
● Embarrassing if you have a BTech in Computer Science and do not know the 
terms DRAM, pipelining, cache hierarchies, virtual memory

● Embarrassing if you have a BTech in Computer Science and cannot decide 
which laptop to buy

● Obvious first step for chip designers, OS/compiler writers

● Will knowledge of hardware help you write more performant or more secure 
programs?  
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Must a Programmer Care About Hardware?

• Must know how to reason about program performance
and energy and security

• Memory management: if we understand how/where data
is placed, we can help ensure that relevant data is nearby

• Thread management: if we understand how threads
interact, we can write smarter multi-threaded programs

 Why do we care about multi-threaded programs?
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Example

200x speedup for matrix vector multiplication

• Data level parallelism: 3.8x
• Loop unrolling and out-of-order execution: 2.3x
• Cache blocking: 2.5x
• Thread level parallelism: 14x

Further, can use accelerators to get an additional 100x.
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Key Topics

• Moore’s Law, power wall
• Use of abstractions
• Assembly language
• Computer arithmetic
• Pipelining
• Using predictions
• Memory hierarchies
• Accelerators
• Reliability and Security
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Microprocessor Performance

50% improvement every year!!
What contributes to this improvement?

Source: H&P Textbook
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Microprocessor Performance

Source: karlrupp.net
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Power Consumption Trends

• Dyn power  α activity x capacitance x voltage2 x frequency

• Voltage and frequency are somewhat constant now,
while capacitance per transistor is decreasing and number
of transistors (activity) is increasing

• Leakage power is also rising (function of #trans and voltage)

Source: H&P Textbook
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Summary

• Increasing frequency led to power wall in early 2000s

• Frequency has stagnated since then

• End of voltage (Dennard) scaling in early 2010s

• Has led to dark silicon and dim silicon (occasional turbo) 
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Important Trends

• Running out of ideas to improve single thread performance

• Power wall makes it harder to add complex features

• Power wall makes it harder to increase frequency

• Additional performance provided by: more cores, occasional
spikes in frequency, accelerators
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Important Trends

• Historical contributions to performance:
1. Better processes (faster devices) ~20%
2. Better circuits/pipelines ~15%
3. Better organization/architecture ~15%

In the future, bullet-2 will help little and bullet-1 will eventually
disappear!

Pentium   P-Pro    P-II     P-III      P-4       Itanium  Montecito
Year                 1993        95        97       99      2000        2002     2005
Transistors        3.1M      5.5M   7.5M   9.5M    42M        300M    1720M
Clock Speed     60M      200M  300M   500M   1500M    800M    1800M

At this point, adding transistors
to a core yields little benefit

Moore’s Law in action
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What Does This Mean to a Programmer?

• Today, one can expect only a 20% annual improvement;
the improvement is even lower if the program is not
multi-threaded

 A program needs many threads

 The threads need efficient synchronization and
communication

 Data placement in the memory hierarchy is important

 Accelerators should be used when possible
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Challenges for Hardware Designers

• Find efficient ways to 

 improve single-thread performance and energy

 improve data sharing

 boost programmer productivity

 manage the memory system

 build accelerators for important kernels

 provide security
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The HW/SW Interface

Compiler

lw     $15, 0($2)
add   $16, $15, $14
add   $17, $15, $13
lw     $18, 0($12)
lw     $19, 0($17)
add   $20, $18, $19
sw    $20, 0($16)

a[i] = b[i] + c;

Hardware

Systems software
(OS, compiler)

Application software

Assembler

000000101100000
110100000100010
… 
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Computer Components

• Input/output devices

• Secondary storage: non-volatile, slower, cheaper (HDD/SSD)

• Primary storage: volatile, faster, costlier (RAM)

• CPU/processor (datapath and control)
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Wafers and Dies

Source: H&P Textbook
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Manufacturing Process

• Silicon wafers undergo many processing steps so that different
parts of the wafer behave as insulators, conductors, and
transistors (switches)

• Multiple metal layers on the silicon enable connections
between transistors

• The wafer is chopped into many dies – the size of the die
determines yield and cost
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Processor Technology Trends

• Shrinking of transistor sizes: 250nm (1997) 
130nm (2002)  70nm (2008)  35nm (2014) 
2019 transition to 10nm, now transitioning to 7nm

• Transistor density increases by 35% per year and die size
increases by 10-20% per year… functionality improvements!

• Transistor speed improves linearly with size (complex 
equation involving voltages, resistances, capacitances)

• Wire delays do not scale down at the same rate as
transistor delays
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Memory and I/O Technology Trends

• DRAM density increases by 40-60% per year, latency has
reduced by 33% in 10 years (the memory wall!), bandwidth
improves twice as fast as latency decreases

• Disk density improves by 100% every year, latency
improvement similar to DRAM

• Networks: primary focus on bandwidth; 10Mb  100Mb
in 10 years; 100Mb  1Gb in 5 years
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Performance Metrics

• Possible measures:
 response time – time elapsed between start and end

of a program
 throughput – amount of work done in a fixed time

• The two measures are usually linked
 A faster processor will improve both
 More processors will likely only improve throughput
 Some policies will improve throughput and worsen 

response time (or vice versa)

• What influences performance?
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Execution Time

Consider a system X executing a fixed workload W

PerformanceX = 1 / Execution timeX

Execution time = response time = wall clock time
- Note that this includes time to execute the workload
as well as time spent by the operating system
co-ordinating various events

The UNIX “time” command breaks up the wall clock time
as user and system time
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Speedup and Improvement

• System X executes a program in 10 seconds, system Y
executes the same program in 15 seconds

• System X is 1.5 times faster than system Y

• The speedup of system X over system Y is 1.5  (the ratio)
= perf X / perf Y  =  exectime Y / exectime X

• The performance improvement of X over Y is 
1.5 -1 = 0.5 = 50% = (perf X – perf Y) / perf Y = speedup - 1

• The execution time reduction for system X, compared to
Y is (15-10) / 15  = 33%
The execution time increase for Y, compared to X is 
(15-10) / 10 = 50%
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A Primer on Clocks and Cycles
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Performance Equation - I

CPU execution time = CPU clock cycles  x  Clock cycle time
Clock cycle time = 1 / Clock speed

If a processor has a frequency of 3 GHz, the clock ticks
3 billion times in a second – as we’ll soon see, with each
clock tick, one or more/less instructions may complete

If a program runs for 10 seconds on a 3 GHz processor,
how many clock cycles did it run for?

If a program runs for 2 billion clock cycles on a 1.5 GHz
processor, what is the execution time in seconds?
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Performance Equation - II

CPU clock cycles = number of instrs x  avg clock cycles
per instruction (CPI)

Substituting in previous equation,

Execution time = clock cycle time  x  number of instrs x  avg CPI

If a 2 GHz processor graduates an instruction every third cycle,
how many instructions are there in a program that runs for
10 seconds?
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Factors Influencing Performance

Execution time = clock cycle time x number of instrs x avg CPI

• Clock cycle time: manufacturing process (how fast is each
transistor), how much work gets done in each pipeline stage
(more on this later)

• Number of instrs: the quality of the compiler and the
instruction set architecture

• CPI: the nature of each instruction and the quality of the
architecture implementation
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Example

Execution time = clock cycle time x number of instrs x avg CPI

Which of the following two systems is better?

• A program is converted into 4 billion MIPS instructions by a
compiler ; the MIPS processor is implemented such that
each instruction completes in an average of 1.5 cycles and
the clock speed is 1 GHz

• The same program is converted into 2 billion x86 instructions;
the x86 processor is implemented such that each instruction
completes in an average of 6 cycles and the clock speed is
1.5 GHz



6

Power and Energy

• Total power = dynamic power + leakage power

• Dynamic power α activity x capacitance x voltage2 x frequency

• Leakage power α voltage

• Energy  =  power  x  time
(joules)     (watts)     (sec)
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Example Problem

• A 1 GHz processor takes 100 seconds to execute a program,
while consuming 70 W of dynamic power and 30 W of
leakage power.  Does the program consume less energy in
Turbo boost mode when the frequency is increased to 1.2 GHz?
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Example Problem

• A 1 GHz processor takes 100 seconds to execute a program,
while consuming 70 W of dynamic power and 30 W of
leakage power.  Does the program consume less energy in
Turbo boost mode when the frequency is increased to 1.2 GHz?

Normal mode energy = 100 W x 100 s = 10,000 J
Turbo mode energy = (70 x 1.2 + 30) x 100/1.2 = 9,500 J

Note: 
Frequency only impacts dynamic power, not leakage power.
We assume that the program’s CPI is unchanged when

frequency is changed, i.e., exec time varies linearly
with cycle time.
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Benchmark Suites

• Each vendor announces a SPEC rating for their system
 a measure of execution time for a fixed collection of

programs
 is a function of a specific CPU, memory system, IO

system, operating system, compiler
 enables easy comparison of different systems

The key is coming up with a collection of relevant programs 
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SPEC CPU

• SPEC: System Performance Evaluation Corporation, an industry
consortium that creates a collection of relevant programs

• SPEC 2006 includes 12 integer and 17 floating-point applications

• The SPEC rating specifies how much faster a system is, compared 
to a baseline machine – a system with SPEC rating 600 is 1.5
times faster than a system with SPEC rating 400

• Note that this rating incorporates the behavior of all 29
programs – this may not necessarily predict performance for
your favorite program!

• Latest version: SPEC 2017
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Deriving a Single Performance Number

How is the performance of 29 different apps compressed
into a single performance number?

• SPEC uses geometric mean (GM) – the execution time
of each program is multiplied and the Nth root is derived

• Another popular metric is arithmetic mean (AM) – the
average of each program’s execution time

• Weighted arithmetic mean – the execution times of some
programs are weighted to balance priorities
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Amdahl’s Law

• Architecture design is very bottleneck-driven – make the
common case fast, do not waste resources on a component
that has little impact on overall performance/power

• Amdahl’s Law: performance improvements through an
enhancement is limited by the fraction of time the
enhancement comes into play

• Example: a web server spends 40% of time in the CPU
and 60% of time doing I/O – a new processor that is ten
times faster results in a 36% reduction in execution time
(speedup of 1.56) – Amdahl’s Law states that maximum
execution time reduction is 40% (max speedup of 1.66)
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Common Principles

• Amdahl’s Law

• Energy: performance improvements typically also result
in energy improvements – less leakage

• 90-10 rule: 10% of the program accounts for 90% of
execution time

• Principle of locality: the same data/code will be used
again (temporal locality), nearby data/code will be
touched next (spatial locality)
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Recap

• Knowledge of hardware improves software quality:
compilers, OS, threaded programs, memory management

• Important trends: growing transistors, move to multi-core
and accelerators, slowing rate of performance improvement,
power/thermal constraints, long memory/disk latencies

• Reasoning about performance: clock speeds, CPI, 
benchmark suites, performance and power equations

• Next: assembly instructions


