
OpenMP
Jan 7, 2020

Course outline (Pacheco; GGKK; Quinn)

● Motivation (1;1;1)
● How to quantify performance improvement (2.6; 5; 7)
● Parallel hardware architecture (2.2-2.3; 2,4; 2)
● Parallel programming frameworks

○ Pthreads for shared memory (4; 7; -)
○ OpenMP for shared memory (5; 7.10; 17)
○ MPI for distributed memory (3; 6; 4)
○ CUDA/OpenCL for GPU,
○ Hadoop/Spark/Mapreduce for distributed systems

● Parallel program verification
● Parallel algorithm design
● Some case studies

Discussion points
● Hello world program, compile, run
● Synchronization

○ For mutual exclusion on shared data - critical, atomic, lock
○ For work coordination - barrier
○ Prevent data dependencies

● Scope of variables
● Sharing work among threads
● Thread safety
● Task Parallelism
● Cache coherence, false sharing (during architecture discussion)
● Non parallelizable algorithms (during algorithm design discussion)

Hello World

Compiling and running

Race condition example: Trapezoidal rule example

Critical directive

Atomic directive

The idea behind the atomic directive is that many processors provide a special
load-modify-store instruction. A critical section that only does a load-modify-store can be
protected much more efficiently by using this special instruction rather than the constructs that are
used to protect more general critical sections.

Fine grained synchronization: message queue example

Lock primitive

Synchronization caveats
● Mixing different synchronization primitives

● Issue of fairness

● Issue of deadlock, especially if threads enter different critical sections in
different orders

Work synchronization: Barrier primitive

● One or more threads might finish allocating their queues before some other threads
● If this happens, the threads that finish first could start trying to enqueue messages in a queue

that hasn’t been allocated
● Program will crash
● In middle of parallel block, so implicit barriers will not work
● Use explicit barrier to make sure none of the threads start sending messages until all the

queues are allocated.

Parallel for

For loop restrictions
● Only loops for which the number of iterations can be determined . from the for

statement itself and prior to execution of the loop.
● The variable index must have integer or pointer type (e.g., it can’t be a float).
● The expressions start, end, and incr must have a compatible type. For example, if

index is a pointer, then incr must have integer type.
● The expressions start, end, and incr must not change during execution of the loop.
● During execution of the loop, the variable index can only be modified by the

“increment expression” in the for statement.

● OpenMP compilers don’t check for dependences among iterations in a loop
that’s being parallelized with a parallel for directive. It’s up to us, the
programmers, to identify these dependencies.

● A loop in which the results of one or more iterations depend on other
iterations cannot, in general, be correctly parallelized by OpenMP.

● Example: 1 1 2 3 5 8 13 21 34 55 or 1 1 2 3 5 8 0 0 0 0 can both be output
from parallelizing the Fibonacci for loop

Loop carried dependencies

General data dependencies are fine

Dealing with loop carried dependencies

Discussion points
● Hello world program, compile, run
● Synchronization

○ For mutual exclusion on shared data - critical, atomic, lock
○ For work coordination - barrier
○ Prevent data dependencies

● Scope of variables
● Sharing work among threads
● Thread safety
● Task Parallelism
● Cache coherence, false sharing (during architecture discussion)
● Non parallelizable algorithms (during algorithm design discussion)

Scope of variables

Use default(none) and private for correctness

Reduction clause

How is work divided among threads?
Most OpenMP implementations use roughly a block partitioning: if there are n
iterations in the serial loop, then in the parallel loop the first n/thread count are
assigned to thread 0, the next n/thread count are assigned to thread 1, and so on.

In addition to correctness issues due to loop carried dependencies, there can be load balancing issues.

Load balancing issue

Schedule clause

Schedule clause has the form schedule(<type>[,<chunksize>])

● Type can be any one of the following:
○ static: The iterations can be assigned to the threads before the loop is executed.
○ dynamic or guided: The iterations are assigned to the threads while the loop is executing, so

after a thread completes its current set of iterations, it can request more from the run-time system.
○ auto: The compiler and/or the run-time system determine the schedule.
○ runtime: The schedule is determined at run-time.

● Chunksize is a positive integer.
○ A chunk of iterations is a block of iterations that would be executed consecutively in the serial

loop. The number of iterations in the block is the chunksize.
○ Only static, dynamic, and guided schedules can have a chunksize. This determines the details of

the schedule, but its exact interpretation depends on the type.

Static schedule with chunksizes 1, 2, 4

Guided schedule

Discussion points
● Hello world program, compile, run
● Synchronization

○ For mutual exclusion on shared data - critical, atomic, lock
○ For work coordination - barrier
○ Prevent data dependencies

● Scope of variables
● Sharing work among threads
● Thread safety
● Task Parallelism
● Cache coherence, false sharing (during architecture discussion)
● Non parallelizable algorithms (during algorithm design discussion)

Task parallelism

Task parallelism

Discussion points
● Hello world program, compile, run
● Synchronization

○ For mutual exclusion on shared data - critical, atomic, lock
○ For work coordination - barrier
○ Prevent data dependencies

● Scope of variables
● Sharing work among threads
● Thread safety
● Task Parallelism
● Cache coherence, false sharing (during architecture discussion)
● Non parallelizable algorithms (during algorithm design discussion)

Course outline (Pacheco; GGKK; Quinn)

● Motivation (1;1;1)
● How to quantify performance improvement (2.6; 5; 7)
● Parallel hardware architecture (2.2-2.3; 2,4; 2)
● Parallel programming frameworks

○ Pthreads for shared memory (4; 7; -)
○ OpenMP for shared memory (5; 7.10; 17)
○ MPI for distributed memory (3; 6; 4)
○ CUDA/OpenCL for GPU,
○ Hadoop/Spark/Mapreduce for distributed systems

● Parallel program verification
● Parallel algorithm design
● Some case studies

