
2

Thread-Level Parallelism

• Motivation:
 a single thread leaves a processor under-utilized
 for most of the time
 by doubling processor area, single thread performance
 barely improves

• Strategies for thread-level parallelism:
 multiple threads share the same large processor
 reduces under-utilization, efficient resource allocation
 Simultaneous Multi-Threading (SMT)
 each thread executes on its own mini processor
 simple design, low interference between threads
 Chip Multi-Processing (CMP) or multi-core

3

How are Resources Shared?

Each box represents an issue slot for a functional unit. Peak thruput is 4 IPC.

Cycles

• Superscalar processor has high under-utilization – not enough work every
 cycle, especially when there is a cache miss
• Fine-grained multithreading can only issue instructions from a single thread
 in a cycle – can not find max work every cycle, but cache misses can be tolerated
• Simultaneous multithreading can issue instructions from any thread every
 cycle – has the highest probability of finding work for every issue slot

Superscalar Fine-Grained
Multithreading

Simultaneous
Multithreading

Thread 1

Thread 2

Thread 3

Thread 4

Idle

6

Resource Sharing

R1 R1 + R2
R3 R1 + R4
R5 R1 + R3

R2 R1 + R2
R5 R1 + R2
R3 R5 + R3

P65 P1 + P2
P66 P65 + P4
P67 P65 + P66

P76 P33 + P34
P77 P33 + P76
P78 P77 + P35

P65 P1 + P2
P66 P65 + P4
P67 P65 + P66
P76 P33 + P34
P77 P33 + P76
P78 P77 + P35

FU FU FU FU

Instr Fetch

Instr Fetch

Instr Rename

Instr Rename Issue Queue

Register File

Thread-1

Thread-2

7

Performance Implications of SMT

• Single thread performance is likely to go down (caches,
 branch predictors, registers, etc. are shared) – this effect
 can be mitigated by trying to prioritize one thread

• While fetching instructions, thread priority can dramatically
 influence total throughput – a widely accepted heuristic
 (ICOUNT): fetch such that each thread has an equal share
 of processor resources

• With eight threads in a processor with many resources,
 SMT yields throughput improvements of roughly 2-4

9

Multi-Programmed Speedup

• sixtrack and eon do not degrade
 their partners (small working sets?)

• swim and art degrade their
 partners (cache contention?)

• Best combination: swim & sixtrack
 worst combination: swim & art

• Static partitioning ensures low
 interference – worst slowdown
 is 0.9

Multiprocs -- Memory Organization - I

• Centralized shared-memory multiprocessor or
Symmetric shared-memory multiprocessor (SMP)

• Multiple processors connected to a single centralized
memory – since all processors see the same memory
organization uniform memory access (UMA)

• Shared-memory because all processors can access the
entire memory address space

• Can centralized memory emerge as a bandwidth
bottleneck? – not if you have large caches and employ
fewer than a dozen processors

5

SMPs or Centralized Shared-Memory

Processor

Caches

Processor

Caches

Processor

Caches

Processor

Caches

Main Memory I/O System

6

Multiprocs -- Memory Organization - II

• For higher scalability, memory is distributed among
processors distributed memory multiprocessors

• If one processor can directly address the memory local
to another processor, the address space is shared
distributed shared-memory (DSM) multiprocessor

• If memories are strictly local, we need messages to
communicate data cluster of computers or multicomputers

• Non-uniform memory architecture (NUMA) since local
memory has lower latency than remote memory

7

Distributed Memory Multiprocessors

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Interconnection network

8

Shared-Memory Vs. Message-Passing

Shared-memory:
• Well-understood programming model
• Communication is implicit and hardware handles protection
• Hardware-controlled caching

Message-passing:
• No cache coherence simpler hardware
• Explicit communication easier for the programmer to
restructure code

• Sender can initiate data transfer

9

Ocean Kernel

Procedure Solve(A)
begin
diff = done = 0;
while (!done) do

diff = 0;
for i 1 to n do

for j 1 to n do
temp = A[i,j];
A[i,j] 0.2 * (A[i,j] + neighbors);
diff += abs(A[i,j] – temp);

end for
end for
if (diff < TOL) then done = 1;

end while
end procedure

10

Shared Address Space Model

int n, nprocs;
float **A, diff;
LOCKDEC(diff_lock);
BARDEC(bar1);

main()
begin

read(n); read(nprocs);
A G_MALLOC();
initialize (A);
CREATE (nprocs,Solve,A);
WAIT_FOR_END (nprocs);

end main

procedure Solve(A)
int i, j, pid, done=0;
float temp, mydiff=0;
int mymin = 1 + (pid * n/procs);
int mymax = mymin + n/nprocs -1;
while (!done) do

mydiff = diff = 0;
BARRIER(bar1,nprocs);
for i mymin to mymax

for j 1 to n do
…

endfor
endfor
LOCK(diff_lock);
diff += mydiff;
UNLOCK(diff_lock);
BARRIER (bar1, nprocs);
if (diff < TOL) then done = 1;
BARRIER (bar1, nprocs);

endwhile
11

Message Passing Model

main()
read(n); read(nprocs);
CREATE (nprocs-1, Solve);
Solve();
WAIT_FOR_END (nprocs-1);

procedure Solve()
int i, j, pid, nn = n/nprocs, done=0;
float temp, tempdiff, mydiff = 0;
myA malloc(…)
initialize(myA);
while (!done) do

mydiff = 0;
if (pid != 0)
SEND(&myA[1,0], n, pid-1, ROW);

if (pid != nprocs-1)
SEND(&myA[nn,0], n, pid+1, ROW);

if (pid != 0)
RECEIVE(&myA[0,0], n, pid-1, ROW);

if (pid != nprocs-1)
RECEIVE(&myA[nn+1,0], n, pid+1, ROW);

for i 1 to nn do
for j 1 to n do

…
endfor

endfor
if (pid != 0)
SEND(mydiff, 1, 0, DIFF);
RECEIVE(done, 1, 0, DONE);

else
for i 1 to nprocs-1 do

RECEIVE(tempdiff, 1, *, DIFF);
mydiff += tempdiff;

endfor
if (mydiff < TOL) done = 1;
for i 1 to nprocs-1 do

SEND(done, 1, I, DONE);
endfor

endif
endwhile

12

Course outline (Pacheco; GGKK; Quinn)

● Motivation (1;1;1)
● How to quantify performance improvement (2.6; 5; 7)
● Parallel hardware architecture (2.2-2.3; 2,4; 2)
● Parallel programming frameworks

○ Pthreads for shared memory (4; 7; -)
○ OpenMP for shared memory (5; 7.10; 17)
○ MPI for distributed memory (3; 6; 4)
○ CUDA/OpenCL for GPU,
○ Hadoop/Spark/Mapreduce for distributed systems

● Parallel program verification
● Parallel algorithm design
● Some case studies

