
mjb – March 4, 2019

2

Computer Graphics

CPU
Chip

Main
Memory

This path is relatively slow, forcing the CPU to wait for up to 200 clock
cycles just to do a store to, or a load from, memory.

Depending on your CPU’s ability to process instructions out-of-order, it
might go idle during this time.

This is a huge performance hit!

Problem: The Path Between a CPU Chip and Off-chip Memory is Slow

mjb – March 4, 2019

3

Computer Graphics

CPU
Chip

The solution is to add intermediate memory systems. The one closest to
the CPU is small and fast. The memory systems get slower and larger as
they get farther away from the CPU.

Solution: Hierarchical Memory Systems, or “Cache”

Main
Memory

Smaller,
faster

mjb – March 4, 2019

4

Computer Graphics

L2

Cache and Memory are Named by “Distance Level” from the ALU

L1

L3 cache also exists on
some high-end CPU chips

mjb – March 4, 2019

5

Computer Graphics

L1 L2 Memory Disk

Type of Storage On-chip On-chip Off-chip Disk

Typical Size < 100 KB < 8 MB < 10 GB Many GBs

Typical Access
Time (ns)

.25 - .50 .5 – 25.0 50 - 250 5,000,000

Scaled Access
Time

1 second 33 seconds 7 minutes 154 days

Bandwidth
(MB/sec)

50,000 – 500,000 5,000 – 20,000 2,500 – 10,000 50 - 500

Managed by Hardware Hardware OS OS

Adapted from: John Hennessy and David Patterson, Computer Architecture: A
Quantitative Approach, Morgan-Kaufmann, 2007. (4th Edition)

Storage Level Characteristics

Usually there are two L1 caches – one for Instructions and one for Data. You will often see
this referred to in data sheets as: “L1 cache: 32KB + 32KB” or “I and D cache”

mjb – March 4, 2019

6

Computer Graphics

When the CPU asks for a value from memory, and that value is already
in the cache, it can get it quickly.
This is called a cache hit

When the CPU asks for a value from memory, and that value is not already
in the cache, it will have to go off the chip to get it.
This is called a cache miss

Cache Hits and Misses

Performance programming should strive to avoid as many cache misses as possible.
That’s why it is very helpful to know the cache structure of your CPU.

While cache might be multiple kilo- or megabytes, the bytes are transferred
in much smaller quantities, each called a cache line. The size of a cache
line is typically just 64 bytes.

mjb – March 4, 2019

8

Computer Graphics

How Bad Is It? -- Demonstrating the Cache-Miss Problem

C and C++ store 2D arrays a row-at-a-time, like this, A[i][j]:

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

For large arrays, would it be better to add the
elements by row, or by column? Which will avoid
the most cache misses?

[i]

[j]

float f = Array[i][j] ;

float f = Array[j][i] ;

Sequential memory order

Jump-around-in-memory order

sum = 0.;
for(int i = 0; i < NUM; i++)
{

for(int j = 0; j < NUM; j++)
{

float f = ???
sum += f;

}
}

mjb – March 4, 2019

9

Computer Graphics

Demonstrating the Cache-Miss Problem – Across Rows

#include <stdio.h>
#include <ctime>
#include <cstdlib>

#define NUM 10000

float Array[NUM][NUM];

double MyTimer();

int
main(int argc, char *argv[])
{

float sum = 0.;
double start = MyTimer();
for(int i = 0; i < NUM; i++)
{

for(int j = 0; j < NUM; j++)
{

sum += Array[i][j]; // access across a row
}

}
double finish = MyTimer();

double row_secs = finish – start;

mjb – March 4, 2019

10

Computer Graphics

sum = 0.;
start = MyTimer();
for(int i = 0; i < NUM; i++)
{

for(int j = 0; j < NUM; j++)
{

sum += Array[j][i]; // access down a column
}

}
finish = MyTimer();

double col_secs = finish - start;
fprintf(stderr, "NUM = %5d ; By rows = %lf ; By cols = %lf\n",

NUM, row_secs, col_secs);
}

Demonstrating the Cache-Miss Problem – Down Columns

mjb – March 4, 2019

11

Computer Graphics

Demonstrating the Cache-Miss Problem

Time, in seconds, to compute the array sums, based
on by-row versus by-column order:

Dimension (NUM)
(Total array size = NUMxNUM)

T
im

e
(s

ec
on

ds
)

mjb – March 4, 2019

12

Computer Graphics

Array-of-Structures vs. Structure-of-Arrays:

struct xyz
{

float x, y, z;
} Array[N];

float X[N], Y[N], Z[N];

X0
Y0
Z0

X1
Y1
Z1

X2
Y2
Z2

X3
Y3
Z3

X0
X1
X2
X3
. . .

Y0
Y1
Y2
Y3
. . .

Z0
Z1
Z2
Z3
. . .

1. Which is a better use of the
cache if we are going to be using
X-Y-Z triples a lot?

2. Which is a better use of the
cache if we are going to be
looking at all X’s, then all Y’s,
then all Z’s?

I’ve seen some programs use a
“Shadow Data Structure” to get the
advantages of both AOS and SOA

mjb – March 4, 2019

13

Computer Graphics

Computer Graphics is often a Good Use for Array-of-Structures:

struct xyz
{

float x, y, z;
} Array[N];

. . .

glBegin(GL_LINE_STRIP);
for(int i = 0; i < N; i++)
{

glVertex3f(Array[i].x, Array[i].y, Array[i].z);
}
glEnd();

X0
Y0
Z0

X1
Y1
Z1

X2
Y2
Z2

X3
Y3
Z3

mjb – March 4, 2019

14

Computer Graphics

A Good Use for Structure-of-Arrays:

float X[N], Y[N], Z[N];
float Dx[N], Dy[N], Dz[N];
. . .

Dx[0:N] = X[0:N] - Xnow;
Dy[0:N] = Y[0:N] - Ynow;
Dz[0:N] = Z[0:N] - Znow;

X0
X1
X2
X3
. . .

Y0
Y1
Y2
Y3
. . .

Z0
Z1
Z2
Z3
. . .

mjb – March 4, 2019

15

Computer Graphics

Good Object-Oriented Programming Style can
sometimes be Inconsistent with Good Cache Use:

class xyz
{

public:
float x, y, z;
xyz *next;
xyz();
static xyz *Head = NULL;

};

xyz::xyz()
{

xyz * n = new xyz;
n->next = Head;
Head = n;

};

This is good OO style – it encapsulates and
isolates the data for this class. Once you have
created a linked list whose elements are all over
memory, is it the best use of the cache?

mjb – March 4, 2019

16

Computer Graphics

But, Here Is a Compromise:

It might be better to create a large array of xyz structures and then have the
constructor method pull new ones from that list. That would keep many of the
elements close together while preserving the flexibility of the linked list.

When you need more, allocate another large array and link to it.

