Tree Contraction

More of parallel pointer manipulation

Euler Tour Technique Recap

Circular adjacency lists with twin pointers

Find Euler tour

Every node v fixes an arbitrary ordering among its adjacent nodes:

 $u_0, u_1, \ldots, u_{d-1}$

We obtain an Euler tour by setting

 $\operatorname{succ}((u_i, v)) = (v, u_{(i+1) \mod d})$

Each node's parent in "rooted" tree using Euler circuit

Take the Enler circuit break the circuit by deleting one incoming edge of U Now the ckt has become a list Ramk the list Use the ramks?

Rooting a tree

- split the Euler tour at node r
- this gives a list on the set of directed edges (Euler path)
- assign x[e] = 1 for every edge;
- perform parallel prefix; let $s[\cdot]$ be the result array
- if s[(u, v)] < s[(v, u)] then u is parent of v;

Each node's level in "rooted" tree using Euler circuit

The levels of the hodes of T (T is voted at vertex b) level (v) = 0 brel (w) = 1 where w is achild g level (w) = 2 - 11 is a grand-child of U

15 11 78 17 93 5 56 12 27 32 6 U=7 6 10 13 75 1 24 7 Compare 10 6 14 52 2 42 8 [i,j] 6515233259 With [j,i] 57 16 39 4 51 10 if rank [i,j] < rank [j,i] i=p() $5-1 \quad 52 \quad 12 \quad 51 \quad .1 \quad 2 \quad for \\ 2-2 \quad 39 \quad 14 \quad 56 \quad 12 \quad edges: 1 \\ 6-2 \quad 93 \quad -13 \quad 610 \quad 13 \quad edges: 1 \\ 32 \quad -12 \quad 10 \quad 6-12 \quad edges: 1 -1 \\ 32 \quad -12 \quad 10 \quad 6-12 \quad edges: 1 -1 \\ 34 \quad -13 \quad -13 \quad 610 \quad 13 \quad edges: 1 -1 \\ 34 \quad -13 \quad -13 \quad -13 \quad -13 \quad -13 \\ -13 \quad -13 \quad -13 \quad -13 \quad -13 \quad -13 \\ -13 \quad -13 \quad -13 \quad -13 \quad -13 \quad -13 \\ -13 \quad -13 \quad -13 \quad -13 \quad -13 \quad -13 \\ -13 \quad -13 \quad -13 \quad -13 \quad -13 \quad -13 \\ -13 \quad -13 \quad -13 \quad -13 \quad -13 \quad -13 \\ -13 \quad -13 \quad -13 \quad -13 \quad -13 \quad -13 \\ -13 \quad -13 \quad -13 \quad -13 \quad -13 \quad -13 \\ -13 \quad -13 \quad -13 \quad -13 \quad -13 \quad -13 \\ -13 \quad -13 \quad -13 \quad -13 \quad -13 \quad -13 \\ -13 \quad -13 \quad -13 \quad -13 \quad -13 \quad -13 \\ -13 \quad -13 \quad -13 \quad -13 \quad -13 \quad -13 \\ -13 \quad -13 \quad -13 \quad -13 \quad -13 \quad -13 \\ -13 \quad -13 \quad -13 \quad -13 \quad -13 \quad -13 \\ -13 \quad -13 \quad -13 \quad -13 \quad -13 \quad -13 \\ -13 \quad -13 \quad -13 \quad -13 \quad -13 \quad -13 \quad -13 \\ -13 \quad -13 \quad -13 \quad -13 \quad -13 \quad -13 \quad -13 \\ -13 \quad -13 \quad$ 15-11 24 13 57-10 42 -12 18 11

Level of nodes

- split the Euler tour at node r
- this gives a list on the set of directed edges (Euler path)
- assign x[e] = -1 for every edge (v, parent(v))
- ▶ assign x[e] = 1 for every edge (parent(v), v)
- perform parallel prefix
- $\operatorname{level}(v) = s[(\operatorname{parent}(v), v)]; \operatorname{level}(r) = 0$

Postorder Numbering

- split the Euler tour at node r
- this gives a list on the set of directed edges (Euler path)
- assign x[e] = 1 for every edge (v, parent(v))
- assign x[e] = 0 for every edge (parent(v), v)
- perform parallel prefix
- post(v) = s[(v, parent(v))]; post(r) = n

Number of descendants

- split the Euler tour at node r
- this gives a list on the set of directed edges (Euler path)
- ▶ assign x[e] = 0 for every edge (parent(v), v)
- ▶ assign x[e] = 1 for every edge $(v, parent(v)), v \neq r$
- perform parallel prefix
- size(v) = s[(v, parent(v))] s[(parent(v), v)]

Tree Contraction: SHUNT

Comprises

- An operation of node removal called RAKE
- An operation of pointer jumping called COMPRESS
- Euler tour and prefix sum (to decide which nodes to RAKE and COMPRESS)

RAKE: removing leaves

RAKE alone not sufficient for parallel tree contraction

- If the tree is thin and tall, and therefore the height of the tree is linear, rather than logarithmic (the worst case is just a linked list), RAKE cannot be applied in parallel.
- (2) RAKE itself tends to linearize the original tree.

COMPRESS: Pointer jumping

COMPRESS: Pointer jumping

- (1) COMPRESS and RAKE can be applied in parallel to disjoint parts of the tree.
- (2) COMPRESS produces leaves for RAKE and RAKE produces linear lists for COMPRESS.

Basic contraction algorithm

Input:	$P[1,\ldots,n];$ /* $P[x]$ is a pointer to the parent of x */
	$children[1,\ldots,n];$ /* $children[v] = \{v_1,\ldots,v_k\}$ – pointers to all children */
	$index[1,\ldots,n];$ /* $index[v_i] = i$ - each child v knows its index in $children[P[v]]$ */
Auxil:	$label[1,, n]; /* label[v] = \{f_1,, f_k\}, where f_i \in \{U, M\} */$
	/* $f_i = M$ = marked iff a child supplied its value to its parent */
	UnMarkChil(x) returns int; /* function returning the # of unmarked children */
Output:	the value accumulated in the root

```
/* initialize the data structures */
for all nodes v \in T do_in_parallel initialize(v);
while UnMarkChil(root) > 0 do
    { for all nodes v \in T do_in_parallel
        if P[v] \neq nil then
        { case UnMarkChil[v] of
            0: { Rake(v); label[P[v]][index[v]] := M; P[v] := nil; }
            1: if UnMarkChil[P[v]] = 1 then { Compress(v); P[v] := P[P[v]]; }
        endcase }};
Rake(root);
```

Further reduce linearity of tree during contraction

- Contraction should not produce linear chains
- A chain is produced when a tree contains a binary subtree, where each internal vertex has a child that is a leaf and one that is not.
- After a parallel RAKE on all leaves, such a subtree becomes a linear list
- If RAKE and COMPRESS is always applied simultaneously, i.e. every individual RAKE operation is followed immediately by COMPRESS of its sibling, chains cannot be formed
- This combined operation is called SHUNT

SHUNT: leaf RAKE with sibling COMPRESS

Given a binary tree T.

Given a leaf $u \in T$ with $p(u) \neq r$ the rake-operation does the following

- remove u and p(u)
- attach sibling of u to p(p(u))

SHUNT: leaf RAKE with sibling COMPRESS

Given a binary tree T.

Given a leaf $u \in T$ with $p(u) \neq r$ the rake-operation does the following

- remove u and p(u)
- attach sibling of u to p(p(u))

SHUNT conditions

Cannot be applied to two siblings simultaneously (non-deterministic output)

Cannot be applied to two consecutive odd leaves (tree becomes disconnected, needs concurrent write)

Cannot be applied to two consecutive leaves (tree becomes disconnected)

The goal, the input tree and the algorithm

shrnikning of a tree to a single vertex by repeated rake ofs and one final reduction of a tree of the form &

The goal, the input tree and the algorithm

shrnikning of a tree to a single vertex by repeated rake ofs and one final reduction of a tree of the form &

T s.t T is a vooted binary tree each vootex nonleaf has exactly 2 children. each vortex has \$(.) s(.)

The goal, the input tree and the algorithm

shruiking of a tree to a single Add: the seq. of the odd elements in A 1. Get the adjacency list repr of T vertex by repeated rake ofs 2. Find an Euler ckt Aeven : _____ even and one final reduction of 3. Break the ckt open by deleting an incoming edge of r a tree of the form of abcdef|x|x|x 4. Find a provider traversal 5. Copy the traversal into an for [log (n+1)] iterations T s.t T is a vooted binary tree array - apply rake on all A.d. elements each voitex nonleaf has exactly 6. Mark all the leaf nodes that are left children 7. Compact the leab hodes. 2 children. - apply rake on the remaining Now the leaves are in a L to R each vertex has $p(\cdot)$ s(.) elements of Astd. order. Let Aduate the away of leaves - A = Aeven

Why choose to RAKE in this order?

We want to apply rake operations to a binary tree T until T just consists of the root with two children.

Possible Problems:

- we could concurrently apply the rake-operation to two siblings
- 2. we could concurrently apply the rake-operation to two leaves u and v such that p(u) and p(v) are connected

By choosing leaves carefully we ensure that none of the above cases occurs

Observations on the algorithm

- the rake operation does not change the order of leaves
- two leaves that are siblings do not perform a rake operation in the same round because one is even and one odd at the start of the round
- two leaves that have adjacent parents either have different parity (even/odd) or they differ in the type of child (left/right)

Runtime

Algorithm:

- label leaves consecutively from left to right (excluding left-most and right-most leaf), and store them in an array A
- for $\lceil \log(n+1) \rceil$ iterations
 - apply rake to all odd leaves that are left children
 - apply rake operation to remaining odd leaves (odd at start of round!!!)
 - A=even leaves

Runtime

Algorithm:

- Iabel leaves consecutively from left to right (excluding left-most and right-most leaf), and store them in an array A
- for $\lceil \log(n+1) \rceil$ iterations
 - apply rake to all odd leaves that are left children
 - apply rake operation to remaining odd leaves (odd at start of round!!!)
 - A=even leaves

- one iteration can be performed in constant time with O(|A|) processors, where A is the array of leaves;
- hence, all iterations can be performed in O(log n) time and O(n) work;
- the initial parallel prefix also requires time O(log n) and work O(n)

Application of tree contraction: expression evaluation

Expression tree internal modes with operations {+, x} leaf nodes have integer evaluate the root

Arithmetic expression x + values are integers $(4+3) \times ((4 \times 5) + 6)$ expression tree

Application of tree contraction: expression evaluation

Expression tree internal nodes with operations {+, x} leaf nodes have integer evaluate the root

Arithmetic expression X + values are integers $(4+3) \underline{x} ((4 \times 5) + 6)$ expression tree

An expression tree can be evaluated bottom up. Parallel? Balanced? efficient Not Balanced: O(depth).

Depth could be O(m) When n is the size of the tree O(n) time will not do

Maintaining expression values in nodes

- We do not completely evaluate each internal node. We evaluate the internal nodes partially.
- For each internal node v, we associate a label (a_v, b_v). a_v and b_v are constants.
- The value of the expression at node is:
 (a_v X + b_v), where X is an unknown value for the expression of the subtree rooted at v.

Invariant:

- Let *u* be an internal node which holds the operation ⊕ ∈ {+, ×}.
- Let v and w are the children of u with labels
 (a_v, b_v) and (a_w, b_w).
- Then the value at *u* is:

 $val(u) = (a_v val(v) + b_v) \oplus (a_w val(w) + b_w)$

Propagating values while shunting

- The value at node *u* is: $val(u) = (a_v c_v + b_v) \times (a_w X + b_w)$
- X is the unknown value at node w.
- The contribution of *val(u)* to the value of node
 p(u) is:

 $a_u \times val(u) + b_u = a_u[(a_vc_v + b_v) \times (a_wX + b_w)] + b_u$

- We can adjust the labels of node w to (a'w, b'w)
- $a'_{w} = a_{u}(a_{v}c_{v} + b_{v}) a_{w}$
- $b'_{w} = a_{u}(a_{v}c_{v} + b_{v}) b_{w} + b_{u}$

Example run through

(1*2+0) + (-5*1+0) = (1*-5+2)(1,2)

Example run through

Example run through

Parallel algorithmic techniques

- Divide and conquer (mergesort, parallel sum and other reductions, prefix-sum)
- Parallel pointer manipulation
 - Pointer jumping
 - Euler tour
 - Graph contraction (Tree contraction with rake, compress (pointer jumping), shunt)
 - Ear decomposition
- Randomization
 - Sampling
 - Symmetry breaking
 - Load balancing