Flynn's Taxonomy of Computers

- Mike Flynn, "Very High-Speed Computing Systems," Proc. of IEEE, 1966
- \quad - SISD: Single instruction operates on single data element
.- SIMD: Single instruction operates on multiple data elements
- Array processor
- Vector processor
- MISD: Multiple instructions operate on single data element
- Closest form: systolic array processor, streaming processor
.- MIMD: Multiple instructions operate on multiple data elements (multiple instruction streams)
Multiprocessor
Multithreaded processor

SIMD Processing

- - Single instruction operates on multiple data elements
- In time or in space
.- Multiple processing elements
. $=$ Time-space duality
a Array processor: Instruction operates on multiple data elements at the same time
- Vector processor: Instruction operates on multiple data elements in consecutive time steps

Array vs. Vector Processors

Instruction Stream
LD VR <- A[3:0] ADD VR <- VR, 1 MUL VR <-VR, 2 ST A[3:0] <- VR

Same op @ same time

LD0	LD1	LD2	LD3
AD0	AD1	AD2	AD3
MU0	MU1	MU2	MU3
ST0	ST1	ST2	ST3

Different ops @ same space

Vector Processors

.n. A vector is a one-dimensional array of numbers

- - Many scientific/commercial programs use vectors

$$
\begin{aligned}
& \text { for }(\mathrm{i}=0 ; \mathrm{i}<=49 ; i++) \\
& C[i]=(A[i]+B[i]) / 2
\end{aligned}
$$

- A vector processor is one whose instructions operate on vectors rather than scalar (single data) values
. - Basic requirements
- Need to load/store vectors -> vector registers (contain vectors)

םם
Need to operate on vectors of different lengths -> vector length register (VLEN)

Elements of a vector might be stored apart from each other in memory -> vector stride register (VSTR)

- \quad Stride: distance between two elements of a vector

Vector Processors (II)

- A vector instruction performs an operation on each element in consecutive cycles
- Vector functional units are pipelined

Each pipeline stage operates on a different data element
. - Vector instructions allow deeper pipelines
ם
No intra-vector dependencies -> no hardware interlocking within a vector

- No control flow within a vector
- Known stride allows prefetching of vectors into cache/memory

Vector Processor Advantages

+ No dependencies within a vector
בם Pipelining, parallelization work well
- Can have very deep pipelines, no dependencies!
+ Each instruction generates a lot of work
Reduces instruction fetch bandwidth
+ Highly regular memory access pattern
Interleaving multiple banks for higher memory bandwidth
- Prefetching
+ No need to explicitly code loops
. Fewer branches in the instruction sequence

Vector Processor Disadvantages

-- Works (only) if parallelism is regular (data/SIMD parallelism) ++ Vector operations
-- Very inefficient if parallelism is irregular

To program a vector machine, the compiler or hand coder must make the data structures in the code fit nearly exactly the regular structure built into the hardware. That's hard to do in first place, and just as hard to change. One tweak, and the low-level code has to be rewritten by a very smart and dedicated programmer who knows the hardware and often the subtleties of the application area. Often the rewriting is

Vector Processor Limitations

-- Memory (bandwidth) can easily become a bottleneck, especially if

1. compute/memory operation balance is not maintained
2. data is not mapped appropriately to memory banks

Vector Registers

- Each vector data register holds N M-bit values
.. Vector control registers: VLEN, VSTR, VMASK
- Vector Mask Register (VMASK)

I Indicates which elements of vector to operate on

- Set by vector test instructions
- e.g., VMASK[i] $=\left(V_{k}[i]==0\right)$
- Maximum VLEN can be N

ב Maximum number of elements stored in a vector register

Vector Functional Units

- Use deep pipeline (=> fast clock) to execute element operations
- Simplifies control of deep pipeline because elements in vector are independent

Six stage multiply pipeline

Vector Machine Organization

. CRAY-1
.. Russell, "The CRAY-1 computer system," CACM 1978.

- - Scalar and vector modes
- 8 64-element vector registers
- $=64$ bits per element
- 16 memory banks
- 8 64-bit scalar registers
- 8 24-bit address registers

Memory Banking

. Example: 16 banks; can start one bank access per cycle
. - Bank latency: 11 cycles

- Can sustain 16 parallel accesses if they go to different banks

Vector Memory System

Scalar Code Example

- For I = 0 to 49
- $C[i]=(A[i]+B[i]) / 2$
- Scalar code

MOVI RO $=50 \quad 1$
MOVA R1 = A 1
MOVA R2 $=$ B $\quad 1$
MOVA R3 = C $\quad 1$
X: LD R4 = MEM[R1++] 11 ;autoincrement addressing
LD R5 $=$ MEM[R2++] 11
ADD R6 = R4 + R5 4
SHFR R7 = R6 >> $1 \quad 1$
ST MEM[R3++] = R7 11
DECBNZ --RO, X
2 ;decrement and branch if NZ

Scalar Code Execution Time

- - Scalar execution time on an in-order processor with 1 bank
- First two loads in the loop cannot be pipelined: 2*11 cycles
- $4+50 * 40=2004$ cycles
- - Scalar execution time on an in-order processor with 16 banks (word-interleaved)
- First two loads in the loop can be pipelined
- $4+50 * 30=1504$ cycles
- Why 16 banks?
- 11 cycle memory access latency
- Having 16 (>11) banks ensures there are enough banks to overlap enough memory operations to cover memory latency

Vectorizable Loops

- - A loop is vectorizable if each iteration is independent of any other
- For $\mathrm{I}=0$ to 49
a $C[i]=(A[i]+B[i]) / 2 \quad 7$ dynamic instructions
- Vectorized loop: MOVI VLEN $=50 \quad 1$
MOVI VSTR = $1 \quad 1$
VLD V0 = A $\quad 11+$ VLN - 1
VLD V1 = B $\quad 11+\mathrm{VLN}-1$
VADD V2 = V0 + V1
VSHFR V3 = V2 >> 1
$4+$ VLN -1

VST $\mathrm{C}=\mathrm{V} 3$
$1+\mathrm{VLN}-1$
$11+$ VLN -1

Vector Code Performance

- No chaining
i.e., output of a vector functional unit cannot be used as the input of another (i.e., no vector data forwarding)
- One memory port (one address generator)
- 16 memory banks (word-interleaved)

- 285 cycles

Vector Chaining

- Vector chaining: Data forwarding from one vector functional unit to another

Vector Code Performance - Chaining

- Vector chaining: Data forwarding from one vector functional unit to another

These two VLDs cannot be pipelined. WHY?

182 cycles
VLD and VST cannot be pipelined. WHY?

Strict assumption: Each memory bank has a single port (memory bandwidth bottleneck)

Vector Code Performance - Multiple Memory Ports

- Chaining and 2 load ports, 1 store port in each bank

79 cycles

Questions (I)

. - What if \# data elements > \# elements in a vector register?
ם Need to break loops so that each iteration operates on \# elements in a vector register

- E.g., 527 data elements, 64-element VREGs
- 8 iterations where VLEN $=64$
- 1 iteration where VLEN = 15 (need to change value of VLEN)

ב Called vector stripmining
. \quad What if vector data is not stored in a strided fashion in memory? (irregular memory access to a vector)
U Use indirection to combine elements into vector registers

- Called scatter/gather operations

Gather/Scatter Operations

Want to vectorize loops with indirect accesses:

```
for (i=0; i<N; i++)
    A[i] = B[i] + C[D[i]]
```

Indexed load instruction (Gather)

```
LV vD, rD # Load indices in D vector
LVI vC, rC, vD # Load indirect from rC base
LV vB, rB # Load B vector
ADDV.D vA,vB,vC # Do add
SV vA, rA # Store result
```


Conditional Operations in a Loop

- What if some operations should not be executed on a vector (based on a dynamically-determined condition)?

```
loop: if (a[i] != 0) then b[i]=a[i]*b[i]
    goto loop
```

n- Idea: Masked operations

- VMASK register is a bit mask determining which data element should not be acted upon
VLD V0 = A
VLD V1 = B
VMASK = (VO != 0)
VMUL V1 = V0 * V1
VST $\mathrm{B}=\mathrm{V} 1$

Another Example with Masking

$$
\begin{aligned}
& \text { for }(\mathrm{i}=0 ; \mathrm{i}<64 ;++\mathrm{i}) \\
& \quad \text { if }(a[i]>=b[i]) \text { then } c[i]=a[i] \\
& \quad \text { else } c[i]=b[i]
\end{aligned}
$$

A	B	VMASK
1	2	0
2	2	1
3	2	1
4	10	0
-5	-4	0
0	-3	1
6	5	1
-7	-8	1

Steps to execute loop

1. Compare A, B to get VMASK
2. Masked store of A into C
3. Complement VMASK
4. Masked store of B into C

Masked Vector Instructions

Simple Implementation

- execute all N operations, turn off result writeback according to mask

Density-Time Implementation

- scan mask vector and only execute elements with non-zero masks

Some Issues

- - Stride and banking
${ }_{\square}$ As long as they are relatively prime to each other and there are enough banks to cover bank access latency, consecutive accesses proceed in parallel
- - Storage of a matrix
a Row major: Consecutive elements in a row are laid out consecutively in memory
a Column major: Consecutive elements in a column are laid out consecutively in memory
ou You need to change the stride when accessing a row versus column

Matrix multiplication
A \& B, both in raw major order

Ar. | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | 1 | 2 | 3 | 4 | 5 |
| 6 | 7 | 8 | 9 | 10 | 11 |
| | | | | | |

$\int^{B_{0}}$| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 88 | 19 |
| 20 | | | | | | | | | |
| 30 | | | | | | | | | |
| 40 | | | | | | | | | |
| 50 | | | | | | | | | |

$A_{8 \times 6} B_{8 \times 10} \rightarrow C_{4 \times 10}$ (dot products of rows fecoins of $A \& B$)
A: Load Aomto a vector roister V1
\rightarrow each time you need to moromest the address by 1 to access the nest chums
\rightarrow First matrix accesses have 0 stride of 1
B: 4 cad Bo mite a vectervegrster va
\rightarrow econ the we reed to movement by 10
\rightarrow stride of 10

Different strides con lead to bonk confleds.
\rightarrow How do you mismizie tram?

Array vs. Vector Processors, Revisited

- Array vs. vector processor distinction is a "purist's" distinction
- Most "modern" SIMD processors are a combination of both
a They exploit data parallelism in both time and space

Array vs. Vector

Processors

Instruction Stream
LD VR <- A[3:0] ADD VR <- VR, 1 MUL VR <-VR, 2 ST A[3:0] <- VR

Same op @ same time

LD0	LD1	LD2	LD3
AD0	AD1	AD2	AD3
MU0	MU1	MU2	MU3
ST0	ST1	ST2	ST3

Different ops @ same space

Vector Instruction

Execution adDvc,A,B

Vector Instruction Level Parallelism

Can overlap execution of multiple vector instructions
a example machine has 32 elements per vector register and 8 lanes
Complete 24 operations/cycle while issuing 1 short instruction/cycle

Automatic Code Vectorization

$$
\begin{aligned}
\text { for } & (i=0 ; i<N ; i++) \\
& C[i]=A[i]+B[i] ;
\end{aligned}
$$

Scalar Sequential Code

Vectorization is a compile-time reordering of operation sequencing
\Rightarrow requires extensive loop dependence analysis

Vector/SIMD Processing Summary

- Vector/SIMD machines good at exploiting regular data-level parallelism
- Same operation performed on many data elements

ם Improve performance, simplify design (no intra-vector dependencies)

- - Performance improvement limited by vectorizability of code
- Scalar operations limit vector machine performance
a Amdahl's Law
CRAY-1 was the fastest SCALAR machine at its time!
- Many existing ISAs include (vector-like) SIMD operations Intel MMX/SSEn/AVX, PowerPC AltiVec, ARM Advanced SIMD

MMX Example: Image Overlaying (I)

Figure 8. Chroma keying: image overlay using a background color.

Figure 9. Generating the selection bit mask.

