
2

Instruction Set

• Important design principles when defining the
instruction set architecture (ISA):

 keep the hardware simple – the chip must only
implement basic primitives and run fast

 keep the instructions regular – simplifies the
decoding/scheduling of instructions

We will later discuss RISC vs CISC

3

Example

C code a = b + c + d + e;
translates into the following assembly code:

add a, b, c add a, b, c
add a, a, d or add f, d, e
add a, a, e add a, a, f

• Instructions are simple: fixed number of operands (unlike C)
• A single line of C code is converted into multiple lines of

assembly code
• Some sequences are better than others… the second

sequence needs one more (temporary) variable f

4

Subtract Example

C code f = (g + h) – (i + j);

Assembly code translation with only add and sub instructions:

5

Subtract Example

C code f = (g + h) – (i + j);
translates into the following assembly code:

add t0, g, h add f, g, h
add t1, i, j or sub f, f, i
sub f, t0, t1 sub f, f, j

• Each version may produce a different result because
floating-point operations are not necessarily
associative and commutative… more on this later

6

Operands

• In C, each “variable” is a location in memory

• In hardware, each memory access is expensive – if
variable a is accessed repeatedly, it helps to bring the
variable into an on-chip scratchpad and operate on the
scratchpad (registers)

• To simplify the instructions, we require that each
instruction (add, sub) only operate on registers

• Note: the number of operands (variables) in a C program is
very large; the number of operands in assembly is fixed…
there can be only so many scratchpad registers

7

Registers

• The MIPS ISA has 32 registers (x86 has 8 registers) –
Why not more? Why not less?

• Each register is 32 bits wide (modern 64-bit architectures
have 64-bit wide registers)

• A 32-bit entity (4 bytes) is referred to as a word

• To make the code more readable, registers are
partitioned as $s0-$s7 (C/Java variables), $t0-$t9
(temporary variables)…

8

Binary Stuff

• 8 bits = 1 Byte, also written as 8b = 1B

• 1 word = 32 bits = 4B

• 1KB = 1024 B = 210 B

• 1MB = 1024 x 1024 B = 220 B

• 1GB = 1024 x 1024 x 1024 B = 230 B

• A 32-bit memory address refers to a number between
0 and 232 – 1, i.e., it identifies a byte in a 4GB memory

9

Memory Operands

• Values must be fetched from memory before (add and sub)
instructions can operate on them

Load word
lw $t0, memory-address

Store word
sw $t0, memory-address

How is memory-address determined?

Register Memory

Register Memory

10

Memory Address

• The compiler organizes data in memory… it knows the
location of every variable (saved in a table)… it can fill
in the appropriate mem-address for load-store instructions

int a, b, c, d[10]

Memory

…

Base address

11

Memory Organization

$gp points to area in memory that saves global variables

Stack

Dynamic data (heap)

Static data (globals)

Text (instructions)
$gp

12

Memory Instruction Format

• The format of a load instruction:

destination register
source address

lw $t0, 8($t3)

any register
a constant that is added to the register in parentheses

13

Memory Instruction Format

• The format of a store instruction:

source register
destination address

sw $t0, 8($t3)

any register
a constant that is added to the register in parentheses

14

Example

int a, b, c, d[10];

addi $gp, $zero, 1000 # assume that data is stored at
base address 1000; placed in $gp;
$zero is a register that always
equals zero

lw $s1, 0($gp) # brings value of a into register $s1
lw $s2, 4($gp) # brings value of b into register $s2
lw $s3, 8($gp) # brings value of c into register $s3
lw $s4, 12($gp) # brings value of d[0] into register $s4
lw $s5, 16($gp) # brings value of d[1] into register $s5

15

Example

Convert to assembly:

C code: d[3] = d[2] + a;

16

Example

Convert to assembly:

C code: d[3] = d[2] + a;

Assembly (same assumptions as previous example):
lw $s0, 0($gp) # a is brought into $s0
lw $s1, 20($gp) # d[2] is brought into $s1
add $s2, $s0, $s1 # the sum is in $s2
sw $s2, 24($gp) # $s2 is stored into d[3]

Assembly version of the code continues to expand!

17

Memory Organization

• The space allocated on stack by a procedure is termed the activation
record (includes saved values and data local to the procedure) – frame
pointer points to the start of the record and stack pointer points to the
end – variable addresses are specified relative to $fp as $sp may
change during the execution of the procedure

• $gp points to area in memory that saves global variables
• Dynamically allocated storage (with malloc()) is placed on the heap

Stack

Dynamic data (heap)

Static data (globals)

Text (instructions)

3

Recap – Numeric Representations

• Decimal 3510 = 3 x 101 + 5 x 100

• Binary 001000112 = 1 x 25 + 1 x 21 + 1 x 20

• Hexadecimal (compact representation)
0x 23 or 23hex = 2 x 161 + 3 x 160

0-15 (decimal)  0-9, a-f (hex)

Dec Binary Hex
0 0000 00
1 0001 01
2 0010 02
3 0011 03

Dec Binary Hex
4 0100 04
5 0101 05
6 0110 06
7 0111 07

Dec Binary Hex
8 1000 08
9 1001 09

10 1010 0a
11 1011 0b

Dec Binary Hex
12 1100 0c
13 1101 0d
14 1110 0e
15 1111 0f

4

Instruction Formats

Instructions are represented as 32-bit numbers (one word),
broken into 6 fields

R-type instruction add $t0, $s1, $s2
000000 10001 10010 01000 00000 100000
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
op rs rt rd shamt funct

opcode source source dest shift amt function

I-type instruction lw $t0, 32($s3)
6 bits 5 bits 5 bits 16 bits

opcode rs rt constant
($s3) ($t0)

5

Logical Operations

Logical ops C operators Java operators MIPS instr

Shift Left << << sll
Shift Right >> >>> srl
Bit-by-bit AND & & and, andi
Bit-by-bit OR | | or, ori
Bit-by-bit NOT ~ ~ nor

6

Control Instructions

• Conditional branch: Jump to instruction L1 if register1
equals register2: beq register1, register2, L1
Similarly, bne and slt (set-on-less-than)

• Unconditional branch:
j L1
jr $s0 (useful for big jumps and procedure returns)

Convert to assembly:
if (i == j)

f = g+h;
else

f = g-h;

7

Control Instructions

• Conditional branch: Jump to instruction L1 if register1
equals register2: beq register1, register2, L1
Similarly, bne and slt (set-on-less-than)

• Unconditional branch:
j L1
jr $s0 (useful for big jumps and procedure returns)

Convert to assembly:
if (i == j) bne $s3, $s4, Else

f = g+h; add $s0, $s1, $s2
else j End

f = g-h; Else: sub $s0, $s1, $s2
End:

8

Example

Convert to assembly:

while (save[i] == k)
i += 1;

Values of i and k are in $s3 and
$s5 and base of array save[] is
in $s6

9

Example

Convert to assembly:

while (save[i] == k)
i += 1;

Values of i and k are in $s3
and $s5 and base of array
save[] is in $s6

Loop: sll $t1, $s3, 2
add $t1, $t1, $s6
lw $t0, 0($t1)
bne $t0, $s5, Exit
addi $s3, $s3, 1
j Loop

Exit:

sll $t1, $s3, 2
add $t1, $t1, $s6

Loop: lw $t0, 0($t1)
bne $t0, $s5, Exit
addi $s3, $s3, 1
addi $t1, $t1, 4
j Loop

Exit:

10

Registers

• The 32 MIPS registers are partitioned as follows:

 Register 0 : $zero always stores the constant 0
 Regs 2-3 : $v0, $v1 return values of a procedure
 Regs 4-7 : $a0-$a3 input arguments to a procedure
 Regs 8-15 : $t0-$t7 temporaries
 Regs 16-23: $s0-$s7 variables
 Regs 24-25: $t8-$t9 more temporaries
 Reg 28 : $gp global pointer
 Reg 29 : $sp stack pointer
 Reg 30 : $fp frame pointer
 Reg 31 : $ra return address

