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Thread-Level Parallelism 

• Motivation:  
 a single thread leaves a processor under-utilized  
    for most of the time 
 by doubling processor area, single thread performance 
    barely improves 
 

• Strategies for thread-level parallelism: 
 multiple threads share the same large processor  
    reduces under-utilization, efficient resource allocation 
    Simultaneous Multi-Threading (SMT) 
 each thread executes on its own mini processor  
    simple design, low interference between threads 
    Chip Multi-Processing (CMP) or multi-core 
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How are Resources Shared? 

Each box represents an issue slot for a functional unit. Peak thruput is 4 IPC. 

Cycles 

• Superscalar processor has high under-utilization – not enough work every 
  cycle, especially when there is a cache miss 
• Fine-grained multithreading can only issue instructions from a single thread 
  in a cycle – can not find max work every cycle, but cache misses can be tolerated 
• Simultaneous multithreading can issue instructions from any thread every 
  cycle – has the highest probability of finding work for every issue slot 

Superscalar Fine-Grained 
Multithreading 

Simultaneous 
Multithreading 

Thread 1 

Thread 2 

Thread 3 

Thread 4 

Idle 
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Resource Sharing 
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R3  R1 + R4 
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Performance Implications of SMT 

• Single thread performance is likely to go down (caches, 
  branch predictors, registers, etc. are shared) – this effect 
  can be mitigated by trying to prioritize one thread 
 
• While fetching instructions, thread priority can dramatically 
  influence total throughput – a widely accepted heuristic 
  (ICOUNT): fetch such that each thread has an equal share 
  of processor resources 
 
• With eight threads in a processor with many resources, 
  SMT yields throughput improvements of roughly 2-4 
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Multi-Programmed Speedup 

• sixtrack and eon do not degrade 
  their partners (small working sets?) 
 
• swim and art degrade their 
  partners (cache contention?) 
 
• Best combination: swim & sixtrack 
  worst combination: swim & art 
 
• Static partitioning ensures low 
  interference – worst slowdown 
  is 0.9 



Multiprocs -- Memory Organization - I

• Centralized shared-memory multiprocessor   or
Symmetric shared-memory multiprocessor (SMP)

• Multiple processors connected to a single centralized
memory – since all processors see the same memory
organization  uniform memory access (UMA)

• Shared-memory because all processors can access the
entire memory address space

• Can centralized memory emerge as a bandwidth
bottleneck? – not if you have large caches and employ
fewer than a dozen processors
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SMPs or Centralized Shared-Memory
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Multiprocs -- Memory Organization - II

• For higher scalability, memory is distributed among
processors  distributed memory multiprocessors

• If one processor can directly address the memory local
to another processor, the address space is shared 
distributed shared-memory (DSM) multiprocessor

• If memories are strictly local, we need messages to
communicate data  cluster of computers or multicomputers

• Non-uniform memory architecture (NUMA) since local
memory has lower latency than remote memory
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Distributed Memory Multiprocessors
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Shared-Memory Vs. Message-Passing

Shared-memory:
• Well-understood programming model
• Communication is implicit and hardware handles protection
• Hardware-controlled caching

Message-passing:
• No cache coherence  simpler hardware
• Explicit communication  easier for the programmer to
restructure code

• Sender can initiate data transfer
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Ocean Kernel

Procedure Solve(A)
begin
diff = done = 0;
while (!done) do

diff = 0;
for i  1 to n do

for j  1 to n do
temp = A[i,j];
A[i,j]  0.2 * (A[i,j] + neighbors);
diff += abs(A[i,j] – temp);

end for
end for
if (diff < TOL) then done = 1;

end while
end procedure 
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Shared Address Space Model

int  n, nprocs;
float  **A, diff;
LOCKDEC(diff_lock);
BARDEC(bar1);

main()
begin

read(n); read(nprocs);
A  G_MALLOC();
initialize (A);
CREATE (nprocs,Solve,A);
WAIT_FOR_END (nprocs);

end main

procedure Solve(A)
int i, j, pid, done=0;
float temp, mydiff=0;
int mymin = 1 + (pid * n/procs);
int mymax = mymin + n/nprocs -1;
while (!done) do

mydiff = diff = 0;
BARRIER(bar1,nprocs);
for i  mymin to mymax

for j  1 to n do
…

endfor
endfor
LOCK(diff_lock);
diff += mydiff;
UNLOCK(diff_lock);
BARRIER (bar1, nprocs);
if (diff < TOL) then done = 1;
BARRIER (bar1, nprocs);

endwhile
11



Message Passing Model

main()
read(n); read(nprocs);
CREATE (nprocs-1, Solve);
Solve();
WAIT_FOR_END (nprocs-1);

procedure Solve()
int i, j, pid, nn = n/nprocs, done=0;
float temp, tempdiff, mydiff = 0;
myA  malloc(…)
initialize(myA);
while (!done) do

mydiff = 0;
if (pid != 0) 
SEND(&myA[1,0], n, pid-1, ROW);

if (pid != nprocs-1)
SEND(&myA[nn,0], n, pid+1, ROW);

if (pid != 0)
RECEIVE(&myA[0,0], n, pid-1, ROW);

if (pid != nprocs-1)
RECEIVE(&myA[nn+1,0], n, pid+1, ROW);

for i  1 to nn do
for j  1 to n do

…
endfor

endfor
if (pid != 0)
SEND(mydiff, 1, 0, DIFF);
RECEIVE(done, 1, 0, DONE);

else
for i  1 to nprocs-1 do

RECEIVE(tempdiff, 1, *, DIFF);
mydiff += tempdiff;

endfor
if  (mydiff < TOL)  done = 1;
for i  1 to nprocs-1  do

SEND(done, 1, I, DONE);
endfor

endif
endwhile
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Course outline (Pacheco; GGKK; Quinn)

● Motivation (1;1;1)
● How to quantify performance improvement (2.6; 5; 7)
● Parallel hardware architecture (2.2-2.3; 2,4; 2)
● Parallel programming frameworks

○ Pthreads for shared memory (4; 7; -)
○ OpenMP for shared memory (5; 7.10; 17)
○ MPI for distributed memory (3; 6; 4)
○ CUDA/OpenCL for GPU, 
○ Hadoop/Spark/Mapreduce for distributed systems

● Parallel program verification
● Parallel algorithm design
● Some case studies 


