
Parallel System 
Performance

Jan 6, 2020



Course outline (Pacheco; GGKK; Quinn)

● Motivation (1;1;1)
● How to quantify performance improvement (2.6; 5; 7)
● Parallel hardware architecture (2.2-2.3; 2,4; 2)
● Parallel programming frameworks

○ Pthreads for shared memory (4; 7; -)
○ OpenMP for shared memory (5; 7.10; 17)
○ MPI for distributed memory (3; 6; 4)
○ CUDA/OpenCL for GPU, 
○ Hadoop/Spark/Mapreduce for distributed systems

● Parallel program verification
● Parallel algorithm design
● Some case studies 



Why is performance analysis important?
● Being able to accurately predict the performance of a parallel algorithm

○ can help decide whether to actually go to the trouble of coding and debugging it.

● Being able to analyze the execution time exhibited by a parallel program
○ Can help understand barriers to higher performance
○ Can help predict how much improvement can be realized by increasing number of processors



Well-known performance prediction formulas
● Amdahl’s Law

○ Help decide whether a program merits parallelization

● Gustafson-Barsi’s Law
○ Way to evaluate performance of a parallel program

● Karp-Flatt metric
○ Decide whether the principal barrier to speedup is the amount of inherently sequential code or 

parallel overhead

● Iso-efficiency metric
○ Way to evaluate the scalability of a parallel algorithm executing on a parallel computer. Help 

choose the design that will achieve higher performance when the number of processors 
increase.



Operations performed by a parallel algorithm
● Computations that must be performed sequentially σ(n)
● Computations that can be performed in parallel φ(n)
● Parallel overhead (communication operations and redundant computations) κ(n,p)



Operations performed by a parallel algorithm
● Computations that must be performed sequentially σ(n)
● Computations that can be performed in parallel φ(n)
● Parallel overhead (communication operations and redundant computations) κ(n,p)



Speedup and efficiency
We design and implement parallel programs in the hope that they will run faster 
than their sequential counterparts.

● Speedup = (Sequential execution time)/(Parallel execution time)

● Efficiency = Speedup/(Processors used)



Speedup and efficiency
We design and implement parallel programs in the hope that they will run faster 
than their sequential counterparts.

● Speedup = (Sequential execution time)/(Parallel execution time)

● Efficiency = Speedup/(Processors used)



Amdahl’s Law



Amdahl’s Law



Numerical Examples



Numerical Examples



Limitations of Amdahl’s Law



Limitations of Amdahl’s Law
￼



Amdahl Effect￼



Gustafson-Barsi’s Law



Gustafson-Barsi’s Law



Numerical Examples



The Karp-Flatt Metric



The Karp-Flatt Metric



Numerical Examples



Numerical Examples



Iso-efficiency metric



Iso-efficiency metric



Iso-efficiency metric



Course outline (Pacheco; GGKK; Quinn)

● Motivation (1;1;1)
● How to quantify performance improvement (2.6; 5; 7)
● Parallel hardware architecture (2.2-2.3; 2,4; 2)
● Parallel programming frameworks

○ Pthreads for shared memory (4; 7; -)
○ OpenMP for shared memory (5; 7.10; 17)
○ MPI for distributed memory (3; 6; 4)
○ CUDA/OpenCL for GPU, 
○ Hadoop/Spark/Mapreduce for distributed systems

● Parallel program verification
● Parallel algorithm design
● Some case studies 


