Full Example - Sort in C (pg. 133)

```
void sort (int v[ ], int n)
{
    int i, j;
    for (i=0; i<n; i+=1) {
        for (j=i-1; j>=0 &&v[j] > v[j+1]; j-=1) {
        swap (v,j);
        }
    }
}
```

- Allocate registers to program variables
- Produce code for the program body
- Preserve registers across procedure invocations

The swap Procedure

- Register allocation: \$a0 and \$a1 for the two arguments, \$t0 for the temp variable - no need for saves and restores as we're not using $\$ \mathrm{~s} 0-\$ \mathrm{~s} 7$ and this is a leaf procedure (won't need to re-use \$a0 and \$a1)

```
swap: sll $t1,$a1, 2
    add $t1, $a0, $t1
    Im $t0, 0($t1)
    Iw $t2, 4($t1)
    sw $t2,0($+1)
    sw $t0,4($t1)
    jr $ra
```

```
void swap (int v[], int k)
{
    int temp;
    temp = v[k];
    v[k] = v[k+1];
    v[k+1] = temp;
}
```


The sort Procedure

- Register allocation: arguments v and n use $\$ \mathrm{aO}$ and $\$ \mathrm{a} 1, \mathrm{i}$ and j use $\$ \mathrm{~s} 0$ and $\$ \mathrm{~s} 1$; must save $\$ \mathrm{a} 0$ and $\$ \mathrm{a} 1$ before calling the leaf procedure
- The outer for loop looks like this: (note the use of pseudo-instrs)

| move | \$s0, \$zero |
| :---: | :---: | \# initialize the loop

```
for (i=0; i<n; i+=1) {
    for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) {
        swap (v,j);
    }
}

\section*{The sort Procedure}
- The inner for loop looks like this:
\begin{tabular}{|c|c|c|}
\hline addi & \$s1, \$s0, -1 \# & initialize the loop \\
\hline \multicolumn{3}{|l|}{loopbody2: blt \$s1, \$zero, exit2 \# will eventually use slt and beq} \\
\hline \multicolumn{3}{|l|}{sll \$t1, \$s1, 2} \\
\hline \multicolumn{3}{|c|}{add \$t2, \$a0, \$t1} \\
\hline \multicolumn{3}{|c|}{Iw \$t3, 0(\$t2)} \\
\hline \multicolumn{3}{|c|}{Iw \$t4, 4(\$t2)} \\
\hline \multicolumn{3}{|c|}{ble \$t3, \$t4, exit2} \\
\hline \multicolumn{3}{|c|}{... body of inner loop ...} \\
\hline \multicolumn{3}{|c|}{addi \$s1, \$s1, -1} \\
\hline \multicolumn{3}{|c|}{j loopbody2} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{5}{*}{exit2:}} & \multirow[t]{3}{*}{```
for (i=0; i<n; i+=1) {
    for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) {
        swap (v,j);
```} \\
\hline & & \\
\hline & & \\
\hline & & \} \\
\hline & & \} 11 \\
\hline
\end{tabular}

\section*{Saves and Restores}
- Since we repeatedly call "swap" with \$a0 and \$a1, we begin "sort" by copying its arguments into \$s2 and \$s3 - must update the rest of the code in "sort" to use \$s2 and \$s3 instead of \$a0 and \$a1
- Must save \$ra at the start of "sort" because it will get over-written when we call "swap"
- Must also save \$s0-\$s3 so we don't overwrite something that belongs to the procedure that called "sort"

\section*{Saves and Restores}
```

sort: addi \$sp, \$sp,-20
sw $ra, 16($sp)
sw $s3,12($sp)
sw $s2, 8($sp)
9 lines of C code }->35\mathrm{ lines of assembly
sw $s1,4($sp)
sw $s0,0($sp)
move \$s2, \$a0
move $s3,$a1
move $a0,$s2 \# the inner loop body starts here
move $a1,$s1
jal swap
exit1: Iw $s0, 0($sp)
addi \$sp, \$sp, 20
jr \$ra

## IA-32 Instruction Set

- Intel's IA-32 instruction set has evolved over 20 years old features are preserved for software compatibility
- Numerous complex instructions - complicates hardware design (Complex Instruction Set Computer - CISC)
- Instructions have different sizes, operands can be in registers or memory, only 8 general-purpose registers, one of the operands is over-written
- RISC instructions are more amenable to high performance (clock speed and parallelism) - modern Intel processors convert IA-32 instructions into simpler micro-operations


## Endian-ness

Two major formats for transferring values between registers and memory

## Memory: low address 45 7b 87 7f high address

Little-endian register: the first byte read goes in the low end of the register Register: 7f 87 7b 45
Most-significant bit $\nearrow \quad$ Least-significant bit (x86)

Big-endian register: the first byte read goes in the big end of the register
Register: 45 7b 87 7f
Most-significant bit $\nearrow$ Least-significant bit
(MIPS, IBM)

## Binary Representation

- The binary number

represents the quantity
$0 \times 2^{31}+1 \times 2^{30}+0 \times 2^{29}+\ldots+1 \times 2^{0}$
- A 32-bit word can represent $2^{32}$ numbers between 0 and $2^{32}-1$
... this is known as the unsigned representation as we're assuming that numbers are always positive


## ASCII Vs. Binary

- Does it make more sense to represent a decimal number in ASCII?
- Hardware to implement arithmetic would be difficult
- What are the storage needs? How many bits does it take to represent the decimal number 1,000,000,000 in ASCII and in binary?


## ASCII Vs. Binary

- Does it make more sense to represent a decimal number in ASCII?
- Hardware to implement arithmetic would be difficult
- What are the storage needs? How many bits does it take to represent the decimal number 1,000,000,000 in ASCII and in binary?
In binary: 30 bits $\quad\left(2^{30}>1\right.$ billion)
In ASCII: 10 characters, 8 bits per char $=80$ bits


## Negative Numbers

32 bits can only represent $2^{32}$ numbers - if we wish to also represent negative numbers, we can represent $2^{31}$ positive numbers (incl zero) and $2^{31}$ negative numbers

$$
\begin{aligned}
& 00000000000000000000000000000000_{\mathrm{two}}=0_{\mathrm{ten}} \\
& 00000000000000000000000000000001_{\mathrm{two}}=1_{\mathrm{ten}} \\
& \ldots \\
& 01111111111111111111111111111111_{\mathrm{two}}=2^{31}-1 \\
& 10000000000000000000000000000000_{\mathrm{two}}=-2^{31} \\
& 10000000000000000000000000000001_{\mathrm{two}}=-\left(2^{31}-1\right) \\
& 10000000000000000000000000000010_{\mathrm{two}}=-\left(2^{31}-2\right) \\
& \ldots \\
& 111111111111111111111111111111110_{\mathrm{two}}=-2 \\
& 11111111111111111111111111111111_{\mathrm{two}}=-1
\end{aligned}
$$

## 2's Complement

$$
\begin{aligned}
& 00000000000000000000000000000000_{\text {two }}=0_{\text {ten }} \\
& 00000000000000000000000000000000_{\text {two }}==_{\text {ten }} \\
& \ldots \\
& 01111111111111111111111111111111_{\text {two }}=2^{31-1} \\
& 10000000000000000000000000000000_{\text {two }}=-2^{31} \\
& 10000000000000000000000000000001_{\text {two }}=-\left(2^{31}-1\right) \\
& 10000000000000000000000000000010_{\text {two }}=-\left(2^{31}-2\right) \\
& \ldots \\
& 11111111111111111111111111111110_{\text {two }}=-2 \\
& 11111111111111111111111111111111_{\text {two }}=-1
\end{aligned}
$$

Why is this representation favorable?
Consider the sum of 1 and $-2 \ldots$ we get -1
Consider the sum of 2 and $-1 \ldots$. we get +1
This format can directly undergo addition without any conversions!
Each number represents the quantity

$$
x_{31}-2^{31}+x_{30} 2^{30}+x_{29} 2^{29}+\ldots+x_{1} 2^{1}+x_{0} 2^{0}
$$

## 2's Complement

```
000000000000000000000000000000000 two }=\mp@subsup{0}{\mathrm{ ten}}{
```



```
0111111111111111111111111111 1111 twoo = 231-1
10000000000000000000000000000000 two }=-\mp@subsup{2}{}{31
1000000000000000000000000000 0001 two }=-(\mp@subsup{2}{}{31}-1
1000000000000000000000000000 0010 two =-(231-2)
111111111111111111111111 1111 1110 two = -2
11111111111111111111111111111 1111 two = -1
```

Note that the sum of a number $x$ and its inverted representation $x^{\prime}$ always equals a string of $1 \mathrm{~s}(-1)$.

$$
\begin{aligned}
x+x^{\prime}=-1 & \\
x^{\prime}+1=-x & \text {... hence, can compute the negative of a number by } \\
-x=x^{\prime}+1 & \text { inverting all bits and adding } 1
\end{aligned}
$$

Similarly, the sum of $x$ and $-x$ gives us all zeroes, with a carry of 1 In reality, $x+(-x)=2^{n} \quad \ldots$ hence the name $2^{\prime}$ 's complement

## Example

- Compute the 32-bit 2's complement representations for the following decimal numbers:
5, -5, -6


## Example

- Compute the 32-bit 2's complement representations for the following decimal numbers:

$$
5,-5,-6
$$

5: 00000000000000000000000000000101
-5: 11111111111111111111111111111011
-6: 11111111111111111111111111111010

Given -5 , verify that negating and adding 1 yields the number 5

## Signed / Unsigned

- The hardware recognizes two formats:
unsigned (corresponding to the $C$ declaration unsigned int)
-- all numbers are positive, a 1 in the most significant bit just means it is a really large number
signed (C declaration is signed int or just int)
-- numbers can be +/- , a 1 in the MSB means the number is negative

This distinction enables us to represent twice as many numbers when we're sure that we don't need negatives

## MIPS Instructions

Consider a comparison instruction: slt \$t0, \$t1, \$zero
and $\$$ t1 contains the 32-bit number $111101 . . .01$

What gets stored in \$t0?

## MIPS Instructions

Consider a comparison instruction:
slt \$t0, \$t1, \$zero
and \$t1 contains the 32-bit number 111101 ... 01

What gets stored in $\$ \mathbf{t 0}$ ?
The result depends on whether $\$ \mathrm{t} 1$ is a signed or unsigned number - the compiler/programmer must track this and accordingly use either slt or sltu

slt \$t0, \$t1, \$zero stores 1 in \$t0<br>sltu \$t0, \$t1, \$zero stores 0 in \$t0

## Sign Extension

- Occasionally, 16-bit signed numbers must be converted into 32-bit signed numbers - for example, when doing an add with an immediate operand
- The conversion is simple: take the most significant bit and use it to fill up the additional bits on the left - known as sign extension

So $2_{10}$ goes from 0000000000000010 to 00000000000000000000000000000010
and $-2_{10}$ goes from 1111111111111110 to
11111111111111111111111111111110

## Alternative Representations

- The following two (intuitive) representations were discarded because they required additional conversion steps before arithmetic could be performed on the numbers
- sign-and-magnitude: the most significant bit represents
+/- and the remaining bits express the magnitude
- one's complement: -x is represented by inverting all the bits of $x$

Both representations above suffer from two zeroes

