View from 30,000 Feet

Note: we haven'’t bothered
showing multiplexors

——
4 —»
%dd . Add
L Data
Register #
Address Instruction ’—E Registers
Register #
Instruction
memory ¢+~ Register #

>ALU

e What is the role of the Add units?

e Explain the inputs to the data memory unit

e Explain the inputs to the ALU
e Explain the inputs to the register unit

Y

Address

Data

Data
memory

Source: H&P textbook

Clocking Methodology

Add

Add

Address Instruction

Instruction
memory

—

g

[&

Data
Register #
Registers

Register #

Register #

>ALU

e Which of the above units need a clock?
e What is being saved (latched) on the rising edge of the clock?

Keep in mind that the latched value remains there for an entire cycle

Y

Address

Data

Data
memory

Source: H&P textbook

5

Implementing R-type Instructions

e Instructions of the form add St1, St2, $t3

e Explain the role of each signal

> Data

i < | Read
ea
rEgiStE‘r1 Read
Register 5 data 1
g v Regd
numbers register 2
5 | Write Registers
3 : register Read
{ Write data 2
Data —
Data
RegWrite
a. Registers

ALU operation

Zero |

ALU ALU
result

b. ALU

Source: H&P textbook

6

Implementing Loads/Stores

e Instructions of the form Iw St1, 8(St2) and sw St1, 8(5t2)

g
35 Read 4 ALU operation
register 1 Read h
—t
Register) 5 |Read data 1
numbers | register 2
5 | \Write Registers ; Data
| register
\. g Read
—
Write data 2
Data —
Data MemWrite
RegWrite
4 —— Address F\:jead —
ata
a. Registers
Data
Where does this input come from? Write ~ memory
data
MemRead

a. Data memory unit Source: H&P textbook

Implementing J-type Instructions

e Instructions of the form beq $t1, St2, offset

PC +4 from instruction datapath —

i Branch
Add target

Rea?d ALU operation
Instruction register 1 Read

Read data 1

register 2 To branch

Write Registers control logic

register Read o

Write Gl

data

RegWrite
16 Sign- 32
| extend

Source: H&P textbook

View from 10,000 Feet

>Add

Read
address
Instruction

Instruction
memaory

| Write

| Read

register 1

| Read

register 2

register

Write
data

Read
data 1

Registers g4

data 2

ALUSrc

ALU
>Add result

RegWrite

Zero

>ALLI ALU
result

ALLU operation

MemWrite

MemtoReg
|
Read
Address data
=
_| Write Data
| data memory

MemRead

Source: H&P textbook

View from 5,000 Feet

>Add

Read
address

Instruction
[31=0]

Instruction
memory

L~

Instruction [31

Instruction [25-21]

RegDst
Branch

/

>Add

MemRead

MemioReqg

ALUOp

| MemWrite

\ | ALUSrc

\ ' .
\ f RegWrite
\.._.

Instruction [2_0—16]

»

Instruction [15-11]

Instruction [15-0]

Read
register 1 paad
| Read data 1
5 | register 2
M| | write ~ Read
Y [register data 2
! il Write
data Registers

-‘x:!‘a‘

>ALU ALU

Zero

result

Instruction [5-0]

Read
Address data

Data

ertememmy

data

Cxc=

Source: H&P textbook

Latches and Clocks in a Single-Cycle Design

Instr Reg Data
Mem File AL Addr Memory

Y Y Y

e The entire instruction executes in a single cycle
e Green blocks are latches
e At the rising edge, a new PC is recordedT
e At the rising edge, the result of the previous cycle is recorded T
e At the falling edge, the address of LW/SW is recorded so T
we can access the data memory in the 2" half of the cycle

PC

Multi-Stage Circuit

PC

Instead of executing the entire instruction in a single
cycle (a single stage), let’s break up the execution into
multiple stages, each separated by a latch

L3

L4

Reg
File

12

The Assembly Line

Unpipelined Start and finish a job before moving to the next

Jobs

» Time

Break the job into smaller stages

Pipelined

13

Performance Improvements?

e Does it take longer to finish each individual job?
e Does it take shorter to finish a series of jobs?

e What assumptions were made while answering these
guestions?

e |s a 10-stage pipeline better than a 5-stage pipeline?

A 5-Stage Pipeline

CC 6

I

Source: H&P textbook

5

A 5-Stage Pipeline

Use the PC to access the I-cache and increment PC by 4

Time (in clock cyclesy

CC 1 cCc 2 cCc a3 CC 4 CcC 5 CC 6

” = roa | = | %
IE= A==
-

2
L
:
3
\/
)
|
2
[
2

I

Z

7

3

|m

Ey
H Lij

A 5-Stage Pipeline

Time (in clock cycles)

cCA1

Read registers, compare registers, compute branch target; for now, assume
branches take 2 cyc (there is enough work that branches can easily take more)

CcC 5

CcCe

A 5-Stage Pipeline

ALU computation, effective address computation for load/store

Time (in clock cyclesy

CC 1 cCc 2 cCc a3 CC 4 CcC 5 CC 6

” = roa | = | %
IE= A==
-

Reg

7
3
\/
)
|
2
[

I

Z

7

3

|m

Ey
H Lij

A 5-Stage Pipeline

Memory access to/from data cache, stores finish in 4 cycles

Time (in clock cyclesy

CC 1

cCc 2

i

DM

~
L

CC 5 CcCe
Reg
DM] Reg

I

E

A 5-Stage Pipeline

Write result of ALU computation or load into register file

Time (in clock cyclesy

CC 1 cCc 2 cCc a3 CC 4 CcC 5 CC 6

” = roa | = | %
IE= A==
-

= DM] Reg

N
Y
0
Q

~

I

Z

7

3

|m

Ey
H Lij

10

Pipeline Summary

RR ALU DM RW
ADD R1,R2, 2> R3 RdR1,R2 R1+R2 ~- Wr R3

BEQ R1,R2,100 RdR1,R2 -- - -
Compare, Set PC

LD 8[R3] 2 R6 Rd R3 R3+8 Getdata WrR6

ST 8[R3] € R6 Rd R3,R6 R3+8 Wr data --

11

Performance Improvements?

e Does it take longer to finish each individual job?
e Does it take shorter to finish a series of jobs?

e What assumptions were made while answering these

guestions?
— No dependences between instructions
— Easy to partition circuits into uniform pipeline stages
— No latch overhead

e |s a 10-stage pipeline better than a 5-stage pipeline?

12

Quantitative Effects

e As a result of pipelining:

» Time in ns per instruction goes up

» Each instruction takes more cycles to execute

» But... average CPl remains roughly the same

» Clock speed goes up

» Total execution time goes down, resulting in lower
average time per instruction

» Under ideal conditions, speedup
= ratio of elapsed times between successive instruction

completions

= number of pipeline stages = increase in clock speed

13

Conflicts/Problems

e |-cache and D-cache are accessed in the same cycle — it
helps to implement them separately

e Registers are read and written in the same cycle — easy to
deal with if register read/write time equals cycle time/2

e Branch target changes only at the end of the second stage
-- what do you do in the meantime?

14

Hazards

e Structural hazards: different instructions in different stages
(or the same stage) conflicting for the same resource

e Data hazards: an instruction cannot continue because it
needs a value that has not yet been generated by an
earlier instruction

e Control hazard: fetch cannot continue because it does
not know the outcome of an earlier branch — special case
of a data hazard — separate category because they are
treated in different ways

15

Structural Hazards

e Example: a unified instruction and data cache =2
stage 4 (MEM) and stage 1 (IF) can never coincide

e The later instruction and all its successors are delayed
until a cycle is found when the resource is free 2 these
are pipeline bubbles

e Structural hazards are easy to eliminate — increase the
number of resources (for example, implement a separate
instruction and data cache, add more register ports)

Data Hazards

e An instruction produces a value in a given pipeline stage

e A subsequent instruction consumes that value in a pipeline
stage

e The consumer may have to be delayed so that the time
of consumption is later than the time of production

Example 1 — No Bypassing

e Show the instruction occupying each stage in each cycle (no bypassing)
if I1is R1+R2->R3 and 12 is R3+R4—>R5 and I3 is R7+R8—>R9

CyC-1 CYC-2 CYC-3 CYC4 CYC5 CYC-6 CYC-7 CYC-8
IF IF IF IF IF IF IF IF

D/R D/R D/R D/R D/R D/R D/R D/R

ALU ALU ALU ALU ALU ALU ALU ALU

DM DM DM DM DM DM DM DM

Example 1 — No Bypassing

e Show the instruction occupying each stage in each cycle (no bypassing)
if I1is R1+R2->R3 and 12 is R3+R4—>R5 and I3 is R7+R8—>R9

CyC-1 CYC-2 CYC-3 CYC4 CYC5 CYC-6 CYC-7 CYC-8
|F |F |F |F |F |F |F IF
11 12 13 13 13 14 15

D/R D/R D/R D/R D/R D/R D/R D/R
11 12 12 12 13 14
ALU ALU ALU ALU ALU ALU ALU ALU
11 12 13
DM DM DM DM DM DM DM DM
11 12 13
RW RW RW RW RW RW RW RW
11 12

Example 2 — Bypassing

e Show the instruction occupying each stage in each cycle (with bypassing)
if I1is R1+R2—>R3 and 12 is R3+R4—>R5 and I3 is R3+R8—>R9.

Identify the input latch for each input operand.
CYyC-1 CYC-2 CYC-3 (CYC4 CYC-5 cCYc6 CYc-7 cCyc-s

IF IF IF IF IF IF IF IF

D/R D/R D/R D/R D/R D/R D/R D/R

ALU ALU ALU ALU ALU ALU ALU ALU

DM DM DM DM DM DM DM DM

Example 2 — Bypassing

e Show the instruction occupying each stage in each cycle (with bypassing)
if I1is R1+R2—>R3 and 12 is R3+R4—>R5 and I3 is R3+R8—>R9.

Identify the input latch for each input operand.

CYC-1 CYC-2 CYC-3 CYC-4 CYC-5 CYC-6 CYC-7 CYC-8
IF IF IF IF IF IF IF IF
11 12 13 14 15

p/R |b/R |D/R| D/R| I DR!| DR| | DR |D/R
11 12 13 14

ALU | |ALU | |ALU | |AWU | |ALU | |AWU | | ALU | | ALU
11 12 13

pMm| 'pm ||/ pom| ‘om!| oM | Ipm | | DM | | DM

11 12 13
RW | |RW | [RW | [RW | | RW | | RW | | RW | | RW
11 12 13

Problem 1

|F D/R || ALU || DM RW
|F D/R || ALU || DM RW
|F D/R || ALU || DM RW
add S1,S2,S3
|F D/R || ALU || DM RW
lw S4, 8(S1)

11

Problem 2

lw S1, 8(S2)

lw $4, 8(51)

IF D/R || ALU || DM || RW
IF D/R || ALU || DM || RW
IF D/R || ALU || DM || RW
IF D/R || ALU || DM || RW

12

Problem 3

lw S1, 8(52)

sw S1, 8(S3)

IF D/R || ALU || DM || RW
IF D/R || ALU || DM || RW
IF D/R || ALU || DM || RW
IF D/R || ALU || DM || RW

13

Problem 4

A 7 or 9 stage pipeline, RR and RW take an entire stage

|F |F Dec || Dec || RR ALU || RW

ALU || DM || DM

lw S1, 8(52)

add $4,51, S3

Problem 4

A 7 or 9 stage pipeline, RR and RW take an entire stage

IF

IF

Dec

Dec

RR

ALU

RW

lw S1, 8(52)

add $4,51, S3

ALU

DM

DM

RW

10

Problem 4

Without bypassing: 4 stalls
|F:IF:DE:DE:RR:AL:DM:DM:RW
|F: IF :DE:DE:DE:DE: DE :DE:RR:AL:RW

With bypassing: 2 stalls
|F:IF:DE:DE:RR:AL:DM:DM:RW
|F: IF :DE:DE:DE:DE: RR :AL:RW

lw S1, 8(52)

IF IF || Dec || Dec || RR ALU || RW

add 54,51, S3

ALU || DM || DM || RW

11

