Echo

Write a MIPS assembly program to print the input string after saving it to the heap.

Input

A string containing ASCII characters

Output

The input string

Constraints

• The length of the string will not exceed 100 characters

Example

1) Hello world \rightarrow Hello world

Requirements

• You must ensure that you save the input string to the heap

Marking Scheme

1M: Approach & Correctness (testcases will be given during demo) 1M: Code Cleanliness, use of appropriate comments

Binary Search

Write a MIPS assembly program to perform an iterative binary search to check if an element exists in a sorted array.

Input

n, [a1, a2, a3,an], x. Assume all values to be integers. The array is 0-indexed.

Output

"Yes at index ____" if x is found in the array & "Not Found" if not

Constraints

- a1 <= a2 <= a3 <= a4 <=an
- 1 <= n <= 30

Example

- 1) 32334 \rightarrow Yes at index 1
- 2) 5123459 \rightarrow Not found
- 3) 1 2 2 \rightarrow Yes at index 0

Requirements

- The sorted array should be saved on the heap.
- The code should have O(logn) time complexity.
- Code must be iterative. Don't use recursion in this part of the assignment.

Marking Scheme

3M: Approach & Correctness (testcases will be given during demo)1M: Code Cleanliness, use of appropriate comments

Fast Exponentiation

Write a MIPS assembly program to perform a recursive computation of xⁿ.

Input

x, n. Assume both to be 32-bit integers and that the result does not overflow.

Output

The result xⁿ

Constraints

- 0 <= x <= 10000
- 0 <= n <= 10000

Example

- 1) $24 \rightarrow 16$
- 2) $10 \ 2 \to 100$

Requirements

- The code should have O(logn) time complexity
- The implementation must be recursive
- Function calls must follow caller-save and callee-save semantics

Marking Scheme

3M: Approach & Correctness (testcases will be given during demo)1M: Code Cleanliness, use of appropriate comments

Submission Instructions

- You need to create three files: "echo.asm", "bin_search.asm", and "fast_expo.asm", for each of the programs, respectively. Zip them as <entry num 1>_<entry num 2>_A1.zip and submit it on Moodle. Only one teammate should submit.
- 2. Each of your programs should be able to take input and give the output when run on the qtspim simulator.
- 3. You can either extensively comment your code or prepare a write-up explaining your code and design decisions.