Tree Contraction

More of parallel pointer manipulation

Euler Tour Technique
Recap

Circular adjacency lists with twin pointers

e

CRETCEE BB
¥

B
CRE 4-}»{ ECHE TC

/

RN

-

AR ENE
N J
N Sy
\ 2% b
N ~
S N
N
N ~

9»@

:
%

i

@
?f
O

Find Euler tour

Every node v fixes an arbitrary ordering among its adjacent
nodes:

We obtain an Euler tour by setting

succ((ui, v)) = (V,UG+1) mod d)

&)

N\

©
J
o—p—df
\
O—0 ®

4

O)

Each node’s parent in “rooted” tree using Euler circuit

Toho o Buler Gvomidt 0 i
VRN Gyt ’WAJ&W? /
oy dg}% 0 O—9 { ®

Now s ckt oy e a fict éo) Qo
Ramk the Dict |
Uwﬁmﬂi‘? L2 ARV PR TR

Ch o _2# Y. b —d
(B 151 247 AR
bl y s22 o o ["JJ
LEB 233 0f T uly [J',i]
vTh 3 S b i ()]
7 <amk (1]

fg/ s Fg)

Application 1

Rooting a tree
» split the Euler tour at node 7
» this gives a list on the set of directed edges (Euler path)
» assign x[e] = 1 for every edge;
» perform parallel prefix; let s[-] be the result array

» if s[(u,v)] <s[(v,u)] then u is parent of v;

Each node’s level in “rooted” tree using Euler circuit

iy 10 9 5 :
The Juedc f A nodec & T db o wd =
(T i Mroj\xd 4 \m\f{x U) (o 751 24 7 Cwowz
bdwy 22 e [L]
/{m./l (U> 0 i } acklo{% Lf 5 23 3 25 1 Wt [j'n’]
Al (u) = 1 W ASEG B
| - <vamk (3]
v (W) = = R e ¢ e {
hild 4 v L A
75 | | Z L
2 - Mtlt;- \
o= gL} ; : g =t 1] hsC:L\A‘(A
&= 39 | 4 5l - {4\9/ }
. _— Chald parg
= Q3 3 | OL I (7(=
i o 2 b =
b |2 £ 5 = |

Application 2

Level of nodes
» split the Euler tour at node 7
» this gives a list on the set of directed edges (Euler path)
» assign x[e] = —1 for every edge (v, parent(v))
» assign x[e] = 1 for every edge (parent(v),v)
» perform parallel prefix

» level(v) = s[(parent(v),v)]; level() =0

Application 3

Postorder Numbering
» split the Euler tour at node r
» this gives a list on the set of directed edges (Euler path)
» assign x[e] = 1 for every edge (v, parent(v))
» assign x[e] = 0 for every edge (parent(v),v)
» perform parallel prefix

» post(v) = s[(v,parent(v))]; post(r) =n

Application 4

Number of descendants
» split the Euler tour at node
» this gives a list on the set of directed edges (Euler path)
» assign x[e] = O for every edge (parent(v),v)
» assign x[e] =1 for every edge (v,parent(v)), v # v
» perform parallel prefix

» size(v) = s[(v, parent(v))] — s[(parent(v),v)]

Tree Contraction: SHUNT

Comprises
e An operation of node removal called RAKE

e An operation of pointer jumping called COMPRESS

e FEuler tour and prefix sum (to decide which nodes to RAKE
and COMPRESS)

RAKE: removing leaves

RAKE alone not sufficient for parallel tree contraction

(1) If the tree is thin and tall, and therefore the
height of the tree is linear, rather than
logarithmic (the worst case is just a linked list),
RAKE cannot be applied in parallel.

(2) RAKE itself tends to linearize the original tree.

COMPRESS: Pointer jumping

COMPRESS: Pointer jumping

(1) COMPRESS and RAKE can be applied in
parallel to disjoint parts of the tree.

(2) COMPRESS produces leaves for RAKE and
RAKE produces linear lists for COMPRESS.

Basic contraction algorithm

Input: P[1,...,n]; /* P[z] is a pointer to the parent of z */

children[l,...,n]; /* children[v] = {v1,...,vx} — pointers to all children */

indez[l,...,n|; /* indezx[v;] = i — each child v knows its index in children[P[v]] */
Auxil: label[l,...,n]; /* label[v] = {f1,..., fr}, where f; € {U,M} */

/* fi = M = marked iff a child supplied its value to its parent */

UnMarkChil(z) returns int; /* function returning the # of unmarked children */
Output: the value accumulated in the root

/* initialize the data structures */
for all nodes v € T do_in_parallel initialize(v);
while UnMarkChil(root) > 0 do
{ for all nodes v € T' do_in_parallel
if P[v] # nil then
{ case UnMarkChil[v] of
0: { Rake(v); label[P[v]]|[indezx[v]] := M; P[v] := nil; }
1: if UnMarkChil[P[v]] = 1 then { Compress(v); P[v] := P[P[v]]; }
endcase }};

Rake(root);

Further reduce linearity of tree during contraction

e Contraction should not produce linear chains

e Achain is produced when a tree contains a binary subtree, where each
internal vertex has a child that is a leaf and one that is not.

e After a parallel RAKE on all leaves, such a subtree becomes a linear list

e If RAKE and COMPRESS is always applied simultaneously, i.e. every
individual RAKE operation is followed immediately by COMPRESS of its
sibling, chains cannot be formed

e This combined operation is called SHUNT

SHUNT: leaf RAKE with sibling COMPRESS

Given a binary tree T.

Given a leaf u € T with p(u) # v the rake-operation does the
following

» remove u and p(u)

» attach sibling of u to p(p(u))

SHUNT: leaf RAKE with sibling COMPRESS

Given a binary tree T.

Given a leaf u € T with p(u) # v the rake-operation does the
following

» remove u and p(u)

» attach sibling of u to p(p(u))

DIRCECD)
p(b p))) /Z\’\/
[0 U ; §[/uf;

SHUNT conditions

()
Cannot be applied to two siblings simultaneously /\ a -
(non-deterministic output) O &

Cannot be applied to two consecutive leaves
(tree becomes disconnected)

© €2 ® @

Cannot be applied to two consecutive odd leaves (tree
becomes disconnected, needs concurrent write)

The goal, the input tree and the algorithm

p - o « e 1 el
g/t/”\,h/f v J(J:V A vj/ 0 kl & Yl n A \nu J’/'L,_

TR 0
Ilv.“f ﬂ:,t(X L‘}‘ Vquﬂ:t)ka “Lﬁu‘(i ‘('," S
()

| SR
’f')'u%"-..d om ’T‘ X Nedm ¢ gy (:

s d h (P
A lu‘ Vs Jf\‘ t“/"‘l\ ATy X
vV /

The goal, the input tree and the algorithm

Q/E“*‘iow' &ﬁ»,‘fué\yﬁ%ﬁ
Wi \ﬁ, b %
'ﬁ’ﬁj” Lq %FUIM‘ Yk, J"‘

WMA fns "F\M)Q /“ughxcf./\m 5&

& r
A L"LU d“ ﬂ'\k »J"\?yww

| | /K\

d o

| ST +
T g’t [1§ A W‘C/t»d /)J‘: P'W”M? ‘fuj\
tanch Toibs V‘MM ok Lx«:*lw
/]
2 childnan
&(/‘V\ A X ‘/'M T‘\ /:

:
$(-)
/

The goal, the input tree and the algorithm

G(JAW k& /\9\‘% l. Ge{ﬁuwhuwﬁﬂsfﬁ!&u Aw:/hM(%_,ETmOM
4 x %W%d}s 5. Find an Euler ckt elemmt ¢ m A
i v %\MQ MJMC(&M 56 s %w\k ’hu ckt UPW L\zﬂile{’\ﬂ?m Aew\ ‘ L
ah“ﬁﬁuq@w«/% (A(,o;wjfz},g;o%r S
q-wﬂpum@&mmﬂ rxtx\K
T st Tisa wbd /{n‘ku(}tq_u > C”Wmm” b s for [fog (n)] #birakions
}A(,L\ ok V\M\M Ao Lx»xcﬂy 6. Mmk Al th ‘0\.% Mg _% vake o gl A, eloments
9 hiddnan . Qm{m{ A ey o & Jck;}imhw ;LjU/\m |
: Now f leavtsau wa (&R — Appley ks O KA
&&CL\ U"(/\%X LV\A T< MALY‘ LQ{: Ap{motkk c‘gmﬂvkg A’é A“‘H

)
S() 4““’7‘6 !%WS - AiAevw\

Example run

17
12 e 14 rake 3
BNy B gy S
® e o .
: 13- ' ;
w ® “«
1 10 11 16 8
EY -
d od
4 56
A 451357}
17
-
il T rake 2.6
8.. - —————
s o
4 16
rake 4
.17
[3 .

Why choose to RAKE in this order?

We want to apply rake operations to a binary tree T until T just
consists of the root with two children.

Possible Problems:

1. we could concurrently apply the rake-operation to two
siblings

2. we could concurrently apply the rake-operation to two
leaves u and v such that p(u) and p(v) are connected

By choosing leaves carefully we ensure that none of the above
cases occurs

Observations on the algorithm

» the rake operation does not change the order of leaves

» two leaves that are siblings do not perform a rake operation
in the same round because one is even and one odd at the
start of the round

» two leaves that have adjacent parents either have different
parity (even/odd) or they differ in the type of child
(left/right)

O/p(@@\@ @/ofOO\@

<o @5’@;};&

Runtime

Algorithm:

» label leaves consecutively from left to right (excluding
left-most and right-most leaf), and store them in an array A

» for [log(n + 1)] iterations

» apply rake to all odd leaves that are left children

» apply rake operation to remaining odd leaves (odd at start
of round!!!)

» A=even leaves

Runtime

Algorithm:

» label leaves consecutively from left to right (excluding
left-most and right-most leaf), and store them in an array A

» for [log(n + 1)] iterations

» apply rake to all odd leaves that are left children
» apply rake operation to remaining odd leaves (odd at start
of round!!!)

> =
A=even |eaves » one iteration can be performed in constant time with O(|A|)

processors, where A is the array of leaves;

» hence, all iterations can be performed in @ (logn) time and
O(n) work;

» the intial parallel prefix also requires time @ (logn) and
work O(n)

Application of tree contraction: expression evaluation

) B o S] A | , P 3
SR P il Anthme HC 2xhu i LT
J . | f ‘ [¢
A J LM A)g "'i ! ¥ [%- @Jiu i AL g | JL.?l YsS
- 1 , ‘ ’
VitV (b 4 2) X | 1“\~ X 5|t ¢ X
v \ /= \ //4_/—/ // \\ 20
[6.- / \J» .-'5. alJl [+ -
AAX V‘Jr“ Ural AN Y " J‘. I\ S .
v / 2xjussom e N ¢ \>)
o d L e & 3 Dx
Ia s /U ! A 1 /
f S L ¥

Application of tree contraction: expression evaluation

Ex Flu ($yom Vg Avthme He axbhesaion 6 1
) \ - b l _ / \‘/\\.\
ﬂv"v"_,"lkl.;"]‘/U&)L fw_,n}g{(g L.“A‘ 'I‘.v x ’1- \[D\pwg s I [L?l ' S 12]

¢

opoudams g +, X (443)x (@x9 Y o £ e

: - S) (1) @¢) (X4
Tl wodic At anitalit 1% 1 TR
Jonf wadss A g whe B\ S
1 - : M 4 3 Dy ¢ C) () &) @
/(: |\,'.,,,Ub‘,. J._,‘I{J "{l‘d L:/?T}‘_ ‘/ \ \ :/ .. ‘v\,a ’ Y :
§ 5 C:‘ l\ ﬂl '\t—' Wa ‘)"’::,"’-*l'.',',',i'l_L
/ L 7

Mr, et T G bt Doyt tadd b 00
bl el b an i i 4 b

: /K\ M

/\7_ WH 'V\o't db

Maintaining expression values in nodes

« We do not completely evaluate each Invariant:
internal node. We evaluate the internal « Let v be an internal node which holds the
nodes partially. operation ® e {+, x}.

* For each internal node v, we associate a « Let vand w are the children of v with labels
label (a,, b,). a, and b, are constants. (a,, b,) and (a,, b,).

« The value of the expression at node is: « Then the value at v is:
(a,X+ b,), where X is an unknown value for val(u) = (aval(v) + b)) ® (a,val(w) + b,)

the expression of the subtree rooted at v.

u

u\'-b{' v W) GO/

Propagating values while shunting

plu)

v
3 w

-
;s) . ? \
+ (3 by

 The value at node u is:
val(u) = (a,c, + b,) x (a,X +b,)

* X is the unknown value at node w.

The contribution of val(u) to the value of node
p(u) is:
a,xvallu)+b,=a,(ac,+b,)*x(a,X+b,)] + b,
We can adjust the labels of node wto (a,,
)

Aac, +b)a,

b
a,=a
b, =a/ac,+b)b,*b,

Example run through

(1.0) (1,0
¥ +)
Q.00+ 2000 1.0 20
a0+ 2 a0 2
(1,0) p—- ' (1,0)
(1,0)(* +) (1,0 1.0+ 3
\ (1.2)
an® @ 2 O F Q2
‘ (10) (1.0) (1,0) N (1.0)
@ @ 4 G
(1,0) (1.0 1.0) Q.0

(1¥2+0) = (-5*1+0)=(1* -5+ 2)
(1.2)

Example run through

(1.0)
+

(1,0(s) 20

L
(1,0) .=/ 2
(1,0)

(1.0)(* 3
(1.2)
L0
4 (5
(1.0) (1.0)

(1,0)

CO®H

| (1,0)
(1.0(* >}
(1,2)

gy
(1.5) (10

Q*1+0)* (1*X+0)=(2*X+0) —=(2,0)
(4*1+0) + (5*1 +0) = (4*1 +5) —==—(1,3)

Example run through

(1,0) (1.0)
+ -
(1,0 - (1,0)
(1,0)(* <3 o

' (1,2) 4 £

.10 (1.2
4 2
(1.5) (1.0

1*((4*1+35)*Q*1+0)=18=(4*2+10) —=(2,10)

(1.0)
S ap—
- 20
@, 14) (1.0)

2%(4*2+10)+(-5*1+2)=30=(4* 4+ 14) —=4, 19)

Parallel algorithmic techniques

e Divide and conquer (mergesort, parallel sum and other reductions,
prefix-sum)
e Parallel pointer manipulation
m Pointer jumping
m Euler tour
m Graph contraction (Tree contraction with rake, compress (pointer jumping), shunt)
m Ear decomposition
e Randomization
m Sampling
m Symmetry breaking
m Load balancing

