
mjb – March 4, 2019

8

Computer Graphics

How Bad Is It? -- Demonstrating the Cache-Miss Problem

C and C++ store 2D arrays a row-at-a-time, like this, A[i][j]:

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

For large arrays, would it be better to add the
elements by row, or by column? Which will avoid
the most cache misses?

[i]

[j]

float f = Array[i][j] ;

float f = Array[j][i] ;

Sequential memory order

Jump-around-in-memory order

sum = 0.;
for(int i = 0; i < NUM; i++)
{

for(int j = 0; j < NUM; j++)
{

float f = ???
sum += f;

}
}

mjb – March 4, 2019

9

Computer Graphics

Demonstrating the Cache-Miss Problem – Across Rows

#include <stdio.h>
#include <ctime>
#include <cstdlib>

#define NUM 10000

float Array[NUM][NUM];

double MyTimer();

int
main(int argc, char *argv[])
{

float sum = 0.;
double start = MyTimer();
for(int i = 0; i < NUM; i++)
{

for(int j = 0; j < NUM; j++)
{

sum += Array[i][j]; // access across a row
}

}
double finish = MyTimer();

double row_secs = finish – start;

mjb – March 4, 2019

10

Computer Graphics

sum = 0.;
start = MyTimer();
for(int i = 0; i < NUM; i++)
{

for(int j = 0; j < NUM; j++)
{

sum += Array[j][i]; // access down a column
}

}
finish = MyTimer();

double col_secs = finish - start;
fprintf(stderr, "NUM = %5d ; By rows = %lf ; By cols = %lf\n",

NUM, row_secs, col_secs);
}

Demonstrating the Cache-Miss Problem – Down Columns

mjb – March 4, 2019

11

Computer Graphics

Demonstrating the Cache-Miss Problem

Time, in seconds, to compute the array sums, based
on by-row versus by-column order:

Dimension (NUM)
(Total array size = NUMxNUM)

T
im

e
(s

ec
on

ds
)

mjb – March 4, 2019

12

Computer Graphics

Array-of-Structures vs. Structure-of-Arrays:

struct xyz
{

float x, y, z;
} Array[N];

float X[N], Y[N], Z[N];

X0
Y0
Z0

X1
Y1
Z1

X2
Y2
Z2

X3
Y3
Z3

X0
X1
X2
X3
. . .

Y0
Y1
Y2
Y3
. . .

Z0
Z1
Z2
Z3
. . .

1. Which is a better use of the
cache if we are going to be using
X-Y-Z triples a lot?

2. Which is a better use of the
cache if we are going to be
looking at all X’s, then all Y’s,
then all Z’s?

I’ve seen some programs use a
“Shadow Data Structure” to get the
advantages of both AOS and SOA

mjb – March 4, 2019

13

Computer Graphics

Computer Graphics is often a Good Use for Array-of-Structures:

struct xyz
{

float x, y, z;
} Array[N];

. . .

glBegin(GL_LINE_STRIP);
for(int i = 0; i < N; i++)
{

glVertex3f(Array[i].x, Array[i].y, Array[i].z);
}
glEnd();

X0
Y0
Z0

X1
Y1
Z1

X2
Y2
Z2

X3
Y3
Z3

mjb – March 4, 2019

14

Computer Graphics

A Good Use for Structure-of-Arrays:

float X[N], Y[N], Z[N];
float Dx[N], Dy[N], Dz[N];
. . .

Dx[0:N] = X[0:N] - Xnow;
Dy[0:N] = Y[0:N] - Ynow;
Dz[0:N] = Z[0:N] - Znow;

X0
X1
X2
X3
. . .

Y0
Y1
Y2
Y3
. . .

Z0
Z1
Z2
Z3
. . .

mjb – March 4, 2019

15

Computer Graphics

Good Object-Oriented Programming Style can
sometimes be Inconsistent with Good Cache Use:

class xyz
{

public:
float x, y, z;
xyz *next;
xyz();
static xyz *Head = NULL;

};

xyz::xyz()
{

xyz * n = new xyz;
n->next = Head;
Head = n;

};

This is good OO style – it encapsulates and
isolates the data for this class. Once you have
created a linked list whose elements are all over
memory, is it the best use of the cache?

mjb – March 4, 2019

16

Computer Graphics

But, Here Is a Compromise:

It might be better to create a large array of xyz structures and then have the
constructor method pull new ones from that list. That would keep many of the
elements close together while preserving the flexibility of the linked list.

When you need more, allocate another large array and link to it.

Matrix vector multiplication

Performance numbers

Observation 1

Explanation 1

● A write-miss occurs when a core tries to update a variable that’s not in cache, and it has to access the
main memory

● 8,000,000 x 8 shows more cache write-misses than either of the other inputs
● Bulk of these occur in Line 4
● Since the number of elements in the vector y is far greater in this case (8,000,000 vs. 8000 or 8), and each

element must be initialized, so line 4 slows down the execution of the program with the 8,000,000 × 8 input

Observation 2

Explanation 2

● A read-miss occurs when a core tries to read a variable that’s not in cache, and it has to access main
memory

● 8 x 8,000,000 shows more cache read-misses than either of the other inputs
● Bulk of these occur in Line 6
● for this matrix dimension, x has 8,000,000 elements, versus only 8000 or 8 for the other inputs

Observation 3

Explanation 3

● Cache coherence is enforced at “cache-line level.” Each time any value in a cache line is written, if the line
is also stored in another core’s cache, the entire line will be invalidated, not just the value that was written.

● System used has two dual-core processors and each processor has its own cache. Suppose threads 0 and
1 are assigned to one of the processors and threads 2 and 3 are assigned to the other.

● 8,000,000 × 8 input, each thread is assigned 2,000,000 components
8000 × 8000 input, each thread is assigned 2000 components
8 × 8,000,000 input, each thread is assigned 2 components

● On system used, cache line is 64 bytes. y is double -> 8 bytes, a single cache line will store 8 doubles
● for 8 × 8,000,000 all of y is stored in a single cache line. Then every write to some element of y will

invalidate the line in the other processor’s cache

mjb – March 4, 2019

29

Computer Graphics

False Sharing – An Example Problem

struct s
{

float value;
} Array[4];

omp_set_num_threads(4);

#pragma omp parallel for
for(int i = 0; i < 4; i++)
{

for(int j = 0; j < SomeBigNumber; j++)
{

Array[i].value = Array[i].value + (float)rand();
}

}

Some unpredictable function so the compiler
doesn’t try to optimize the j-for-loop away.

One
cache
line

mjb – March 4, 2019

30

Computer Graphics

False Sharing – Fix #1
Adding some padding

#include <stdlib.h>
struct s
{

float value;
int pad[NUMPAD];

} Array[4];

const int SomeBigNumber = 100000000; // keep less than 2B

omp_set_num_threads(4);

#pragma omp parallel for
for(int i = 0; i < 4; i++)
{

for(int j = 0; j < SomeBigNumber; j++)
{

Array[i].value = Array[i].value + (float)rand();
}

}

This works because successive Array elements are forced onto
different cache lines, so less (or no) cache line conflicts exist

One
cache
line

} NUMPAD=3

mjb – March 4, 2019

31

Computer Graphics

False Sharing – Fix #1

NUMPAD

S
p

ee
d

u
p

of
threads

Why do these curves look this way?

mjb – March 4, 2019

32

Computer Graphics

False Sharing – the Effect of Spreading Your Data to Multiple Cache Lines

NUMPAD = 0

mjb – March 4, 2019

33

Computer Graphics

False Sharing – the Effect of Spreading Your Data to Multiple Cache Lines

NUMPAD = 1

mjb – March 4, 2019

34

Computer Graphics

False Sharing – the Effect of Spreading Your Data to Multiple Cache Lines

NUMPAD = 2

mjb – March 4, 2019

35

Computer Graphics

False Sharing – the Effect of Spreading Your Data to Multiple Cache Lines

NUMPAD = 3

mjb – March 4, 2019

36

Computer Graphics

False Sharing – the Effect of Spreading Your Data to Multiple Cache Lines

NUMPAD = 4

mjb – March 4, 2019

37

Computer Graphics

False Sharing – the Effect of Spreading Your Data to Multiple Cache Lines

NUMPAD = 5

mjb – March 4, 2019

38

Computer Graphics

False Sharing – Fix #1

mjb – March 4, 2019

39

Computer Graphics

NUMPAD = 6

False Sharing – the Effect of Spreading Your Data to Multiple Cache Lines

mjb – March 4, 2019

40

Computer Graphics

NUMPAD = 7

False Sharing – the Effect of Spreading Your Data to Multiple Cache Lines

mjb – March 4, 2019

41

Computer Graphics

False Sharing – Fix #1

mjb – March 4, 2019

42

Computer Graphics

NUMPAD = 8

False Sharing – the Effect of Spreading Your Data to Multiple Cache Lines

mjb – March 4, 2019

43

Computer Graphics

NUMPAD = 9

False Sharing – the Effect of Spreading Your Data to Multiple Cache Lines

mjb – March 4, 2019

44

Computer Graphics

NUMPAD = 10

False Sharing – the Effect of Spreading Your Data to Multiple Cache Lines

mjb – March 4, 2019

45

Computer Graphics

False Sharing – Fix #1

mjb – March 4, 2019

46

Computer Graphics

NUMPAD = 11

False Sharing – the Effect of Spreading Your Data to Multiple Cache Lines

mjb – March 4, 2019

47

Computer Graphics

NUMPAD = 12

False Sharing – the Effect of Spreading Your Data to Multiple Cache Lines

mjb – March 4, 2019

48

Computer Graphics

NUMPAD = 13

False Sharing – the Effect of Spreading Your Data to Multiple Cache Lines

mjb – March 4, 2019

49

Computer Graphics

NUMPAD = 14

False Sharing – the Effect of Spreading Your Data to Multiple Cache Lines

mjb – March 4, 2019

50

Computer Graphics

NUMPAD = 15

False Sharing – the Effect of Spreading Your Data to Multiple Cache Lines

mjb – March 4, 2019

51

Computer Graphics

False Sharing – Fix #1

mjb – March 4, 2019

52

Computer Graphics

Stack

Stack

Common
Program

Executable

Common
Globals

Common
Heap

False Sharing – Fix #2:
Using local (private) variables

OK, wasting memory to put your data
on different cache lines seems a little
silly (even though it works). Can we do
something else?

Remember our discussion in the
OpenMP section about how stack
space is allocated for different threads?

If we use local variables, instead of
contiguous array locations, that will
spread our writes out in memory, and
to different cache lines.

mjb – March 4, 2019

53

Computer Graphics

Stack

Stack

Common
Program

Executable

Common
Globals

Common
Heap

False Sharing – Fix #2

#include <stdlib.h>
struct s
{

float value;
} Array[4];

omp_set_num_threads(4);

const int SomeBigNumber = 100000000;

#pragma omp parallel for
for(int i = 0; i < 4; i++)
{

float tmp = Array[i].value;
for(int j = 0; j < SomeBigNumber; j++)
{

tmp = tmp + (float)rand();
}
Array[i].value = tmp;

}

This works because a localized temporary variable is
created in each core’s stack area, so little or no cache
line conflict exists

Makes this a private
variable that lives in each
thread’s individual stack

mjb – March 4, 2019

54

Computer Graphics

False Sharing – Fix #2 vs. Fix #1

NUMPAD

S
p

ee
d

u
p

of
threads

Fix #2 -- 4 Threads

Fix #2 -- 2 Threads

Fix #2 -- 1 Thread

Note that Fix #2 with {1, 2, 4} threads gives the same
performance as NUMPAD= {0,7,15}

Cache Coherence

A memory system is coherent if:

• Write propagation: P1 writes to X, sufficient time elapses,
P2 reads X and gets the value written by P1

• Write serialization: Two writes to the same location by two
processors are seen in the same order by all processors

• The memory consistency model defines “time elapsed”
before the effect of a processor is seen by others and the
ordering with R/W to other locations (loosely speaking
– more later)

14

Cache Coherence Protocols

• Directory-based: A single location (directory) keeps track
of the sharing status of a block of memory

• Snooping: Every cache block is accompanied by the sharing
status of that block – all cache controllers monitor the
shared bus so they can update the sharing status of the
block, if necessary

 Write-invalidate: a processor gains exclusive access of
a block before writing by invalidating all other copies

 Write-update: when a processor writes, it updates other
shared copies of that block

15

SMP Example

Processor
A

Caches

Processor
B

Caches

Processor
C

Caches

Processor
D

Caches

Main Memory I/O System

A: Rd X
B: Rd X
C: Rd X
A: Wr X
A: Wr X
C: Wr X
B: Rd X
A: Rd X
A: Rd Y
B: Wr X
B: Rd Y
B: Wr X
B: Wr Y

18

SMP Example

A: Rd X S Rd-miss req; mem responds

B: Rd X S S Rd-miss req; mem responds

C: Rd X S S S Rd-miss req; mem responds

A: Wr X M I I Upgrade req; no resp; others inv

A: Wr X M I I Cache hit

C: Wr X I I M Wr-miss req; A resp & inv; no wrtbk

B: Rd X I S S Rd-miss req; C resp; wrtbk to mem

A: Rd X S S S Rd-miss req; mem responds

A: Rd Y S (Y) S (X) S (X) Rd-miss req; X evicted; mem resp

B: Wr X S (Y) M (X) I Upgrade req; no resp; others inv

B: Rd Y S (Y) S (Y) I Rd-miss req; mem resp; X wrtbk

B: Wr X S (Y) M (X) I Wr-miss req; mem resp; Y evicted

B: Wr Y I M (Y) I Wr-miss req; mem resp; others inv;
X wrtbk

A B C

20

Directory-Based Cache Coherence

• The physical memory is distributed among all processors

• The directory is also distributed along with the
corresponding memory

• The physical address is enough to determine the location
of memory

• The (many) processing nodes are connected with a
scalable interconnect (not a bus) – hence, messages
are no longer broadcast, but routed from sender to
receiver – since the processing nodes can no longer
snoop, the directory keeps track of sharing state

9

Distributed Memory Multiprocessors

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Interconnection network

Directory Directory Directory Directory

10

Directory-Based Example

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Interconnection network

Directory
Directory
X

Directory
Y

A: Rd X
B: Rd X
C: Rd X
A: Wr X
A: Wr X
C: Wr X
B: Rd X
A: Rd X
A: Rd Y
B: Wr X
B: Rd Y
B: Wr X
B: Wr Y

11

Directory Example

A: Rd X S S: A Req to dir; data to A

B: Rd X S S S: A, B Req to dir; data to B

C: Rd X S S S S: A,B,C Req to dir; data to C

A: Wr X M I I M: A Req to dir;inv to B,C;dir recv ACKs;perms to A

A: Wr X M I I M: A Cache hit

C: Wr X I I M M: C Req to dir;fwd to A; sends data to dir; dir to C

B: Rd X I S S S: B, C Req to dir;fwd to C;data to dir;dir to B; wrtbk

A: Rd X S S S S:A,B,C Req to dir; data to A

A: Rd Y S(Y) S S X:S: A,B,C (Y:S:A) Req to dir; data to A

B: Wr X S(Y) M I X:M:B Req to dir; inv to A,C;dir recv ACK;perms to B

B: Rd Y S(Y) S(Y) I X: - Y:S:A,B Req to dir; data to B; wrtbk of X

B: Wr X S(Y) M(X) I X:M:B Y:S:A,B Req to dir; data to B

B: Wr Y I M(Y) I X: - Y:M:B Req to dir;inv to A;dir recv ACK;
perms and data to B;wrtbk of X

A B C Dir Comments

13

Performance Improvements

• What determines performance on a multiprocessor:
 What fraction of the program is parallelizable?
 How does memory hierarchy performance change?

• New form of cache miss: coherence miss – such a miss
would not have happened if another processor did not
write to the same cache line

• False coherence miss: the second processor writes to a
different word in the same cache line – this miss would
not have happened if the line size equaled one word

16

