OpenMP

Jan 7, 2020

Course outline (Pacheco; GGKK; Quinn)

Motivation (1;1;1)
How to quantify performance improvement (2.6; 5; 7)
Parallel hardware architecture (2.2-2.3; 2,4; 2)

Parallel programming frameworks

o Pthreads for shared memory (4; 7; -)

o OpenMP for shared memory (5; 7.10; 17)

o MPI for distributed memory (3; 6; 4)

o CUDA/OpenCL for GPU,

o Hadoop/Spark/Mapreduce for distributed systems

Parallel program verification
Parallel algorithm design
Some case studies

Discussion points

e Hello world program, compile, run

e Synchronization
o For mutual exclusion on shared data - critical, atomic, lock
o For work coordination - barrier
o Prevent data dependencies

Scope of variables

Sharing work among threads

Thread safety

Task Parallelism

Cache coherence, false sharing (during architecture discussion)
Non parallelizable algorithms (during algorithm design discussion)

Hello World

1 {include <stdio.h>

2 {tinclude <stdlib.h>

3 {tinclude <omp.h>

4

5 void Hello(void); /% Thread function x/

6

7 int main(int argc, charx argv[]) {

8 /* Get number of threads from command line x/
9 int thread_count = strtol(argv[1], NULL, 10);
10

11 # pragma omp parallel num_threads(thread_count)
12 Hello();

13

14 return 0;

15 } /% main =/

16

17 void Hello(void) {

18 int my_rank = omp_get_thread_num();

19 int thread_.count = omp_get_num_threads();:

20

21 printf("Hello from thread %d of %d\n", my_rank, thread_count);
22

23 '} /% Hello %/

Compiling and running

To compile this with gcc we need to include the —fopenmp option:!

$ gcc —g —Wall —fopenmp —o0 omp_hello omp_hello.c

To run the program, we specify the number of threads on the command line. For
example, we might run the program with four threads and type

$./omp_hello 4

If we do this, the output might be

Hello from thread 0 of 4
Hello from thread 1 of 4
Hello from thread 2 of 4
Hello from thread 3 of 4

However, it should be noted that the threads are competing for access to stdout, so
there’s no guarantee that the output will appear in thread-rank order. For example, the
output might also be

Hello from thread 1 of 4
Hello from thread 2 of 4
Hello from thread 0 of 4
Hello from thread 3 of 4

Race condition example: Trapezoidal rule example

[%: INpUuts: @q; b; NH.x/

h = (b-a)/n; -
approx = (f(a) + f(b))/2.0;

for (i =1; i <=n-1; i++) {

. . : // |
d=a+ h;
gp;roxa+= ;Tx_i); (///// /<ZQg% S
a b X

(@)

J

approx = hxapprox;

Time Thread 0 Thread 1

0 global_result = 0 to register finish my_result

1 my_result = 1 to register global_result = 0 toregister

2 addmy_resulttoglobal_result my_result = 2 to register

3 store global_result = 1 add my_resulttoglobal_result
4 store global_result = 2

Critical directive

0 NN B W=

#finclude <stdio.h>
f#include <stdlib.h>
#include <omp.h>

void Trap(double a, double b, int n, doublex global.result_p);

int main(int argc, chars argv[]) {
double global_result = 0.0;

double a, b;
int n;
int thread_count;

thread_count = strtol(argv[1], NULL, 10);
printf("Enter a, b, and n\n");
scanf("%1f #1f %d", &a, &b, &n);

pragma omp parallel num.threads(thread.count)
Trap(a, b, n, &global.result);

printf("With n = %d trapezoids, our estimate\n", n);
printf("of the integral from %f to %f = %.1l4e\n",
a, b, global.result);
return 0;
} /% main x/

void Trap(double a, double b, int n, doublex global_result_p) {
double h, x, my_result;
double 1local.a, local.b;
int i, local.n;
int my_rank = omp_get_thread_num();
int thread.count = omp_get_num_threads();

h = (b—a)/n;
local.n = n/thread.count;
local.a = a + my.rankxlocal.nxh;
local.b = Tocal.a + Tocal_nxh;
my_result = (f(local.a) + f(local.b))/2.0;
for (i = 1; i <= local.n-1; i++)
X = local.a + ixh;
my.result += f(x);
}
my_.result = my_resultxh;

pragma omp critical
*global_result_p += my_result;
} /% Trap =/

Atomic directive

pragma omp atomic

Unlike the critical directive, it can only protect critical sections that consist of a
single C assignment statement. Further, the statement must have one of the following
forms:

x <op>= <expression>;
X++;
++X;
X
—Xi3

Here <op> can be one of the binary operators

ol TRE DR SRRy T [< S o] ol o>

It’s also important to remember that <expression> must not reference x.
It should be noted that only the load and store of x are guaranteed to be protected.
For example, in the code

i pragma omp atomic
X += y++;

The idea behind the atomic directive is that many processors provide a special
load-modify-store instruction. A critical section that only does a load-modify-store can be
protected much more efficiently by using this special instruction rather than the constructs that are
used to protect more general critical sections.

Fine grained synchronization: message queue example

for (sent.msgs = 0;

Send_msg();
Try-receive\
}
mesg

while (!Done()) dest
Try_receive();

queuesize = enqueued - dequeued;

if (queue.size == 0 && done_sending == thread.count)
return TRUE;

else
return FALSE;

pragma
Enqueue(queue, dest, my_rank, mesg);

sent_msgs < send._max; sent.msgs++) {

= random();
random() % thread_count;
omp critical

queue.size =
if (queue-siz

enqueued — dequeued;
0) return;

else if (queue_size ==
pragma omp critical
Dequeue(queue, &src,
else
Dequeue(queue, &src, &mesg);
Print_message(src, mesg);

1)

&mesqg);

Lock primitive

pragma omp critical
/* q_-p = msg_queues[dest] =/

Enqueue(q.p, my_rank, mesg);

can be replaced with

/* q.p = msg.queues[dest] x/
omp.set_lock(&q.p—>lock);
Enqueue(q.p, my.rank, mesg);
omp.unset_lock(&qg.p—>1lock);

Similarly, the code

pragma omp critical
/¥ q.p = msg_queues[my_rank] x/
Dequeue(q-p, &src, &mesg);

can be replaced with

/* q.p = msg.queues[my_rank] %/
omp-set_lock(&q-p—>1lock);
Dequeue(qg-p, &src, &mesg);
omp-unset_lock(&q-p—>lock);

Synchronization caveats

e Mixing different synchronization primitives

pragma omp atomic # pragma omp critical
x += f(y); X = g(x);
. while(1l) {
e |[ssue of fairness S
i pragma omp critical

X = g(my_rank);
}

e Issue of deadlock, especially if threads enter different critical sections in
different orders

Time Thread u Thread v

0 Enter crit. sect. one Enter crit. sect. two
1 Attempt to enter two Attempt to enter one
2 Block Block

Work synchronization: Barrier primitive

e One or more threads might finish allocating their queues before some other threads

e [f this happens, the threads that finish first could start trying to enqueue messages in a queue
that hasn’t been allocated

e Program will crash

e In middle of parallel block, so implicit barriers will not work

e Use explicit barrier to make sure none of the threads start sending messages until all the
queues are allocated.

#f pragma omp barrier

Parallel for

h = (b—a)/n;
approx = (f(a) + f(b))/2.0;
pragma omp parallel for num_threads(thread_count) \
reduction(+: approx)
for (i =1; i <= n=1; i++)
approx += f(a + ixh);
approx = hxapprox;

For loop restrictions

Only loops for which the number of iterations can be determined . from the for
statement itself and prior to execution of the loop.

The variable index must have integer or pointer type (e.g., it can’t be a float).

The expressions start, end, and incr must have a compatible type. For example, if
index is a pointer, then incr must have integer type.

The expressions start, end, and incr must not change during execution of the loop.
During execution of the loop, the variable index can only be modified by the
“increment expression” in the for statement.

1 int Linear_search(int key, int A[], int n) ({

2 ink 4

3 /x thread_count is global x/

4 # pragma omp parallel for num_threads(thread_count)

5 for (i = 0; i < n; i++)

6 if (A[i1] == key) return i;

7

8

return =1; /x key not in list x/
}

The gcc compiler reports:

Line 6: error: invalid exit from OpenMP structured block

Loop carried dependencies

e OpenMP compilers don'’t check for dependences among iterations in a loop
that’s being parallelized with a parallel for directive. It's up to us, the
programmers, to identify these dependencies.

e Aloop in which the results of one or more iterations depend on other
iterations cannot, in general, be correctly parallelized by OpenMP.

e Example:112358132134550r112358000 0 can both be output
from parallelizing the Fibonacci for loop

fibo[0] = fibo[1l] = 1;
for (1 =2: i < n; i++)
fibo[i] = fibo[i-1] + fibo[i-2]:;

fibo[0] = fibo[l] = 1;
pragma omp parallel for num_threads(thread_count)
for (1= 2: % € aAF i++)
fibo[i] = fibo[i—-1] + fibo[i—-2];

General data dependencies are fine

1 for (1 = Pz 1 <Nz T+ {
2 x[i] = a + ixh;

3 y[i] = exp(x[i]);

4 }

there is a data dependence between Lines 2 and 3. However, there is no problem with
the parallelization

1 # pragma omp parallel for num.threads(thread.count)
2 for (1= D: 1 < ms 1+E) |

3 x[i] = a + ixh;

4 y[i] = exp(x[i]);

N

J

since the computation of x[1] and its subsequent use will always be assigned to the
same thread.

Dealing with loop carried dependencies

One way to get a numerical approximation to 77 is to use many terms in the formula®
N © ()t We see that in iteration k the value of factor should be (-—l)". which is +1 if k is
e | i e i e | =4 s A even and —1 if k is odd, so if we replace the code
= 1 sum += factor/(2xk+1);
We can implement this formula in serial code with 2 factor = —factor;
1 double factor = 1.0; by
2 double sum = 0.0;
3 for (k = 0; k < n; k++) { 1 if(kg2=0)
4 sum += factor/(2xk+1); 2 factor = 1.0;
5 factor = —factor; 3 else
f; }- - 4.0 . 4 factor = -1.0;
SN G 5 sum += factor/(2xk+1);
(Why is it important that factor is a double instead of an int or a Tong?) i for the - "
How can we parallelize this with OpenMP? We might at first be inclined to do o i o] o e e e
something like this: 1 factor = (k3 2==10) 2 1.0 <1.03
2 sum += factor/(2xk+1);
1 double factor = 1.0;
> HARIE S =il we will eliminate the loop dependenc
3 4k pragma omp parallel for num.threads(thread.count) \ s e Y-
4 reduction(+:sum)
5 for (k = 0; k < n; k++) {
6 sum += factor/(2sk+1);
7 factor = —factor;
8 }
9 pi_approx = 4.0%sum;
However, it’s pretty clear that the update to factor in Line 7 in iteration k and the
subsequent increment of sum in Line 6 in iteration k+1 is an instance of a loop-carried
dependence. If iteration k is assigned to one thread and iteration k+1 is assigned to
another thread, there’s no guarantee that the value of factor in Line 6 will be correct.
In this case we can fix the problem by examining the series
k=0 2] J

Discussion points

e Hello world program, compile, run

e Synchronization
o For mutual exclusion on shared data - critical, atomic, lock
o For work coordination - barrier
o Prevent data dependencies

Scope of variables

Sharing work among threads

Thread safety

Task Parallelism

Cache coherence, false sharing (during architecture discussion)
Non parallelizable algorithms (during algorithm design discussion)

Scope of variables

However, things still aren’t quite right. If we run the program on one of our
systems with just two threads and n = 1000, the result is consistently wrong. For
example,

1 With n = 1000 terms and 2 threads,
2 Qur estimate of pi = 2.97063289263385
3 With n = 1000 terms and 2 threads,
4 OQur estimate of pi = 3.22392164798593

On the other hand, if we run the program with only one thread, we always get

1 With n = 1000 terms and 1 threads,
2 OQur estimate of pi = 3.14059265383979

Use default(none) and private for correctness

double sum = 0.0;

i pragma omp parallel for num_threads(thread_count) \
default(none) reduction(+:sum) private(k, factor) \
shared(n)

for fk =0 Kk ng kFE) |
if (k% 2==020)
factor = 1.0;
else
factor = =1.0;
sum += factor/(2xk+1);

Reduction clause

global_result = 0.0;

pragma omp parallel num_.threads(thread.count)
{
i pragma omp critical

global.result += Local.trap(double a, double b, int n);

global.result = 0.0;
pragma omp parallel num.threads(thread._count)
{
double my.result = 0.0; /% private %/
my.result += Local_trap(double a, double b, int n);
it pragma omp critical
global_result += my_result;

global_result = 0.0;
pragma omp parallel num.threads(thread_count) \
reduction(+: global_result)
global_result += Local.trap(double a, double b, int n);

How is work divided among threads?

Most OpenMP implementations use roughly a block partitioning: if there are n
iterations in the serial loop, then in the parallel loop the first n/thread count are
assigned to thread 0, the next n/thread count are assigned to thread 1, and so on.

fibo[0] = fibo[1l] = 1;
pragma omp parallel for num_threads(thread_count)
for (4 = 2: ‘¥ € A% 44+)
fibo[i] = fibo[i—-1] + fibo[i-2];

In addition to correctness issues due to loop carried dependencies, there can be load balancing issues.

Load balancing issue

sum = 0.0;
for (1 = 0;: 1 <=

n; i++)
sum += f(i);

Thread Iterations

0 BonfE 20/ ..
1 1, n/t+1, 2n/t+1, ...

t—1

t—1, n/t+t-1, 2n/t+t-1, ...

Schedule clause

Schedule clause has the form schedule(<type>[,<chunksize>])

e Type can be any one of the following:
o static: The iterations can be assigned to the threads before the loop is executed.
o dynamic or guided: The iterations are assigned to the threads while the loop is executing, so
after a thread completes its current set of iterations, it can request more from the run-time system.
o auto: The compiler and/or the run-time system determine the schedule.
o runtime: The schedule is determined at run-time.

e Chunksize is a positive integer.
o Achunk of iterations is a block of iterations that would be executed consecutively in the serial
loop. The number of iterations in the block is the chunksize.

o Only static, dynamic, and guided schedules can have a chunksize. This determines the details of
the schedule, but its exact interpretation depends on the type.

Static schedule with chunksizes 1, 2, 4

Thread 0: 0,3,6,9 Thread 0: 0,1,6,7 Thread 0: 0,1,2,3
Thread 1: 1,4,7,10 Thread 1: 2.3,8,9 Thread 1: 4,5,6,7
Thread 2: 2.5.8.11 Thread 2: 4.,5,10,11 Thread 2: 8.9.10,11
Thread Chunk Size of Chunk Remaining lterations

0 1-5000 5000 4999

1 5001-7500 2500 2499

: 1 7501-8750 1250 1249

GUIded SChedUIe 1 8751-9375 625 624

0 9376-9687 312 312

1 9688-9843 156 156

0 9844-9921 78 78

1 9922-9960 39 39

1 9961-9980 20 19

1 9981-9990 10 9

1 9991-9995 5 4

0 9996-9997 2 2

1 9998-9998 1 1

0 9999-9999 1 0

Discussion points

e Hello world program, compile, run

e Synchronization
o For mutual exclusion on shared data - critical, atomic, lock
o For work coordination - barrier
o Prevent data dependencies

Scope of variables

Sharing work among threads

Thread safety

Task Parallelism

Cache coherence, false sharing (during architecture discussion)
Non parallelizable algorithms (during algorithm design discussion)

Task parallelism

alpha(); @

= beta();
= gamma (v, w);
= deltal();

\'
w
x
Y
D

rintf ("%6.2f\n", epsilon(x,y));

Task parallelism
alpha();

r

T X E <

e W

beta();

gamma (v, w);
deltal();
ntf ("%6.2E\n",

#pragma comp parallel sections

#pragma omp section

alphal();

#pragma omp section

betal();

§pragma omp section

delta();

X = gamma (v, w);

{
v =
w =
y =
)
printf

("%6.2f\n";

/* This pragma optional */

epsilon(x,y)):

epsilon(x,y));

#pragma omp parallel

{
#pragma omp sections
{
#pragma omp section

v = alpha();
#pragma omp section
w = beta();

}
#pragma omp sections

#pragma omp section
x = gamma (v, w);
#pragma omp section
y = delta():
}
}

printf ("%6.2f\n", epsilon(x,y)):

/* This pragma optional */

/* This pragma optional */

Discussion points

e Hello world program, compile, run

e Synchronization
o For mutual exclusion on shared data - critical, atomic, lock
o For work coordination - barrier
o Prevent data dependencies

Scope of variables

Sharing work among threads

Thread safety

Task Parallelism

Cache coherence, false sharing (during architecture discussion)
Non parallelizable algorithms (during algorithm design discussion)

Course outline (Pacheco; GGKK; Quinn)

Motivation (1;1;1)
How to quantify performance improvement (2.6; 5; 7)
Parallel hardware architecture (2.2-2.3; 2,4; 2)

Parallel programming frameworks

o Pthreads for shared memory (4; 7; -)

o OpenMP for shared memory (5; 7.10; 17)

o MPI for distributed memory (3; 6; 4)

o CUDA/OpenCL for GPU,

o Hadoop/Spark/Mapreduce for distributed systems

Parallel program verification
Parallel algorithm design
Some case studies

