should
not be read before
it is initialized

Wrong order will
lead to wrong
functionality MySQL MgmtSrvr.cpp

Figure 7. A MySQL bug that cannot be fixed by adding/changing locks.

There are two reasons for this controversy. First of all, locks
cannot guarantee to enforce some synchronization intentions, such
as A should happen before B. Therefore, adding/changing locks
can not fix certain types of bugs. Figure 5 shows such an exmaple.
Here we show another simple example in Figure 7. Secondly, even
if adding/changing locks can fix a bug, in many cases, it is not the
best strategy, because it may hurt the performance or introduce new
bugs, such as deadlock bugs.

In the following, we describe the different strategies, other than
adding/changing locks, used by programmers. We will see that
these strategies usually require deep understanding of program
semantics. At the mean time, they usually have better performance
than corresponding lock-based fixes, if existing.

(1) Condition check (denoted as COND). Condition check can
be used in different ways to help fix concurrency bugs. One way
is to use while-flag to fix order-related bugs, such as the bug
shown in Figure 5. The other way is to add consistency check
to monitor the bug-related program states. This enables the pro-
gram to detect buggy interleavings and restore program states.
For example, to fix the bug shown in Figure 6, the program does
consistency check if(strlen(mContent)>= mOffset+mLength) be-
fore it executes putc function. The putc will be skipped if the
consistency check fails. In another example shown in Figure 8,

btr0sea.c

retry:
...
n=block->n;
...

 ...
if (n!=block->n)
{

goto retry;
}
...

Re-
execute

Figure 8. A MySQL bug fix.

condition (n!=block->n) is
checked to see whether the
shared variable block->n has
been overwritten since the last
time it was read. If n is not
consistent with block->n, the
program rolls back and reads
block->n again. Note that,
above fix strategy does not elim-
inate the buggy interleaving,
which is usually the purpose of
lock-based fixes. Instead, it fo-
cuses on detecting buggy in-
terelavings and makes sure the
program states corrupted by the buggy interelavings can be recov-
ered in time. It has better performance than corresponding lock-
based fixes.

(2) Code switch (denoted as Switch). Switching the order of cer-
tain code statements can fix some order-related bugs. For example,
the order bug shown in Figure 4 is fixed by switching statements
S1 and S2, so that S2 is always executed before S4.

(3) Algorithm/Data-structure design change (denoted as De-
sign). This includes different types of algorithm changes and
data structure changes that help to achieve correct synchroniza-
tion. Some design changes are simple, just modifying a few data
structures. For example, in the MySQL bug #7209, the bug is
caused by unprotected conflicting accesses to a shared variable
HASH::current record. Programmers recognize that this vari-
able does not need to be shared. They simply move the field
current record out of the class HASH, making it a local variable
for each thread, and fix the bug. As another example, in Mozilla
bug #201134, one thread needs to conduct a series of operations
on a shared variable nsCertType. In order to enforce the atom-
icity of that series of operations, programmers simply let program
read nsCertType into a local variable, conduct operations on the
local variable, and store the value back to nsCertType at the end.
Some design changes are more complicated, involving algorithm
re-design. For example, in Mozilla bug #131447, programmers
changed a message handling and queueing algorithm to tolerate
special timing when a reply message arrives before its correspond-
ing callback function is ready.

336

As we can see, fixing concurrency bugs is much more compli-
cated than just adding or changing lock operations. Race detection
tools can help programmers conduct those lock-related fixes, but
this is not enough. It is desired to have more tools to help program-
mers figure out the bug pattern, the consistency condition associ-
ated with each bug, etc. For example, if programmers know that
the bug is an order-violation bug and they also know what the con-
sistency condition is, it is easy to come out with a condition check
fix. This is the challenge for future research on concurrency bug
detection and diagnosis.

Application Total GiveUp Split AcqOrder Other
MySQL 9 5 0 2 2
Apache 4 2 0 2 0
Mozilla 16 11 1 3 1
OpenOffice 2 1 0 0 1
Overall 31 19 1 7 4

Table 9. Fix strategies for deadlock bugs (all categories are ex-
plained in Table 2)

Finding (10): The most common fix strategy (used in 19 out
of 31 cases) for the examined deadlock bugs is to let one thread
give up acquiring one resource, such as a lock. This strategy is
simple, but it may introduce other non-deadlock bugs.
Implication: We need to pay attention to the correctness of some
“fixed” deadlock bugs.

In many cases, programmers find it unnecessary or not worth-
while to acquire a lock within certain program context. Therefore,
they simply drop the resource acquisition to avoid the deadlock.

However, this strategy could introduce non-deadlock concur-
rency bugs. In some of our examined bug reports, programmers
explicitly say that they know the fix would introduce a new non-
deadlock concurrency bug. They still adopt the fix, because they
gamble that the probability for the non-deadlock bug to occur is
small. In the future, techniques combining optimistic concurrency
and rollback-reexecution, such as TM, can help fix some deadlock
bugs. Of course, using these techniques should also be careful, be-
cause they might introduce live-lock problems.

5.2 Mistakes during bug fixing
Fixing bugs is hard. Some patches released by programmers are
still buggy. In order to investigate the nature of buggy patches,
we collect all the distinct buggy patches of the 57 Mozilla con-
currency bugs 1. Specifically, we first gather all the intermediate
(non-final) patches submitted by Mozilla programmers for these 57
bugs. We then manually check each patch and filter out non-bug-
fixing patches, which only change comments or code structures for
maintenance purpose.

Our study finds that 17 out of the 57 Mozilla bugs have at least
one buggy patches. On average, 0.4 buggy patches were released
before every final correct patch. Among all the 23 distinct buggy
patches, 6 of them only decrease the occurrence probability of the
original concurrency bug, but fail to fix the original bug completely
(an example is shown in Figure 9). 5 of them introduce new con-
currency bugs. The other 12 introduce new non-concurrency bugs.
Programmers need help to improve the quality of their patches.

5.3 Discussion: bug avoidance
Good programming languages should help avoid some bugs during
implementation. Transactional memory (TM) is a popular trend of

1 We focus on Mozilla, because it has the best maintenance of patch update
information.

Mozilla jscntxt.c, jsgc.c

js_UnpinPinnedAtom (...)

Thread 1 Thread 2

gcLevel=1;

 if(state==LANDING){
gcLevel=0; return;

 }

js_MarkAtom (...)

gcLevel = 0;

state = LANDING;

while(gcLevel>0); Programmers added
a while-flag to

eliminate the small
race window between

S1 and S2

Mozilla jscntxt.c, jsgc.c

js_UnpinPinnedAtom (...)

Thread 1 Thread 2

 if(state==LANDING){
 return;
 }

js_MarkAtom (...)

state = LANDING; Programmers wanted to
make js_MarkAtom always

before js_UnpinPinnedAtom.

They added condition check,
but buggy interleaving still

exists

Buggy interleaving

(a) an incomplete fix for the bug shown in Figure 5.
This fix left a small window between S1 and S2 unprotected.

S1

S2

S3

S4

S1

S2

correct interleaving

(b) a final correct fix.
Now the order between js_MarkAtom and js_UnpinPinnedAtom is enforced.

Incomplete fix

Final fix

Figure 9. The process of fixing the bug shown in Figure 5. Pro-
grammers want to make sure js MarkAtom will not be called after
js UnpinPinnedAtom. They first added a flag variable state to
fix the bug. However, that left a small window between S1 and S2
unprotected. They finally added a second flag variable gcLevel to
completely fix the bug.

programming language feature for easing concurrent programming.
To estimate its benefit and what more are needed along this direc-
tion, we study the 105 concurrency bugs to see how many of them
can potentially be avoided with TM support. Furthermore, we study
what are the issues that future concurrent programming language
design needs to address.

Again, our analysis should be interpreted with our examined
applications and evaluation methodology in mind, as discussed in
Section 2.3. In addition, since different TM designs may have dif-
ferent features, in our discussion, we focus on the basic atomicity
and isolation properties of TM. We discuss the benefits and con-
cerns in general, based on such basic TM designs [2, 16, 25, 26]. It
is definitely possible for advanced TM designs to address some of
the concerns we will discuss, which is exactly the purpose of our
discussion: provide more real-world information and help improve
the design of TM.

Application Total Can
Help

TM might help(concerns:) Little
HelpLong Rollback Nature

MySQL 23 7 0 14 0 2
Apache 17 7 0 3 1 6
Mozilla 57 25 8 9 5 10
OpenOffice 8 2 0 4 0 2
Overall 105 41 8 30 6 20

Table 10. Can TM help avoid concurrency bugs?

Finding (11): TM can help avoid many concurrency bugs (41
out of the 105 concurrency bugs we examined).
Implication: Although TM is not a panacea, it can ease pro-
grammers correctly expressing their synchronization intentions
in many cases, and help avoid a big portion of concurrency bugs.

Atomicity violation bugs and deadlock bugs with relatively
small and simple critical code regions can benefit the most from
TM, which can help programmers clearly specify this type of atom-
icity intention. Figure 8 shows an example, where programmers use
a consistency check with re-execution to fix the bug. Here, a trans-
action (with abort, rollback and replay) is exactly what program-
mers want.

337

Finding (12): TM can potentially help avoid many concur-
rency bugs (44 out of the 105 concurrency bugs we examined),
if some concerns can be addressed, as shown in Table 10.
Implication: TM design can combine system supports and
other techniques to solve some of these concerns, and further
ease the concurrent programming.

One concern, not a surprise, is I/O operations. As operations
like I/O are hard to roll back, it is hard to use TM to protect the
atomicity of code regions which include such operations. Take the
concurrency bug in Figure 1 as an example. Since S2 involves a file
operation, TM might need non-trivial undo techniques to protect
the S1–S2 atomic region.

Other concerns, such as atomic region size and special code
nature, also exist. For example, the atomic code regions of several
Mozilla bugs include the whole garbage collection process. These
regions could have too large memory footprint to be effectively
handled by hardware-TM.

Many of the above concerns are addressable in TM, but with
higher overhead and complexity. For example, some of the roll-
back concerns can be addressed using system supports. Very long
transactions can be addressed by combining software and hardware
TMs.

Finding (13): 20 out of the 105 concurrency bugs that we
examined cannot benefit from the basic TM designs, because
the violated programmer intentions, such as order intentions,
cannot be guaranteed by the basic TM.
Implications: Apart from atomicity intentions, there is also a
significant need for concurrent programming language features
to help programmers express order intentions easily.

Programmers’ order intention is the major type of intention that
cannot be easily enforced by the basic TM design or locks. In
general, the basic TM designs cannot help enforce the intention that
A has to be executed before B. Therefore, they cannot help avoid
many related order-violation bugs 2. Among all order-violation
bugs, we find a sub-type of order intentions that are extremely hard
to be enforced by basic TM designs: A must be either executed
before B or not executed at all. In other words, programmers do
not want B to wait for A. They simply skip A if B is already
executed. For example, in one Mozilla bug, thread 1 keeps inserting
entities to a cache and thread 2 would destroy the cache at some
moment. Based on the description in the bug report, programmers
do not want thread 2 to wait for thread 1 to finish all insertions.
The program simply skips any insertion attempt after the cache is
destroyed. This happens for 7 bugs.

In order to help avoid above 20 bugs, the semantic design,
instead of implementation schemes, of the basic TM needs to be
enhanced. Recently, some TM designs [5, 17] are equipped with
rich semantics (such as watch/retry, retry/orElse) and can help
enforce some of the above synchronization intentions. We hope our
bug characteristic study can help future research to decide the best
TM design.

6. Other characteristics
Bug impacts: Among our examined concurrency bugs, 34 of them
can cause program crashes and 37 of them cause program hangs.
This validates that concurrency bug is a severe reliability problem.

2 Some order-violation bugs can be avoided by TM. In those cases, order
intentions can be enforced as side effects while TM enforces the atomicity
of related code regions (an example is shown in Figure 2).

Some concurrency bugs are very difficult to repeat. In one bug
report (Mozilla#52111), the reporter complained that “I develop
Mozilla full time all day, and I get this bug only once a day”. In
another bug report (Mozilla#72599), the reporter said that “I saw
it only once ever on g (never on other machines). Perhaps the dual
processor of g makes it occur.”

Test cases are critical to bug diagnosis. Programmers’ discus-
sions show that a good test case to repeat a concurrency bug is very
important for diagnosis. In Mozilla bug report #73291, the pro-
grammers once gave up on this bug and closed the bug report, be-
cause they could not repeat the bug. Fortunately, somebody worked
out a way to reliably repeat the bug, and the bug was fixed subse-
quently. In another Mozilla bug report (Mozilla#72599), the pro-
grammers finally gave up repeating the bug and simply submit a
patch based on their “guessing”, and this led to a wrong fix.

Programmers lack diagnosis tools. From the bug reports, we
notice that many concurrency bugs are diagnosed simply by pro-
grammers reading the source code. For example, for 29 out of the
57 Mozilla bugs, the bug reports did not mention that the program-
mers ever leveraged any information from any tools, core dumps,
or stack traces, etc. Sometimes programmers tried gdb, but could
not get useful information. We have never seen programmers men-
tioned that they used any automatic diagnosis tools. In contrast,
in many bug reports about memory bugs, programmers mentioned
that they got help from Valgrind, Purify, etc [20].

7. Related work
Bug characteristic studies A lot of work has been done to study
the bug characteristics in large software systems. Many of them
provide precious information to help improve software reliability
from different aspects, such as bug detection [8, 38], fault toler-
ance [14], failure recovery [6], fault prediction and testing [32],
etc. In a recent work [43], people also studied how the recent trends
(availability of commercial tools, open-source, etc) affect the gen-
eral bug characteristics (bug distribution, fixing time) for all bugs.

Unfortunately, few previous work have studied concurrency
bugs, probably because real world concurrency bugs are hard to
collect and analyze. For example, in a previous study [6], only 12
concurrency bugs were collected from three applications: MySQL,
GNOME and Apache. Under this situation, a previous concurrency
bug pattern study [11] had to ask students to purposely write con-
current programs containing bugs, which cannot well represent
the real world bug characteristics. Unlike previous work, we study
the bug pattern, manifestation, and fix of 105 real world concur-
rency bugs from 4 large open source applications. Our study pro-
vides many findings and implications for addressing the correctness
problems in concurrent programming.
Improving concurrent program reliability Techniques to im-
prove concurrent program quality is related to our work. Due to
space limit, here we briefly discuss the work that have not been
discussed in previous sections.

In software testing, people proposed different coverage criteria
in order to selectively test concurrent program interleavings. Unfor-
tunately, these proposals are either too complicated [39] or based
on heuristics [4, 9]. Our study of concurrency bug manifestation
can help understand the trade-off between testing complexity and
bug exposing capability and help design better coverage criteria.

In programming language area, designs other than transactional
memory are also studied. AtomicSet [40] associates synchroniza-
tion constraints with data instead of code region. This design can
help avoid some multiple variable related concurrency bugs. Au-
tolocker [24] eases programmers specifying atomic regions by
automatically assigning locks. Our characteristics study provides
more motivation for these new language features.

338

8. Conclusions and future work
This paper provides a comprehensive study of the real world con-
currency bugs, examining their pattern, manifestation, fix strategy
and other characteristics. Our study is based on 105 real world
concurrency bugs, randomly collected from 4 representative open-
source programs: MySQL, Apache, Mozilla, and OpenOffice. The
result of our study includes many interesting findings and impli-
cations for concurrency bug detection, testing and concurrent pro-
gramming language design. Future research can benefit from our
study in various aspects. For example, future work can design new
bug detection tools to address multiple-variable bugs and order-
violation bugs; can pairwisely test concurrent program threads and
focus on partial orders of small groups of memory accesses to make
the best use of testing effort; can have better language features to
support “order” semantics to further ease concurrent programming.
In the future, we will extend our study with other types of real world
applications.

9. Acknowledgments
We thank the anonymous reviewers for useful feedback, the Opera
groups and Raluca A. Popa for useful discussions and paper proof-
reading. This research is supported by NSF CCF-0325603 grant,
NSF CNS-0615372 grant, NSF CNS-0347854 (career award),
DOE Early Career Award DE-FG02-05ER25688, Intel gift grants,
Korea Foundation for Advanced Studies (KFAS) doctorial scholar-
ship, and the Information and Telecommunication National Schol-
arship program of the Ministry of Information and Communication
of Korea.

References
[1] A.-R. Adl-Tabatabai, C. Kozyrakis, and B. Saha. Transactional

programming in a multi-core environment. In PPOPP, 2007.
[2] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson, and

S. Lie. Unbounded transactional memory. In HPCA, 2005.
[3] C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe

programming: Preventing data races and deadlocks. In OOPSLA,
2002.

[4] A. Bron, E. Farchi, Y. Magid, Y. Nir, and S. Ur. Applications of
synchronization coverage. In PPoPP, 2005.

[5] B. D. Carlstrom, A. McDonald, H. Chafi, J. Chung, C. C. Minh,
C. Kozyrakis, and K. Olukotun. The atomos transactional program-
ming language. In PLDI ’06, 2006.

[6] S. Chandra and P. M. Chen. Whither generic recovery from application
faults? a fault study using open-source software. In DSN, 2000.

[7] J.-D. Choi et al. Efficient and precise datarace detection for
multithreaded object-oriented programs. In PLDI, 2002.

[8] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. R. Engler. An empirical
study of operating system errors. In SOSP, 2001.

[9] O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur. Multi-threaded
java program test generation. IBM Systems Journal, 2002.

[10] D. Engler and K. Ashcraft. RacerX: Effective, static detection of race
conditions and deadlocks. In SOSP, 2003.

[11] E. Farchi, Y. Nir, and S. Ur. Concurrent bug patterns and how to test
them. In IPDPS, 2003.

[12] C. Flanagan and S. N. Freund. Atomizer: a dynamic atomicity checker
for multithreaded programs. In POPL, 2004.

[13] P. Godefroid. Model checking for programming languages using
verisoft. In POPL, 1997.

[14] W. Gu, Z. Kalbarczyk, R. K. Iyer, and Z. Yang. Characterization of
linux kernel behavior under errors. In DSN, 2003.

[15] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis,
B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K. Oluko-
tun. Transactional memory coherence and consistency. In ISCA,
2004.

[16] T. Harris and K. Fraser. Language support for lightweight transactions.
In OOPSLA, 2003.

[17] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Composable
memory transactions. In PPoPP ’05, 2005.

[18] R. Hastings and B. Joyce. Purify: Fast detection of memory leaks and
access errors. In Usenix, 1992.

[19] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: A tool for finding
copy-paste and related bugs in o perating system code. In OSDI, 2004.

[20] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai. Have things
changed now?: an empirical study of bug characteristics in modern
open source software. In Proceedings of the 1st workshop on
Architectural and system support for improving software dependability
(ASID’06), 2006.

[21] S. Lu, W. Jiang, and Y. Zhou. A study of interleaving coverage criteria.
In FSE, 2007.

[22] S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. A. Popa, and Y. Zhou.
Muvi: Automatically inferring multi-variable access correlations and
detecting related semantic and concurrency bugs. In SOSP07, 2007.

[23] S. Lu, J. Tucek, F. Qin, and Y. Zhou. Avio: Detecting atomicity
violations via access interleaving invariants. In ASPLOS, 2006.

[24] B. McCloskey, F. Zhou, D. Gay, and E. Brewer. Autolocker:
synchronization inference for atomic sections. In POPL, 2006.

[25] M. Moir. Transparent support for wait-free transactions. In 11th
International Workshop on Distributed Algorithms, 1997.

[26] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood.
Logtm: Log-based transactional memory. In HPCA, 2006.

[27] J. E. B. Moss and A. L. Hosking. Nested transactional memory: model
and architecture sketches. Sci. Comput. Program., 2006.

[28] M. Musuvathi and S. Qadeer. Iterative context bounding for systematic
testing of multithreaded programs. In PLDI, 2007.

[29] G. C. Necula, S. McPeak, and W. Weimer. CCured: Type-safe
retrofitting of legacy code. In POPL, 2002.

[30] N. Nethercote and J. Seward. Valgrind: A program supervision
framework. ENTCS, 2003.

[31] R. H. B. Netzer and B. P. Miller. Improving the accuracy of data race
detection. In PPoPP, 1991.

[32] T. Ostrand, E. Weyuker, and R. Bell. Predicting the location and
number of faults in large software systems. TSE, 2005.

[33] M. Prvulovic and J. Torrellas. ReEnact: Using thread-level speculation
mechanisms to debug data races in multithreaded codes. In ISCA,
2003.

[34] S. Qadeer and D. Wu. Kiss: keep it simple and sequential. In PLDI,
2004.

[35] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: Treating bugs as
allergies c a safe method to survive software failures. In SOSP, 2005.

[36] H. E. Ramadan, C. J. Rossbach, D. E. Porter, O. S. Hofmann,
A. Bhandari, and E. Witchel. Metatm/txlinux: transactional memory
for an operating system. In ISCA, 2007.

[37] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: A dynamic data race detector for multithreaded programs.
ACM TOCS, 1997.

[38] M. Sullivan and R. Chillarege. A comparison of software defects in
database management systems and operating systems. In FTCS, 1992.

[39] R. N. Taylor, D. L. Levine, and C. D. Kelly. Structural testing of
concurrent programs. IEEE Trans. Softw. Eng., 1992.

[40] M. Vaziri, F. Tip, and J. Dolby. Associating synchronization
constraints with data in an object-oriented language. In POPL, 2006.

[41] M. Xu, R. Bodı́k, and M. D. Hill. A serializability violation detector
for shared-memory server programs. In PLDI, 2005.

[42] Y. Yu, T. Rodeheffer, and W. Chen. Racetrack: Efficient detection of
data race conditions via adaptive tracking. In SOSP, 2005.

[43] Z. Li et. al. Have things changed now? – an empirical study of bug
characteristics in modern open source software. In ASID workshop in
ASPLOS, 2006.

339

