
Recall: Layered approach to

synchronization

Hardware-provided low-level

atomic operations

High-level synchronization

primitives

Properly synchronized application

� Hardware provides simple low-level atomic

operations, upon which we can build high-level,

synchronization primitives, upon which we can

implement critical sections and build correct

multi-threaded/multi-process programs

4

 CMU 15-418/618, Spring 2017

“Blocking” synchronization

▪ Idea: if progress cannot be made because a resource cannot

be acquired, it is desirable to free up execution resources for

another thread (preempt the running thread)
if	(condition	X	not	true)	

			block	until	true;		//	OS	scheduler	de-schedules	thread	

																									//	(let’s	another	thread	use	the	processor)	

▪ pthreads mutex example

pthread_mutex_t	mutex;	

pthread_mutex_lock(&mutex);

 CMU 15-418/618, Spring 2017

Busy waiting vs. blocking

▪ Busy-waiting can be preferable to blocking if:

- Scheduling overhead is larger than expected wait time

- A processor’s resources not needed for other tasks

- This is often the case in a parallel program since we usually don’t oversubscribe

a system when running a performance-critical parallel app (e.g., there aren’t

multiple CPU-intensive programs running at the same time)

- Clarification: be careful to not confuse the above statement with the value of

multi-threading (interleaving execution of multiple threads/tasks to hiding

long latency of memory operations) with other work within the same app.

▪ Examples:

int	lock;	

OSSpinLockLock(&lock);			//	OSX	spin	lock

pthread_spinlock_t	spin;	

pthread_spin_lock(&spin);				

 CMU 15-418/618, Spring 2017

Implementing Locks

 CMU 15-418/618, Spring 2017

Warm up: a simple, but incorrect, lock

lock:

unlock:

ld			R0,	mem[addr]						//	load	word	into	R0	
cmp		R0,	#0													//	compre	R0	to	0	
bnz		lock															//	if	nonzero	jump	to	top	
st			mem[addr],	#1											

st			mem[addr],	#0						//	store	0	to	address										

Problem: data race because LOAD-TEST-STORE is not atomic!
Processor 0 loads address X, observes 0

Processor 1 loads address X, observes 0

Processor 0 writes 1 to address X

Processor 1 writes 1 to address X

 CMU 15-418/618, Spring 2017

Test-and-set based lock

Atomic test-and-set instruction:

ts	R0,	mem[addr]							//	load	mem[addr]	into	R0	

																							//	if	mem[addr]	is	0,	set	mem[addr]	to	1

lock:

unlock:

ts			R0,	mem[addr]								//	load	word	into	R0							
bnz		R0,	lock													//	if	0,	lock	obtained									

st			mem[addr],	#0								//	store	0	to	address										

 CMU 15-418/618, Spring 2017

Test-and-set lock: consider coherence traffic
Processor 1 Processor 2

BusRdX

Update line in cache (set to 1)

Invalidate line

Processor 3

Invalidate lineT&S

[P1 is holding lock...]

T&SBusRdX

Attempt to update (t&s fails)

Invalidate line

T&SBusRdX

Attempt to update (t&s fails)

Invalidate line

T&SBusRdX

Attempt to update (t&s fails)

Invalidate line

T&SBusRdX

Attempt to update (t&s fails)

Invalidate line

T&SBusRdX

Update line in cache (set to 1)

Invalidate line
BusRdX

Update line in cache (set to 0)

Invalidate line

= thread has lock

 CMU 15-418/618, Spring 2017

Test-and-set lock performance

Benchmark	executes:	
lock(L);	
critical-section(c)	
unlock(L);

Ti
m

e
(u

s)

Number of processors

Benchmark: execute a total of N lock/unlock sequences (in aggregate) by P processors

Critical section time removed so graph plots only time acquiring/releasing the lock

Bus contention increases amount of

time to transfer lock (lock holder must

wait to acquire bus to release)

Not shown: bus contention also slows

down execution of critical section

Figure credit: Culler, Singh, and Gupta

 CMU 15-418/618, Spring 2017

Desirable lock performance characteristics

▪ Low latency

- If lock is free and no other processors are trying to acquire it, a processor should

be able to acquire the lock quickly

▪ Low interconnect traffic

- If all processors are trying to acquire lock at once, they should acquire the lock in

succession with as little traffic as possible

▪ Scalability

- Latency / traffic should scale reasonably with number of processors

▪ Low storage cost

▪ Fairness

- Avoid starvation or substantial unfairness

- One ideal: processors should acquire lock in the order they request access to it

Simple test-and-set lock: low latency (under low contention), high traffic, poor scaling,

low storage cost (one int), no provisions for fairness

 CMU 15-418/618, Spring 2017

Test-and-test-and-set lock

void	Lock(int*	lock)	{	
		while	(1)	{	
					
				while	(*lock	!=	0);	
					
					
					
				if	(test_and_set(*lock)	==	0)	
						return;	
		}	
}	

void	Unlock(int*	lock)	{	
			*lock	=	0;	
}

//	while	another	processor	has	the	lock…	

//	(assume	*lock	is	NOT	register	allocated)	

//	when	lock	is	released,	try	to	acquire	it									

 CMU 15-418/618, Spring 2017

Test-and-test-and-set lock: coherence traffic
Processor 1 Processor 2

BusRdX

Update line in cache (set to 1)

[P1 is holding lock...]

BusRdX

Update line in cache (set to 0)

Invalidate line

Invalidate line

BusRd

[Many reads from local cache]

Invalidate line

BusRd

BusRdX

Update line in cache (set to 1)

Invalidate line

Processor 3

Invalidate line

BusRd

[Many reads from local cache]

Invalidate line

BusRd

BusRdX

Attempt to update (t&s fails)

T&S

T&S

T&S

= thread has lock

 CMU 15-418/618, Spring 2017

Test-and-test-and-set characteristics

▪ Slightly higher latency than test-and-set in uncontended case
- Must test... then test-and-set

▪ Generates much less interconnect traffic
- One invalidation, per waiting processor, per lock release (O(P) invalidations)

- This is O(P2) interconnect traffic if all processors have the lock cached

- Recall: test-and-set lock generated one invalidation per waiting processor per test

▪ More scalable (due to less traffic)

▪ Storage cost unchanged (one int)

▪ Still no provisions for fairness

 CMU 15-418/618, Spring 2017

Test-and-set lock with back off

void	Lock(volatile	int*	l)	{	
		int	amount	=	1;	
		while	(1)	{	
				if	(test_and_set(*l)	==	0)	
						return;	
				delay(amount);	
				amount	*=	2;	
		}	
}

Upon failure to acquire lock, delay for awhile before retrying

▪ Same uncontended latency as test-and-set, but potentially higher latency under

contention. Why?

▪ Generates less traffic than test-and-set (not continually attempting to acquire lock)

▪ Improves scalability (due to less traffic)

▪ Storage cost unchanged (still one int for lock)

▪ Exponential back-off can cause severe unfairness

� Newer requesters back off for shorter intervals

 CMU 15-418/618, Spring 2017

Load-linked, store conditional (LL/SC)

▪ Pair of corresponding instructions (not a single atomic

instruction like compare-and-swap)

- load_linked(x): load value from address

- store_conditional(x, value): store value to x, if x hasn’t been written to since

corresponding LL

▪ Corresponding ARM instructions: LDREX and STREX

▪ How might LL/SC be implemented on a cache coherent

processor?

5

Load-Linked and Store Conditional

• LL-SC is an implementation of atomic read-modify-write
 with very high flexibility

• LL: read a value and update a table indicating you have
 read this address, then perform any amount of computation

• SC: attempt to store a result into the same memory location,
 the store will succeed only if the table indicates that no
 other process attempted a store since the local LL (success
 only if the operation was “effectively” atomic)

• SC implementations do not generate bus traffic if the
 SC fails – hence, more efficient than test&test&set

6

Spin Lock with Low Coherence Traffic

lockit: LL R2, 0(R1) ; load linked, generates no coherence traffic
 BNEZ R2, lockit ; not available, keep spinning
 DADDUI R2, R0, #1 ; put value 1 in R2
 SC R2, 0(R1) ; store-conditional succeeds if no one
 ; updated the lock since the last LL
 BEQZ R2, lockit ; confirm that SC succeeded, else keep trying

• If there are i processes waiting for the lock, how many
 bus transactions happen?

7

Spin Lock with Low Coherence Traffic

lockit: LL R2, 0(R1) ; load linked, generates no coherence traffic
 BNEZ R2, lockit ; not available, keep spinning
 DADDUI R2, R0, #1 ; put value 1 in R2
 SC R2, 0(R1) ; store-conditional succeeds if no one
 ; updated the lock since the last LL
 BEQZ R2, lockit ; confirm that SC succeeded, else keep trying

• If there are i processes waiting for the lock, how many
 bus transactions happen?
 1 write by the releaser + i read-miss requests +
 i responses + 1 write by acquirer + 0 (i-1 failed SCs) +
 i-1 read-miss requests + i-1 responses

8

Further Reducing Bandwidth Needs

• Ticket lock: every arriving process atomically picks up a
 ticket and increments the ticket counter (with an LL-SC),
 the process then keeps checking the now-serving
 variable to see if its turn has arrived, after finishing its
 turn it increments the now-serving variable

• Array-Based lock: instead of using a “now-serving”
 variable, use a “now-serving” array and each process
 waits on a different variable – fair, low latency, low
 bandwidth, high scalability, but higher storage

• Queueing locks: the directory controller keeps track of
 the order in which requests arrived – when the lock is
 available, it is passed to the next in line (only one process
 sees the invalidate and update)

 CMU 15-418/618, Spring 2017

Ticket lock
Main problem with test-and-set style locks: upon

release, all waiting processors attempt to acquire lock

using test-and-set

struct	lock	{	
			int	next_ticket;	
			int	now_serving;	
};	

void	Lock(lock*	l)	{	
		int	my_ticket	=	atomic_increment(&l->next_ticket);			//	take	a	“ticket”	
		while	(my_ticket	!=	l->now_serving);																	//	wait	for	number		
}																																																						//	to	be	called	

void	unlock(lock*	l)	{	
		l->now_serving++;	
}

No atomic operation needed to acquire the lock (only a read)

Result: only one invalidation per lock release (O(P) interconnect traffic)

 CMU 15-418/618, Spring 2017

Array-based lock

Each processor spins on a different memory address

Utilizes atomic operation to assign address on attempt to acquire

struct	lock	{	
			padded_int	status[P];				//	padded	to	keep	off	same	cache	line	
			int	head;	
};	

int	my_element;	

void	Lock(lock*	l)	{	
		my_element	=	atomic_circ_increment(&l->head);				//	assume	circular	increment	
		while	(l->status[my_element]	==	1);	
}	

void	unlock(lock*	l)	{	
		l->status[my_element]	=	1;	
		l->status[circ_next(my_element)]	=	0;												//	next()	gives	next	index	
}

O(1) interconnect traffic per release, but lock requires space linear in P

Also, the atomic circular increment is a more complex operation (higher overhead)

