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Floating Point

• Normalized scientific notation: single non-zero digit to the
left of the decimal (binary) point – example: 3.5 x 109

• 1.010001 x 2-5
two = (1 + 0 x 2-1 + 1 x 2-2 + … + 1 x 2-6) x 2-5

ten

• A standard notation enables easy exchange of data between
machines and simplifies hardware algorithms – the 
IEEE 754 standard defines how floating point numbers
are represented
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Sign and Magnitude Representation

Sign       Exponent                                         Fraction
1 bit          8 bits                                              23 bits

S E F

• More exponent bits  wider range of numbers (not necessarily more
numbers – recall there are infinite real numbers)

• More fraction bits  higher precision

• Register value = (-1)S x F x 2E

• Since we are only representing normalized numbers, we are
guaranteed that the number is of the form 1.xxxx.. 
Hence, in IEEE 754 standard, the 1 is implicit
Register value = (-1)S x (1 + F) x 2E
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Sign and Magnitude Representation

Sign       Exponent                                         Fraction
1 bit          8 bits                                              23 bits

S E F

• Largest number that can be represented: 2.0 x 2128 = 2.0 x 1038

(not really – see upcoming details)
• Smallest number that can be represented: 1.0 x 2-127 = 2.0 x 10-38

(not really – see upcoming details)
• Overflow: when representing a number larger than the max;

Underflow: when representing a number smaller than the min

• Double precision format: occupies two 32-bit registers:
Largest:                                  Smallest:

Sign       Exponent                                         Fraction
1 bit          11 bits                                              52 bits

S E F
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Details

• The number “0” has a special code so that the implicit 1 does not
get added: the code is all 0s
(it may seem that this takes up the representation for 1.0, but
given how the exponent is represented, that’s not the case)
(see discussion of denorms in the textbook)

• The largest exponent value (with zero fraction) represents +/- infinity

• The largest exponent value (with non-zero fraction) represents
NaN (not a number) – for the result of 0/0 or (infinity minus infinity)

• Note that these choices impact the smallest and largest numbers
that can be represented
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Exponent Representation

• To simplify sort, sign was placed as the first bit

• For a similar reason, the representation of the exponent is also
modified: in order to use integer compares, it would be preferable to
have the smallest exponent as 00…0 and the largest exponent as 11…1

• This is the biased notation, where a bias is subtracted from the
exponent field to yield the true exponent

• IEEE 754 single-precision uses a bias of 127  (since the exponent
must have values between -127 and 128)…double precision uses 
a bias of 1023

Final representation: (-1)S x (1 + Fraction) x 2(Exponent – Bias)
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0 00..0 00…0Value 0

Value 1 0  127  00…0

Value inf
Value NAN
Highest value ~2 x 2127

0  255  00…0
0  255  xx….x
0  254  11….1

Smallest Norm ~2 x 2-126

Largest Denorm ~1 x 2-126

Smallest Denorm ~2-149

0  0..01  00…0
0  0..00  11…1
0  0..00  00…1

Same rules as above, but the sign bit is 1
Same magnitudes as above, but negative numbers

Exponent field < 127, i.e., after
subtracting bias, they are negative
exponents, representing numbers < 1

2 special cases up top that use the
reserved exponent field of 255

Special case with exponent field 0, used to
represent denorms, that help us gradually approach 0
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Examples

Final representation: (-1)S x (1 + Fraction) x 2(Exponent – Bias)

• Represent  -0.75ten in single and double-precision formats

Single:  (1 + 8 + 23)

Double: (1 + 11 + 52)

• What decimal number is represented by the following
single-precision number?
1   1000 0001    01000…0000

Remember:

True exponent                    Exponent in register
+127

-127
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Examples

Final representation: (-1)S x (1 + Fraction) x 2(Exponent – Bias)

• Represent  -0.75ten in single and double-precision formats

Single:  (1 + 8 + 23)
1   0111 1110  1000…000

Double: (1 + 11 + 52)
1   0111 1111 110    1000…000

• What decimal number is represented by the following
single-precision number?
1   1000 0001    01000…0000

-5.0



19

Example 2

Final representation: (-1)S x (1 + Fraction) x 2(Exponent – Bias)

• Represent  36.90625ten in single-precision format

36 / 2 = 18 rem 0
18 / 2 = 9 rem 0
9 / 2 = 4 rem 1
4 / 2 = 2 rem 0
2 / 2 = 1   rem 0
1 / 2 = 0   rem 1

36 is 100100

0.90625 x 2 = 1.81250
0.8125 x 2 = 1.6250
0.625 x 2 = 1.250
0.25 x 2 = 0.50
0.5 x 2 = 1.00
0.0 x 2 = 0.0

0.90625 is 0.1110100…0
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Example 2

Final representation: (-1)S x (1 + Fraction) x 2(Exponent – Bias)

We’ve calculated that 36.90625ten = 100100.1110100…0 in binary
Normalized form = 1.001001110100…0 x 25

(had to shift 5 places to get only one bit left of the point)

The sign bit is 0 (positive number)
The fraction field is 001001110100…0  (the 23 bits after the point)
The exponent field is 5 + 127 (have to add the bias) = 132,

which in binary is 10000100

The IEEE 754 format is   0   10000100  001001110100…..0
sign  exponent     23 fraction bits
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FP Addition

• Consider the following decimal example (can maintain
only 4 decimal digits and 2 exponent digits)

9.999  x 101 +     1.610 x 10-1

Convert to the larger exponent:
9.999  x 101 +     0.016 x 101

Add
10.015  x 101

Normalize
1.0015  x 102

Check for overflow/underflow
Round
1.002  x 102

Re-normalize
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FP Addition

• Consider the following decimal example (can maintain
only 4 decimal digits and 2 exponent digits)

9.999  x 101 +     1.610 x 10-1

Convert to the larger exponent:
9.999  x 101 +     0.016 x 101

Add
10.015  x 101

Normalize
1.0015  x 102

Check for overflow/underflow
Round
1.002  x 102

Re-normalize

If we had more fraction bits,
these errors would be minimized
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FP Addition – Binary Example

• Consider the following binary example 

1.010  x 21 +     1.100 x 23

Convert to the larger exponent:
0.0101  x 23 +     1.1000 x 23

Add
1.1101  x 23

Normalize
1.1101  x 23

Check for overflow/underflow
Round
Re-normalize
IEEE 754 format:  0 10000010 11010000000000000000000
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FP Multiplication

• Similar steps:
 Compute exponent  (careful!)
Multiply significands (set the binary point correctly)
 Normalize
 Round (potentially re-normalize)
 Assign sign
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MIPS Instructions

• The usual add.s, add.d, sub, mul, div

• Comparison instructions: c.eq.s, c.neq.s, c.lt.s….
These comparisons set an internal bit in hardware that
is then inspected by branch instructions: bc1t, bc1f

• Separate register file $f0 - $f31  :  a double-precision
value is stored in (say) $f4-$f5 and is referred to by $f4

• Load/store instructions (lwc1, swc1) must still use
integer registers for address computation
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Code Example

float  f2c (float fahr)
{

return ((5.0/9.0) * (fahr – 32.0));
}

(argument fahr is stored in $f12)
lwc1   $f16, const5
lwc1   $f18, const9
div.s   $f16, $f16, $f18
lwc1   $f18, const32
sub.s  $f18, $f12, $f18
mul.s  $f0, $f16, $f18
jr        $ra
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Fixed Point

• FP operations are much slower than integer ops

• Fixed point arithmetic uses integers, but assumes that
every number is multiplied by the same factor 

• Example: with a factor of 1/1000, the fixed-point
representations for 1.46, 1.7198, and 5624 are
respectively           1460, 1720, and 5624000

• More programming effort and possibly lower precision
for higher performance
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Subword Parallelism

• ALUs are typically designed to perform 64-bit or 128-bit
arithmetic

• Some data types are much smaller, e.g., bytes for pixel
RGB values, half-words for audio samples

• Partitioning the carry-chains within the ALU can convert
the 64-bit adder into 4 16-bit adders or 8 8-bit adders

• A single load can fetch multiple values, and a single
add instruction can perform multiple parallel additions,
referred to as subword parallelism


