Operations performed by a parallel algorithm

e Computations that must be performed sequentially o(n)

e Computations that can be performed in parallel ¢(n)

e Parallel overhead (communication operations and redundant computations) k(n,p)

Execution time

Processors

Figure 7.1 Nontrivial parallel
algorithms have a computation
component (black bars) that is a
decreasing function of the number of
processors used and a communication
component (gray bars) that is an
increasing function of the number of
processors. For any fixed problem size
there is an optimum number of
processors that minimizes overall
execution time.

Speedup and efficiency

We design and implement parallel programs in the hope that they will run faster
than their sequential counterparts.

e Speedup = (Sequential execution time)/(Parallel execution time)

o(n) + ¢(n)
o(n) +e(n)/p +«(n, p)

Y(n,p) <

Speedup and efficiency

We design and implement parallel programs in the hope that they will run faster
than their sequential counterparts.

e Speedup = (Sequential execution time)/(Parallel execution time)

o(n) + ¢(n)

VRS e kG B

e Efficiency = Speedup/(Processors used)

&1, 0}/ o(n) + ¢(n)
0T plo) +)/ p+«k(n, p))
= ol 7)< a(n) + ¢(n)

pa(n) +¢(n) + pk(n, p)
Since all terms are greater than or equal to zero, 0 < e(n,p) <1.

Amdahl’s Law

Consider the expression for speedup we have just derived.

o(n) + ¢(n)

v(r.p) = o(n)+e(n)/p+«k(n, p)

Since x(n, p) > 0,

o(n) + ¢(n) < o) +e)

VO = @ F e + k@ p) = 7+ oni/p

Amdahl’s Law

Consider the expression for speedup we have just derived.

a(n) + ¢(n)
o(n)+e(n)/p+«(n, p)

¥(n, p) <

Since x(n, p) > 0,

o(n) + ¢(n) < o) +e)

»P) =
O S S F et + k. p) = a) + o/

Let f denote the inherently sequential portion of the computation. In other words,
f =0o(n)/(o(n) + ¢(n)). Then
a(n) + ¢(n)
<
VP 2 ey Femp
a(n)/f
o(n)+o(m)(1/f—-1/p

1/f
¥ RL) S =D

1
= ¥(n, p) < F+0=p

= ¥(n, p) <

Numerical Examples

Amdahl’'s Law [2] =

Let f be the fraction of operatlons in a computatlon that must be performed
> sequenually, where 0 < f < 1. The maximum speedup Y achievable by a

parallel computcr with. p processors performing the computatxon is - e

= 1
¥= 5 WS T

Suppose we are trying to determine whether it is worthwhile to develop a parallel version
of a program solving a particular problem. Benchmarking reveals that 90 percent of the
execution time is spent inside functions that we believe we can execute in parallel. The
remaining 10 percent of the execution time is spent in functions that must be executed on
a single processor. What is the maximum speedup that we could expect from a parallel
version of the program executing on eight processors?

m Solution
By Amdahl’s Law

1
¥ < ~ 4.7
0.14+(1-0.1)/8
We should expect a speedup of 4.7 or less.

Numerical Examples

m—

Suppose we have implemented a parallel version of a sequential program with time com-
plexity ©(n?), where n is the size of the dataset. Assume the time needed to input the
dataset and output the result is

(18000 + n) usec

This constitutes the sequential portion of the program. The computational portion of the
program can be executed in parallel; it has execution time

(n*/100) usec
What is the maximum speedup achievable by this parallel program on a problem of
size 10,0007
B Solution
By Amdahl’s Law

(28,000 + 1,000,000) pusec

¥ <
~ (28,000 + 1,000,000/ p) usec

Limitations of Amdahl’'s Law

Amdahl’s Law ignores overhead associated with the introduction of parallelism.
Let’s return to our previous example. Suppose the parallel version of the program
has [logn] communication points. At each of these points, the communication
time is

10,000(log p1 + (n/10) psec
For a problem of size 10,000, the total communication time is
14(10,000[log p1 + 1,000) psec

Now we have taken into account all of the factors included in our formula for
speedup: o (n), ¢(n), and x (n, p). Our prediction for the speedup achievable by
the parallel program solving a problem of size 10,000 on p processors is

(28,000 + 1,000,000) usec
(42,000 + 1,000,000/ p + 140,000[1log p1) usec
The solid line in Figure 7.2 plots a new upper bound on speedup predicted by this

more comprehensive formula. Taking communication time into account gives us
a more realistic prediction of the parallel program’s performance.

¥ <

10BJ:

Limitations of Amdahl’s Law

16
14
12

10

Speedup
00

-~ O

2 4 6 8 10 12 14 16
Processors

Figure 7.2 Speedup predicted by
Amdahl’s Law (dashed line) is higher than
speedup prediction that takes communica-
tion overhead into account (solid line).

Amdahl Effect

Typically, x(n, p) has lower complexity than ¢(n). That is the case with the
hypothetical problem we have been considering: k (n, p) = ©(nlogn +nlog p),
while ¢(n) = ©(n?). Increasing the size of the problem increases the computation
time faster than it increases the communication time. Hence for a fixed number of
processors, speedup is usually an increasing function of the problem size. This is
called the Amdahl effect [42]. Figure 7.3 illustrates the Amdahl effect by plotting
expected speedup for our hypothetical problem. As problem size n increases, so
does the height of the speedup curve. 1

=0~ n = 30,000
-e= n = 20,000

-=- n = 10,000

......
———————

T T T T T T T 1

1 | | 1 1 J
6 8 10 12 14 16
Processors

Figure 7.3 For any fixed number of
processors, speedup is usually an
increasing function of the problem size.
This is called the Amdabhl effect.

Gustafson-Barsi's Law

What happens if we treat time as a constant and let the problem size increase
with the number of processors? The inherently sequential fraction of a computa-
tion typically decreases as problem size increases (the Amdahl effect). Increasing
the number of processors enables us to increase the problem size, decreasing
the inherently sequential fraction of a computation, and increasing the quotient
between serial execution time and parallel execution time (speedup).

Consider the expression for speedup we have derived. Since «(n, p) > 0,

o(n) + ¢(n)
VD) = ey Femp

Let s denote the fraction of time spent in the parallel computation performing
inherently sequential operations. The fraction of time spent in the parallel compu-
tation performing parallel operations is what remains, or (1 —s). Mathematically,

N o(n)
o) +e)/p

e(n)/p
o(n)+¢(n)/p

(1—-3)=

Hence

o(n) = (o(n) +@(n)/p)s
p(n) = (o(n) + @(n)/p)(1 —s)p

Gustafson-Barsi's Law

Therefore

o(n) + ¢(n)
o(n)+en)/p

(o(n) +@)/p)(s+ (1 —s)p)
= B = o(n) + @)/ p

= Y, p)<s+-=s5)p
= Y@, p)<p+(1—-p)s

Y¥(n, p) <

Numerical Examples

Gustafson-Barsis’s Law [46]
Given a parallel program solvmg a problem of size n usmg p processors, let s
“denote the fraction of total execution time spent in scnal code. The maximum

_speedup:[r acmevablebythlspmgram is S shakpila
TS g d e ks

Vicki plans to justify her purchase of a $30 million Gadzooks supercomputer by demon-
strating its 16,384 processors can achieve a scaled speedup of 15,000 on a problem of
great importance to her employer. What is the maximum fraction of the parallel execution
time that can be devoted to inherently sequential operations if her application is to achieve

this goal?

m Solution
Using Gustafson-Barsis’s Law:

15,000 = 16,384 — 16,383s
= s =1384/16,383
= s =0.084

The Karp-Flatt Metric

Because Amdahl’s Law and Gustafson-Barsis’s Law ignore « (n, p), the paral-
lel overhead term, they can overestimate speedup or scaled speedup. Karp and
Flatt have proposed another metric, called the experimentally determined serial
fraction, which can provide valuable performance insights [59].

Recall that we have represented the execution time of a parallel program
executing on p processors as

I'(n,p)=o0(n)+en)/p+kn, p)

where o (n) is the inherently serial component of the computation, ¢(n) is the
portion of the computation that may be executed in parallel, and « (n, p) is over-
head resulting from processor communication and synchronization, and redun-
dant computations. The serial program does not have any interprocessor commu-
nication or synchronization overhead, so its execution time is

T(n, 1) =0(n)+ @)

We define the experimentally determined serial fraction e of the parallel com-
putation to be

e = (o(n)+«(n, p))/T(n1)

The Karp-Flatt Metric

Hence
on) +«x(n, p) =T(n, e
We may now rewrite the parallel execution time as
IT'(n,p)=Tn,De+Tn, 1)(1 —e)/p

Let’s use ¥ as a shorthand for ¥ (n, p). Since speedup ¥ = T (n, 1)/ T (n, p), we
have T"(n, 1) = T (n, P)Y¥. Hence

T(n,p)=T0n,p)Ye+ T, pyY(l —e)/p
= 1 =ve+yY(l —e)/p
= 1/¥ =e+ (1 —e)/p
= 1/ =e+1/p—e/p
= 1/¥ =e(1—-1/p)+1/p
1 — 1
- . =Me—ip

The Karp-Flatt Metric [59] = T Sipls s ST er R
Given a parallel computation. w:hxbntmg specdup 1// on’ p processors wherc
P: > I, the expenmentally determmed serial fraction e 1s deﬁned to be Y :
_Yv—1/p - Sk
1—1Y/p

Numerical Examples

Benchmarking a parallel programon 1, 2, .. ., 8 processors produces the following speed-

up results:
[p 2 3 4 5 6 7 8
/s 1.82 2.50 3.08 3397 4.00 4.38 4.71

What is the primary reason for the parallel program achieving a speedup of only 4.71 on
eight processors?

m Solution
Using the formula we have developed, we can compute the experimentally determined
serial fraction e corresponding to each data point:

p 2 3 4 5 6 7 8
v 1.82 2.50 3.08 357 4.00 438 471
e 0.10 0.10 0.10 0.10 0.10 0.10 0.10

Since the experimentally determined serial fraction is not increasing with the number
of processors, the primary reason for the poor speedup is the limited opportunity for
parallelism—that is, the large fraction of the computation that is inherently sequential.

Numerical Examples

Benchmarking a parallel programon 1, 2, . . ., 8 processors produces the following speed-
up results:

p 2 3 4 5 6 7 8

v 1.87 2.61 3.23 3.73 4.14 4.46 4.71

What is the primary reason for the parallel program achieving a speedup of only 4.71 on
eight processors?

u Solution
We begin by computing the experimentally determined serial fraction for each of these
program runs:

p 2 3 4 5 6 7 8
4 1.87 2.61 3.23 5K 4.14 4.46 4.71
e 0.070 0.075 0.080 0.085 0.090 0.095 0.1

Since the experimentally determined serial fraction is steadily increasing as the number of
processors increases, the principal reason for the poor speedup is parallel overhead. This
could be time spent in process startup, communication, or synchronization, or it could be
an architectural constraint.

