Topic

Introduction

[Performance] The only reason for
parallelism

[Opportunities for
parallelism/concurrency] Architecture,
compiler and OS support

[Writing parallel programs] C/C++
programming with compiler and library
support

[Probelms faced in
parallelism/concurrency] Ensuring
program correctness, correctness-vs-
performance trade-offs

[Parallel program design] Algorithms
and data structures

Case studies

Supplementary Notes

lecl.pdf

Quanitifying performance improvements
analytically lec2_1.pdf, lec2_2.pdf
lec3.pdf

i. Data level parallelism with SIMD,
Vector processors lec5.pdf,

ii. Instruction Level Parallelism with
compiler support lec6.pdf,

ii. Thread and process level parallelism
with shared and distributed memory
address space multi-processors lec7.pdf,
iv. Interconnection networks lec11.pdf

i. OpenMP Shared memory parallel
programming lec4.pdf,

ii. MP1 Message Passing parallel
programing lec8.pdf, lec12.pdf

i. Coherence: Cache coherence and false
sharing lec9_lec10.pdf,

ii. Synchronization: Locks, barriers,
transactional memory lec13.pdf, lec14.pdf,
lec15.pdf,

ii. Consistency: Memory consistency
models

iv. Fault Tolerance Additional issue of
distributed systems

Book Chapters

Pacheco, GGKK,
Quinn Chapter 1

Pacheco Chapter 2.6,
GGKK Chapter 5,
Quinn Chapter 7

Pacheco Chapter 2.2-
2.3, GGKK Chapter 2,
4, Quinn Chapter 2

Pacheco Chapter 5,
GGKK Chapter 7.10,
Quinn Chapter 17,
Pacheco Chapter 3,
GGKK Chapter 6,
Quinn Chapter 4

Hennessy 3.1-3.2,
4.1-43,5.1-54




What extra things are happening in parallel
programs compared to sequential programs?

®¢ Two or more threads change the same variable. We need to
enforce mutual exclusion.

® Read-compare-store or other code listings, expected to be
atomic, might not be so. We need to enforce atomicity.

® What about order of operations? Can there be

non-intuitive instruction interleaving?

We need to understand these possible issues to reduce programming bugs.
Bugs might be hard to reproduce and therefore harder to debug.



Sequential code: possibility of compiler reordering

X = flag 1
flagl =1
1if(flag2 == 0)

printf (“flag2 is 0”)



Parallel code: what outputs can a programmer expect?

P1l: P2:
flagl =1 flag2 =1
1f(flag2 == 0) 1if(flagl == 0)

printf (“P1 wins”) printf (“P2 wins”)



Definition: Shared Memory Consistency Model

The memory consistency model of a shared memory multiprocessor provides a
formal specification of how the memory system will appear to the programmer,
eliminating the gap between the behavior expected by the programmer and the
actual behavior supported by the system.



Definition: Shared Memory Consistency Model

The memory consistency model of a shared memory multiprocessor provides a
formal specification of how the memory system will appear to the programmer,

eliminating the gap between the behavior expected by the programmer and the
actual behavior supported by the system.

e A set of rules governing how the memory system will process memory
operations from multiple processors

e Contract between the programmers and the system
e Determines what optimizations can be performed for correct programs



Sequential consistency model

A multiprocessor system is sequentially consistent if the result of any execution is
the same as if the operations of all the processors were executed in some
sequential order, and the operation of each individual processor appear in this
sequence in the order specified by its program.

P1l: P2:
flagl =1 flag2 =1
1f(flag2 == 0) 1f(flagl == 0)

printf (“P1 wins”) printf (YP2 wins”)



Sequential consistency model [too restrictive]

A multiprocessor system is sequentially consistent if the result of any execution is
the same as if the operations of all the processors were executed in some
sequential order, and the operation of each individual processor appear in this
sequence in the order specified by its program.

P1l: P2:

flagl =1 flag2 =1

if (flag2 == 0) 1f(flagl == 0)
printf (“P1 wins”) printf (YP2 wins”)

Both cannot win in the sequential consistency model. Compiler reordering will be prohibited.



Sequential consistency model [too restrictive]

A multiprocessor system is sequentially consistent if the result of any execution is
the same as if the operations of all the processors were executed in some
sequential order, and the operation of each individual processor appear in this
sequence in the order specified by its program.

P1l: P2:

flagl =1 flag2 =1

if (flag?2 ;;\\;::::::::::::><:::::::::::;f(flagl == 0)
printf (“P1 wins”) printf (YP2 wins”)

Effect of each instruction immediately visible in all processors. Use of write buffers will be prohibited.



Sequential consistency model

A multiprocessor system is sequentially consistent if the result of any execution is
the same as if the operations of all the processors were executed in some
sequential order, and the operation of each individual processor appear in this
sequence in the order specified by its program.

P1l: P2:

for (1 O, 1 < N; 1i++) printf (“sd”,arr[1])

arr[i] = 0 printf (“sd”, 1)



Sequential consistency model [too restrictive]

A multiprocessor system is sequentially consistent if the result of any execution is
the same as if the operations of all the processors were executed in some
sequential order, and the operation of each individual processor appear in this
sequence in the order specified by its program.

P1l: P2:
for (1 = 0; 1 < N; 1++) printf (“sd”,arr[1])
arr[i] = 0 printf (“sd”, 1)

Compiler will be restricted from using register variables.



Relaxed consistency model - weak ordering

In this model, the memory operations are divided into two categories,

data operations and synchronization operations.



Relaxed consistency model - weak ordering

In this model, the memory operations are divided into two categories,

data operations and synchronization operations.

Intuition: Reordering memory operations in data regions between
synchronization operations does not typically affect program correctness.
Synchronization operations enforce program order by disallowing reordering

of code around them
Temporary view is maintained between synchronization operations



OpenMP synchronization operation

e flush() is the key synchronization operation
0 {#pragma omp flush(list)
e Prevents reordering of memory accesses across flush



Decker’s algorithm for critical section

P1l: P2:
flagl =1 flag2 =1
1f(flag2 == 0) 1if(flagl == 0)

Critical Section Critical Section



Decker’s algorithm for critical section: Incorrect flushes

P1:

flagl =1
flush(flagl)
flush (flag2)
if (flag2 == 0)

Critical Section

P2:

flag2 =1
flush (flag2)
flush (flagl)
if (flagl == 0)

Critical Section



Decker’s algorithm for critical section: Correct flushes

P1l: P2:

flagl =1 flag2 =1
flush(flagl, flag2) flush(flagl, flag2)
if(flag2 == 0) if(flagl == 0)

Critical Section Critical Section



OpenMP synchronization operation

e flush() is the key synchronization operation

(@)

#pragma omp flush (list)

e Prevents reordering of memory accesses across flush
e Implicit flushes

@)

(@)
(@)
(@)

Barriers

Entry/Exit from parallel, parallel for, critical

Lock functions

Entry and exit from atomic (only variables which are updated)



OpenMP consistency model: Release consistency

e Further relaxation of weak consistency

e Synchronization operations are further divided
o Acquire: operations like lock
o Release: operations like unlock

e Acquire:
o must complete before all following memory accesses
e Release:

o All memory access operations before release must complete
o Accesses after release in program order need not wait for release



Types of concurrency bugs in presence of compiler
reordering, OS scheduling, coherence protocols

Order violation

Atomicity violation

Sequential consistency violation
Deadlock

Starvation

Livelock



